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Abstract. Epitaxial single-crystal chemical-vapor-deposited diamond
with �100� crystal orientation is obtained from Element Six �Ascot, United
Kingdom� and Apollo Diamond �Boston, Massachusetts�. Both compa-
nies supply 5�5-mm squares with thicknesses of 0.35 to 1.74 mm. El-
ement Six also provides disks with a state of the art diameter of 10 to
11 mm and a thickness of 1.0 mm. The absorption coefficient measured
by laser calorimetry at 1.064 �m is 0.003 cm−1 for squares from Element
Six and 0.07 cm−1 for squares from Apollo. One Apollo specimen has an
absorption coefficient near those of the Element Six material. Absorption
coefficients of Element Six disks are 0.008 to 0.03 cm−1. Each square
specimen can be rotated between orientations that produce minimum or
maximum loss of polarization of a 1.064-�m laser beam transmitted
through the diamond. Minimum loss is in the range 0 to 11% �mean
=5% � and maximum loss is 8 to 27% �mean=17% �. Element Six disks
produce a loss of polarization in the range 0 to 4%, depending on the
angle of rotation of the disk. Part of the 0.04 to 0.6% total integrated
optical scatter in the forward hemisphere at 1.064 �m can be attributed
to surface roughness. © 2007 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.2748044�
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1 Introduction

This study assesses optical properties of state of the art
epitaxial chemical-vapor-deposited �CVD� single-crystal
diamond at a wavelength of 1.064 �m for potential appli-
cation as a heat spreading element in solid state lasers.
Properties of most interest are the calorimetric absorption
coefficient, loss of polarization by light passing through the
diamond, and optical scatter.

Diamond was manufactured in 2005 by Element Six
�Ascot, United Kingdom� and Apollo Diamond �Boston,

Massachusetts�. Both companies supplied diamond squares
with nominal dimensions of 5�5 mm ��100� face� and
thickness in the range 0.35 to 1.74 mm. In addition, Ele-
ment Six provided disks with a state of the art diameter of
10 to 11 mm ��100� face� and thickness of 1.0 mm �Fig. 1�.

Laser calorimetry, which was used in this study to mea-
sure absorptance �fraction of incident irradiation that is ab-
sorbed�, is the recommended method for characterizing op-
tical laser components.1 In this technique, the change in
temperature of a specimen is measured as a function of
time when the specimen is exposed to a known laser power
and after the exposure is ended. Advantages of laser calo-
rimetry include the simplicity of the apparatus and ease of0091-3286/2007/$25.00 © 2007 SPIE
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absolute calibration. This technique can detect absorptance
of the order of a few parts per million.2 One means to
separate surface and bulk absorptance is to study samples
with different thicknesses. If the surfaces are identical, then
a plot of measured absorptance versus sample thickness
extrapolated to zero thickness reveals the surface absorp-
tance. The slope of the graph gives the bulk absorptance.

2 Experimental

2.1 Laser Calorimetry
Laser calorimetry was conducted at the University of Cen-
tral Florida College of Optics and Photonics �CREOL�, and
independently at QinetiQ �Malvern, United Kingdom�.
Prior to calorimetry at CREOL, specimens were cleaned
with acetone and a cotton bud. Samples were then washed
with methanol and wiped with lens paper. After measure-
ment at CREOL, samples were sent to QinetiQ, where they
were immersed in concentrated HCl for several minutes
and cleaned with a cotton bud. After washing with deion-
ized water and drying with filtered nitrogen, samples were
handled at the edges with tweezers.

At CREOL, a styrofoam box was used to enclose the
experiment and to provide thermal isolation of the sample
at ambient temperature in the air. Laser light entered and
exited the box through holes in which plastic tubes were
inserted to reduce convective heat transfer. The sample was
held by a piece of monofilament fishing line glued to its
edge and attached to a thermally isolated frame with three
degrees of translational and rotational movement. A preci-
sion temperature measurement system by GEC Instruments
�Gainesville, Florida� �model S4TC� allowed the simulta-
neous reading of up to four temperatures with precision
better than 10 mK over a broad range. Three 0.2-mm-
diameter thermocouples were glued to the sample. Care
was taken to prevent scattered laser light from striking the
temperature sensors. The overall sensitivity of the calorim-
eter was about 10 mK.

Lasers emitting TEM00 mode light at 1.064 �m used at
CREOL to irradiate the samples were 1. a commercial con-
tinuous wave Nd:YVO4 laser with maximum output of

130 mW, or 2. a continuous wave Nd:YAG laser capable
of up to 3.5 W. The higher power laser was necessary for
the low-loss samples from Element Six. The laser was fo-
cused to 1 mm diameter on the entrance surface of the
sample. Measurements were made for three different loca-
tions in the sample. Examples of the irradiation-induced
temperature change versus time are shown in Fig. 2. For
each sample and location, ten or more plots were made
with irradiation times ranging from 100 to 200 s, and the
results averaged.

At QinetiQ, calorimetry was performed in a similar
manner with specimens at 300 K in the air.3 The sample
was held by a network of nylon filaments that grip the
sample around its edge. Sample temperature was measured
by a thermocouple held in contact with the sample edge by
one of the filaments. The diode-pumped Nd:YAG laser op-
erated at 1.064 �m with a power of 250 mW. The laser
beam at the sample had dimensions of �0.15�0.34 mm.

2.2 Treatment of Calorimetry Data
Absorptance a is the �dimensionless� fraction of incident
radiant power absorbed by a specimen. If the thermal con-
ductivity of the sample is high enough that its temperature
�T� is uniform, the temperature variation versus time �t� is
given by:

during irradiation: �T�t� =
aP

�mcp
�1 − exp�− ��t − tstart��� ,

�1�

after irradiation: �T�t� =
aP

�mcp
�exp�− ��t − tstop��

− exp�− ��t − tstart��� , �2�

where m is the mass of the sample �g�, P is the incident
laser power �W�, cp is the heat capacity of diamond

Fig. 1 Diamond disks with a diameter of 10 to 11 mm and thickness
of 1.03 to 1.07 mm manufactured by Element Six. The edge of each
circle at the top of the photograph was cut flat with a laser and
“inspection polished” for attachment of a thermocouple for
calorimetry.

Fig. 2 Irradiation-induced temperature change versus time for
Apollo 5 �350 �m thick� and Element Six 1 �430 �m thick� with irra-
diation time of 100 s. Lines are independent fits to the heating and
cooling data with Eqs. �1� and �2� �CREOL data�.
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�0.51 J / �g*K��,4–6 � is a heat loss coefficient ��0.02 s−1�
determined by fitting the measured temperature versus
time, tstart is the time at which the sample is exposed to the
laser, and tstop is the time at which the exposure is ended. In
Eqs. �1� and �2�, �T�t� is the difference between the sample
temperature at time t and the sample temperature prior to
irradiation, which is ambient temperature.

Internal transmittance is the fraction of radiant power
that has entered a specimen, which reaches the opposite
side after traversing a pathlength b through the specimen.
The relation between internal transmittance and absorption
coefficient ��� is

internal transmittance = exp�− �b� . �3�

Internal transmittance is independent of surface losses by
reflection, absorption, and scatter.

For perpendicular incidence of the laser beam on a
sample with parallel surfaces, negligible optical scatter, and
negligible surface absorption, the absorption coefficient is
related to absorptance by

exp�− �b� =
� − a

� − Ra
, �4�

where � is the external transmittance and R is the single-
surface Fresnel reflectance. When �b �1, a first-order ex-
pansion of Eq. �4� gives:

a � �b . �5�

If there is surface absorption, a term accounting for both
surfaces is added to Eq. �5�:

a � �b + asurface. �6�

For our samples, � ranged between 10−1 and 10−3 cm−1 and
b�10−1 cm, so Eq. �5� applies.

At CREOL, two methods were employed to extract ab-
sorptance from the observed temperature versus time. The
exponential method7 consists of fitting the measured data
using Eqs. �1� and �2�, where a and � are parameters ob-
tained from a least-squares fit. The gradient method1,2 con-
sists of taking the derivative with respect to time of the
irradiation-induced temperature change versus time at two
instants th and tc, during irradiation and after irradiation.
For the gradient method, th and tc are chosen so that the
temperature change at each instant is the same. From the
derivatives taken at these two times, the absorptance is ob-
tained from

d

dt
�T�th� −

d

dt
�T�tc� �

aP

mcp
. �7�

The exponential and gradient methods gave similar results,
typically disagreeing by less than 5%, when applied to the
calorimetry data obtained at CREOL.

The method used to extract absorptance from calorim-
etry data at QinetiQ has been described previously.3 Briefly,
the heat loss coefficient ��� and ambient temperature are
obtained by fitting the cooling curve. With these values of �
and ambient temperature, the heating curve is fit by using a
point-by-point graphical procedure to find absorptance.

2.3 Depolarization Loss
The apparatus in Fig. 3 was used at CREOL to measure
depolarization loss of plane-polarized 1.064-�m radiation
from a 127.8-mW Nd:YVO4 laser. A 3-mm-diam aperture
limited the area of the diamond tested. �A 5-mm aperture
was used for the diamond disks.� The diameter of the laser
beam at the sample was 2 to 3 mm. With no sample present
at the aperture, the transmission through the analyzer was
0.887 when it was set to transmit light polarized in the
same plane as the laser light, and zero when set to transmit
light polarized perpendicular to the laser’s polarization.

To make a measurement, the center of the aperture was
aligned with the laser beam. The power passing through the
diamond Pd was measured with the analyzer polarizer re-
moved. The diamond/aperture combination was rotated
about the beam axis to see if the transmission changed.
Less than 1.0% variation was observed for the squares from
both manufacturers. The more complex behavior of disks
from Element Six is described in Results in Sec. 3.

The analyzer polarizer was then inserted and aligned to
transmit light polarized parallel to the laser’s polarization.
The transmitted power Pt was measured for different angles
of rotation of the sample about the beam axis. If there were
no depolarization loss, Pt should be 0.887Pd for all angles.
The observed transmitted power was less than 0.887Pd and
varied as the diamond was rotated. The observed transmit-
ted power was expressed as a percent of transmitted power
expected in the absence of depolarization:

T =
Pt

0.887Pd
, �8�

and the depolarization loss was defined as 1−T.

2.4 Other Measurements
A Zygo �Middlefield, Connecticut� GPI-4 Verifire phase
measuring interferometer used in a normal Fizeau configu-
ration was employed to measure the flatness of each speci-
men. Peak-to-valley elevation differences for the inner 90%
of the linear dimensions of each sample in Table 1 were
obtained from a front surface reflection from each specimen
in the air. The tilt aberration term was removed, but was
always present in the interferograms. Some results were
slightly smoothed with a low-pass filter to remove spikes.

Surface roughness was measured with a Taylor-Hobson
�Leicester, United Kingdom� Talystep mechanical profiler
equipped with Bennett-Fellows software.8 The diamond
stylus had a hemispheric tip with a radius of 0.8 �m and a
loading of 1 mg. Features with lateral dimensions of 2 �m
could be resolved. A 1-mm-long profile with 2600 data

Fig. 3 Setup for measuring loss of polarization.
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points was recorded in 32 s, during which instrument drift
was negligible. Samples were wiped with folded lens tissue
held with tweezers. Inspection with a Nomarski microscope
indicated that most of the obvious dust particles were re-
moved with this wipe. Three profiles were taken on each
side of each sample. One profile was close to the center,
while the other two were on either side and approximately
1 mm away. Profiles with obvious dust peaks were dis-
carded.

Raman spectra were recorded with a Nicolet �Madison,
Wisconsin� Fourier Transform Raman 960 instrument with
excitation at 1.064 �m, a spot size of �100 �m, and an
InGaAs detector. Resolution was 2 cm−1. The linewidth at
half-height of the 1332 cm−1 Raman signal �observed at
1.240 �m� for Element Six material was 5 to 7 cm−1.
Apollo specimen 4 had a linewidth of 4 cm−1, and Apollo
specimen 5 had a linewidth of 11 cm−1. High quality dia-
mond with low strain can have a linewidth as low as

2 cm−1. Ultraviolet spectra were recorded with a Cary �Vic-
toria, Australia� 5 spectrometer using a 2-nm spectral band-
width and apertures to limit the size of the beam to be less
than the size of the diamond specimens. Infrared transmis-
sion was recorded with a Nicolet Nexus 870 Fourier trans-
form instrument and with a Nicolet Magna-IR 750 instru-
ment, both with deuterated triglycine sulfate �DTGS�
detectors.

Polarized photographs were obtained with a Motic �Xia-
men, China� SMZ-143 microscope using polarizers placed
directly above and below the specimen. A Leica �Solms,
Germany� MEF4 metallograph was used to take differential
interference contrast �Nomarski� photographs of diamond
surfaces. Polarized and Nomarski micrographs were also
obtained with an Olympus �Utsugi, Japan� metallurgical
microscope, using a 5� objective.

Photoluminescence was recorded with 532-nm laser ex-
citation illuminating through a metallurgical microscope
using a 50� objective with backscattered light analyzed by
a Renishaw 2000 spectrometer. The volume of sample illu-
minated was �1 �m in diameter and tens of �m deep,
while backscattered light was collected from a volume of 1
to 2 �m in diameter and 2 to 3 �m deep. Multiple spectra
were recorded on each specimen to survey variability
across the sample.

Atomic force microscope images of 50�50-�m squares
were obtained with a ThermoMicroscopes �Sunnyvale,
California� CP-R microscope in the contact mode using
silicon nitride tips.

Total integrated optical scatter in the forward hemi-
sphere between 2.5 and 70 deg from the direction of the
incident 1.064-�m laser beam was collected with a
Coblentz sphere as described previously.9 Prior to measur-
ing scatter, samples were cleaned as recommended by Ele-
ment Six: in a fume hood, 10 mL of 98 wt% H2SO4 was
heated until white fumes began to evolve. Then 0.5-g
KNO3 was added. A diamond specimen was placed in the
hot liquid and left for 10 min. After cooling, the diamond
was washed well with distilled water and tipped while in
contact with a cotton swab to wick most of the water off,
followed by air drying.

3 Results
Epitaxial CVD diamond specimens were clear and color-
less or very pale gray, except for Apollo 4, which was gray.
Disks from Element Six in Fig. 1 have the largest diameter
of epitiaxial single-crystal CVD diamond available to date.
An internal blemish, visible to the naked eye, is labeled on
disk 2.

Table 1 shows dimensions and surface characteristics of
the specimens. Polished faces of Element Six specimens
have peak-to-valley elevation differences of 0.1 to 0.2 �m,
disregarding rounding at the edges. Apollo specimens have
peak-to-valley elevation differences of 0.16 to 1.44 �m.
Mechanical surface profile measurements, atomic force mi-
croscopy, and Nomarski microscopy indicated that Apollo
surfaces were rougher than Element Six surfaces. Rough-
ness measured with a mechanical surface profiler with a
lateral resolution of 2 �m is mostly in the range 1 to 3 nm.
As measured by atomic force microscopy, a 50�50-�m
area of Element Six square 1 had a root-mean-square
roughness of 1.2 nm. A corresponding area of Apollo 2 had

Table 1 Diamond optical figure and roughness. Apollo 6 is a 3.6-
mm-diam disk. Peak-to-valley elevation difference includes mea-
surements for each of the two optical faces. The outside 5% of
pixels from each image was excluded in the peak-to-valley compu-
tation. Root-mean-square roughness is the average of three mea-
surements for each of the two optical faces. They were measured by
mechanical surface profiler using a stylus with 0.8-�m tip radius and
1-mg loading. Lateral resolution �2 �m.

Specimen
Thickness

�mm�

Peak-to-valley
elevation
difference

��m�

Root-mean-
square

roughness
�nm�

Squares with nominal dimensions of 5�5 mm

Element Six 1 0.43 0.18,0.10 —

Element Six 2 0.50 0.14,0.16 —

Element Six 3 0.92 0.12,0.12 —

Element Six 4 1.00 0.17,0.14 1.8±0.4, 0.7±0.2

Element Six 5 1.42 0.17,0.16 —

Element Six 6 1.47 0.18,0.11 —

Apollo 1 0.35 1.40,0.48 —

Apollo 2 0.68 0.28,0.58 2.5±0.2, 5.5±1.6

Apollo 3 1.09 0.82,0.48 2.6±0.3, 2.8±0.2

Apollo 4 1.74 0.19,0.16 —

Apollo 5 0.35 1.44,0.65 —

Apollo 6 1.27 — —

Disks with diameter 10 to 11 mm

Element Six disk 1 1.03 0.14,0.21 2.0±0.2, 1.4±0.3

Element Six disk 2 1.07 0.15,0.13 2.4±0.4, 1.3±0.5

Element Six disk 3 1.03 0.13,0.19 3.1±1.5, 2.2±0.4
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a roughness of 2.6 nm with obvious parallel polishing
grooves. Element Six squares appeared smooth under the
Nomarski microscope, but small pits were evident in the
surfaces of Element Six disks. Plane polarized laser light
transmitted through the disks produced interference pat-
terns from which we deduced that the faces of Element Six
disks 1, 2, and 3 have wedge angles of 0.007, 0.027, and
0.010 deg, respectively.

3.1 Absorption and Scatter at 1.064 �m
Each absorptance in Table 2 is an average of measurements
at three to eight locations with standard deviations between
locations in the range 5 to 46%. Data from CREOL and
QinetiQ are in reasonable agreement. Absorptance versus
sample thickness for diamond squares is plotted in Fig. 4.
Ideally, the points should lie on a straight line with an in-
tercept of 0 �Eq. �5�� if there is no surface absorption. If
there is surface absorption, the y intercept would be asurface
�Eq. �6��.

For Element Six squares, the absorptance of specimens
1, 2, 4, 5, and 6 lies near a straight line in Fig. 4. The higher
absorptance of specimen 3 is clearly not from the same

population. The slope of the line for Element Six in Fig. 4
gives an absorption coefficient of �=0.0026±0.0005 cm−1.
The intercept of 0.006±0.006 implies that there is little
surface absorptance.

For Apollo material, a line in Fig. 4 was fit to specimens
3 and 5, plus one of three measurements for specimen 2.
The other two measurements for specimen 2 lie above the
line. The gray colored sample, Apollo 4, which is not
shown on the graph, had much higher absorptance and was
clearly not in the same population. Apollo 6, which is
shown on the graph, has much lower absorptance than the
other samples. The slope of the line for Apollo material in
Fig. 4 gives an absorption coefficient of �
=0.071±0.005 cm−1 and the intercept is −0.13±0.04. Since
surface absorptance cannot be negative, we attribute the
negative intercept to variability of the absorptance in the
small number of specimens.

Neglecting possible contribution from surface absorp-
tion, the mean absorption coefficient of Element Six disks
is 0.008 cm−1 for disk 1, and 0.03 cm−1 for disks 2 and 3.
These absorption coefficients are 3 to 10 times greater than
that of Element Six squares.

Table 2 Calorimetric absorptance, loss of polarization, and forward optical scatter at 1.064 �m. Apollo 6 is a 3.6-mm-diam disk. Transmittance
for loss of polarization minimum and maximum is calculated with Eq. �8�. Multiple numbers for total integrated forward scatter are from
measurements of different locations on the same specimen.

Calorimetric absorptance �%� Loss of polarization �%�

Specimen*
Thickness

�mm� CREOL QinetiQ Minimum Maximum
Total integrated

forward scatter �%�

Squares with nominal dimensions of 5�5 mm.

Element Six 1 0.43 0.015 0.026 3.6 22.4 0.30

Element Six 2 0.50 0.021 0.015 4.1 17.9 0.16

Element Six 3 0.92 0.090 0.113 8.3 26.5 0.15, 0.27, 0.38

Element Six 4 1.00 0.021 0.039 2.6 9.5 0.26

Element Six 5 1.42 0.057 0.042 9.4 21.7 0.04, 0.17

Element Six 6 1.47 0.044 0.041 5.1 17.5 0.08, 0.10

Apollo 1 0.35 — —

Apollo 2 0.68 0.32, 0.63 0.55 2.3 11.7 0.33, 0.43

Apollo 3 1.09 0.63, 0.61 0.70 3.6 15.4 0.20, 0.49

Apollo 4 1.74 7.2 — 11.1 21.0 0.11, 0.31

Apollo 5 0.35 0.08, 0.14 0.14 1.3 11.7 0.25

Apollo 6* 1.27 0.069 — 0.0 8.2

Disks with diameter 10 to 11 mm

Element Six disk 1 1.03 0.085 0.075 1 4 0.04

Element Six disk 2 1.07 0.32 0.36 0 4 0.63

Element Six disk 3 1.03 0.25 0.28 0 3 0.58
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The total integrated forward optical scatter of diamond
specimens at 1.064 �m from 2.5 to 70 deg in Table 2
ranges from 0.04 to 0.63%. Element Six reports that for-
ward scatter from their best quality epitaxial single-crystal
CVD diamond is �0.05% at 1.064 �m integrated from 3.5
to 87.5 deg.10

3.2 Loss of Polarization at 1.064 �m
Figure 5 shows representative photographs of specimens
viewed in white light through crossed polarizers. A perfect,
isotropic material would appear solid black, because the
incident polarization would be blocked by the analyzer po-
larizer. Features in Fig. 5 arise from rotation of the plane of
polarization by strain or defects in the crystal.

Images of disks 1 and 2 in Fig. 6 were made by project-
ing plane polarized He-Ne laser light �0.6328 �m� through
each disk onto a white screen. A polarizer inserted between
the sample and the screen was aligned either parallel or
orthogonal to the polarization of the incident beam. The
image on the screen was captured by a monochrome digital
camera. Interference fringes observed in parallel polariza-
tion indicate that the faces of disks 1 and 2 have wedge
angles of 0.007 and 0.027 deg, respectively �because each
fringe arises from a change in thickness of diamond equal
to � / �2n�, where �=0.63 �m and n is the refractive index

�2.4�. The upper right photograph shows little light trans-
mitted through disk 1 with crossed polarizers, indicating
that disk 1 produces little loss of polarization. The lower
right photograph shows two prominent Maltese cross-
features associated with defects that rotate the plane of po-
larized light. The larger feature, marked by an arrow, cor-
responds to the internal blemish that is visible to the naked
eye in Fig. 1.

The experiment in Fig. 3 quantified the loss of polariza-
tion. Different degrees of depolarization were observed as
each specimen was rotated about the axis of the laser beam.
Table 2 shows the minimum and maximum loss of polar-
ization observed for each sample. The angular separation
between minimum and maximum was not 90 deg. Most
square specimens had an orientation in which the loss of
polarization was less than 5%. Disks from Element Six
produced less depolarization. The laser beam used for this
measurement was 2 to 3 mm in diameter. The prominent

Fig. 4 Absorptance of diamond at 1.064 �m as a function of thick-
ness for Element Six and Apollo diamond squares. CREOL mea-
surements: � �. QinetiQ measurements: �. In the CREOL mea-
surements, open circles were obtained with samples in a Teflon
holder and filled circles were obtained with samples held by nylon
filaments.

Fig. 5 Representative views of Element Six and Apollo diamond
seen with white light through crossed polarizers. Each photograph
shows an entire specimen.

Fig. 6 Projected images of Element Six disks 1 and 2 with
0.6328-�m laser light. Almost the entire disk is seen in each panel.
Vertical arrows in the lower images denote the blemish that is visible
to the naked eye in Fig. 1.
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depolarizing defect in the lower right photograph in Fig. 6
may not have been sampled in the quantitative measure-
ment.

The transmission map in Fig. 7, made by translating the
specimen on an x-y stage in front of the laser beam, con-
firms the observation of fringes in disk 1 in Fig. 6. Trans-
mittance through the diamond varies from �50 to 100% in
this map. Careful mapping of the disks shows the same
modulation period in absorptance that is observed in trans-
mission. None of the square specimens exhibited this
modulation.

3.3 Spectroscopic Characterization
The ultraviolet absorption of Element Six specimens in Fig.
8 is near the theoretical reflection limit, shown by the

dashed line computed from Fresnel reflection calculated
with the published refractive index of diamond.11 That is,
there is negligible absorption at wavelengths longer than
236 nm. Apollo squares 1, 2, 3, and 5 exhibit barely detect-
able absorption in the region 240 to 300 nm, with a peak
absorption coefficient of �2 cm−1 at 250 nm. Apollo 4,
which is the only gray specimen, has stronger ultraviolet
absorption. At shorter wavelengths than the intrinsic ab-
sorption edge near 236 nm, the absorption coefficients of
all Element Six specimens and Apollo 1, 2, 3, and 5 are
nearly identical. The absorption coefficient of 6.5 cm−1 at
230 nm is within 10% of the value previously reported for
“intrinsic” absorption of diamond.12

Photoluminescence spectra from laser excitation at
532 nm in Fig. 9 represent the range of behavior observed
in different samples from Apollo. The spectrum in Fig. 10
is representative of all Element Six squares and disks. The
Raman signal in the 532-nm photoluminescence spectra is

Fig. 7 Map of 1.064-nm transmittance through the entire Element
Six disk 1 translated on an x-y stage in front of the laser. Transmit-
tance through the diamond varies from �50 to 100%. Lines outside
of the disk are nylon filaments used to support the specimen.

Fig. 8 Ultraviolet absorption of nine Element Six specimens with air
in the reference beam. The theoretical reflection limit shown by the
dashed line is computed for Fresnel reflection.

Fig. 9 Photoluminescence from Apollo diamond excited at 532 nm.
The two spectra represent the range of different results for Apollo
diamond.

Fig. 10 Photoluminescence from Element Six diamond with excita-
tion at 532 nm. This spectrum is representative of all Element Six
diamonds.
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located at 573 nm, 1332 cm−1 away from the excitation
wavelength. Other features of the photoluminescence spec-
tra are described in Sec. 4.

4 Discussion
Extensive reviews of the optical properties of single-crystal
natural diamond have been published,13–17 but most prop-
erties are associated with defects and impurities. Single-
crystal CVD diamond has been made with high electrical
carrier mobility18 and with excellent optical properties for
etalons operating at 1.55 �m.19 Properties reported by Ele-
ment Six for their best single-crystal CVD diamond with
dimensions of �4�4�1 mm include the following:10

absorption coefficient at 1.06 �m: �0.01 cm−1

absorption coefficient at 10.6 �m: �0.025 cm−1

forward scatter at 0.63 �m integrated from 0.3 to
45 deg: �0.03%

forward scatter at 1.06 �m integrated from 3.5 to
87.5 deg: �0.05%

forward scatter at 10.6 �m integrated from 1.1 to
45 deg: �0.0005%

thermal conductivity: �2500 W/ �m·K�
strength of nine 5�3�0.17 to 0.35-mm cantilever

beams: 1.5 to 5.1 GPa �mean	3.4 GPa, standard
deviation	1.3 GPa�

flatness: �0.19 �m
surfaces parallel to ±15 arc sec �0.004 deg�.

For polycrystalline CVD diamond, the absorption coef-
ficient of high quality material with a thickness of 0.5 to
1 mm at 10.6 �m is typically 0.03 to 0.07 cm−1.20–23 The
substantial temperature dependence of absorption at
10.6 �m has been explained in terms of multiphonon
processes.24 The optical constants n and k for polycrystal-
line CVD diamond have been reported for the range 2.5 to
500 �m.25

The purpose of the present study was to evaluate optical
properties of single-crystal epitaxial CVD diamond at
1.064 �m relevant to its use as a heat spreading element in
the optical path of a solid state laser. The absorption coef-
ficient of diamond from Element Six was approximately
0.003 cm−1. Diamond elements with a total thickness of
1 cm in the optical path of a 1.064-�m laser would absorb
only 0.3% of the energy of the beam. For Apollo material
examined in this study, the absorption would be 7%, but
there was one Apollo specimen whose absorption was only
twice as great as that of the Element Six material.

Loss of polarization by radiation traversing the solid
state laser is a serious issue. We observed varying loss of
polarization as diamond squares were rotated about their
	100
 axis parallel to the path of the laser beam. Table 2
shows that, for most squares from Element Six or from
Apollo, there was an orientation in which the loss of polar-
ization was �5%. Disks from Element Six had an optimum
orientation in which their loss of polarization was �1%.
Even in their worst orientation, loss of polarization from
the disks was less than loss from the squares. Our results
are qualitatively similar to the range of birefringence ob-
served by van Loon et al.26

Optical scatter by material from either manufacturer was
in the approximate range 0.04 to 0.6%. The lowest and

highest scatter were observed from disks. For surface mi-
croirregularities on a well-polished surface, the total inte-
grated scatter from a single surface into one hemisphere is
related to the root-mean-square roughness 
 and wave-
length of light � by the approximate equation27

total integrated scatter � �4�


�
�2

. �9�

A roughness of 2 nm produces a scatter of 0.06% at a
wavelength near 1 �m and a roughness of 5 nm produces a
scatter of 0.3%. Equation �8� does not apply to scattering
caused by scratches, pits, dust particles, contamination, and
other isolated blemishes on surfaces.

Figure 11 shows the range of roughness observed for the
10-mm disks from Element Six. The upper trace shows a
relatively smooth surface with a root-mean-square rough-
ness of 1.0 nm. The lower trace shows a surface with a
similar outermost profile penetrated by many vertical
scratches. The rms roughness for the lower trace is 5.3 nm.
The range of surface roughness in Table 1 is sufficient to
account for a significant fraction of the observed scatter. It
should be possible to reduce the scatter by better surface
finishing.

Visible photoluminescence in Figs. 9 and 10 provides
information about defects in the diamond. The strong, sharp
line at 573 nm is the 1332-cm−1 Raman peak characteristic
of high quality diamond. Weak emission at 575 nm is at-
tributed to a neutral nitrogen-vacancy complex, which is a
nitrogen atom on a substitutional site adjacent to a carbon
vacancy.28 Weak emission at 637 nm is thought to arise
from a nitrogen-vacancy complex with a negative charge.
The underlying broad continuum could be associated with
the nitrogen-vacancy complex, or might arise from disloca-
tions that result from CVD diamond growth involving ni-
trogen. By comparison with the photoluminescence inten-
sity of a single-crystal CVD diamond cutting tool from
Element Six that was reported to have 1 to 2 ppm nitrogen,
we estimate that the Element Six specimens in the present
study contain 0.1 to 1 ppm nitrogen. Element Six material
is grown in a gas mixture containing �1-ppm N2. Single
substitutional nitrogen measured by electron paramagnetic
resonance in high quality Element Six material is reported
to have a typical concentration in the range 0.3 to 3 ppm.10

One surface of Apollo 5 �not shown� also exhibits weak
emission near 734 nm, but no other specimens displayed
this peak.

Fig. 11 Surface roughness of two 1 mm lengths measured with a
Taylor-Hobson Talystep mechanical profiler. Note the different hori-
zontal and vertical scales.
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In conclusion, the 5�5-mm squares from Element Six
had properties comparable to those of the best quality ma-
terial reported by Element Six.10 The absorption coefficient
of Element Six disks with a diameter of 10 to 11 mm was 3
to 10 times greater than that of the squares. Apollo diamond
absorbed about 30 times more energy than the best Element
Six diamond, but one specimen from Apollo was compa-
rable to the Element Six material. Absorption, loss of po-
larization, and optical scatter are sufficiently low for se-
lected, properly oriented specimens of single-crystal,
epitaxial CVD diamond to be used as heat spreading ele-
ments in the optical path of a solid state laser.
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