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ABSTRACT

Attitude controls methods of highly flexible spacecraft have seen increased interest over

the last decades thanks to the technological development of flexible solar panels and deploy-

ables, which improves the capabilities of small satellites. However, a high-fidelity model of

the flexible mode dynamics is hard to obtain in on-ground testing because not all modes of

frequencies can be observed, complicating the controller design. Furthermore, plastic defor-

mations due to long periods of storage of stowed flexible components could result in exciting

frequencies outside of the designed controller’s bandwidth, leading to an uncontrollable sys-

tem. This thesis proposes a method to develop a high-fidelity model of a spacecraft with a

flexible appendage subject to large deformations by modeling it as a finite series of rigid links

connected by torsional springs and dampers. To overcome the uncertainties in the flexible

dynamics, an onboard estimation through an adaptive controller is performed for these un-

knowns while the spacecraft is maneuvered. The controller uses integral concurrent learning

(ICL), an adaptive scheme that records inputs and outputs provided by sensors mounted

on the flexible body. The novelty of this investigation is the development of self-adapting

control gains for both the tracking error and the learning matrix obtained from ICL. After

tuning the controller for the system’s initial conditions, it achieves the objective of tracking

a desired trajectory while accurately learning the unknown physical parameters of the flex-

ible appendage by only using the recorded measurements. It was observed that for a finer

discretization of the flexible appendage and therefore a higher fidelity model of the flexible

dynamics, the estimation algorithm is able to observe all the frequencies necessaries to learn

the unknown mechanical properties of the flexible body.
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1 Introduction

Dynamics and controls methods for flexible spacecraft were popular in the late 80s.

However, with the advance in deployables technology and flexible materials, this topic has

regained interest over the last decade. Moreover, as the demand for more complex and capa-

ble spacecraft increase, so does the complexity of controllers for maneuvering them. Flexible

spacecraft experience a combination of di↵erent vibrational modes that may or may not ex-

ceed the controller’s frequency bandwidth. When the former happens, the system generates

undesired translational or rotational responses. Therefore, it is of high importance to define

a high-fidelity model of these complex systems as well as a robust adaptive controller to ad-

dress these challenges in flexible spacecraft. Classic dynamic models of a flexible spacecraft

use a set of coupled equations between the rotational dynamics of the hub and the modal

coordinates dynamics of the flexible appendage [1, 2]. When the flexible appendage acts as a

cantilever beam, the Euler-Bernoulli beam assumption is employed to model it since it gives

good approximations of the beam’s dynamics for static loads [3]. For small displacements

and known flexible properties, the method of assumed modes is generally a good approach

because it provides an accurate analytical solution of the flexible dynamics [4]. However,

several assumptions in these approaches like the exclusion of translational e↵ects in the sys-

tem and assumptions in the flexible behavior like its most important modes and mode shape

functions could degrade the solution’s accuracy when testing di↵erent sizes and properties of

the flexible appendage. Analytical techniques like Lagrange’s equation or Hamilton’s equa-

tion exploit their energy-based nature to provide a solution to the equations of motion of

this system, but are computationally slow, in particular when trigonometric functions are

involved. Another approach that di↵ers from the classical methods aforementioned is the

one proposed by Kane and it is used for multi-body dynamics problems and referenced as

Kane’s method [5]. When comparing the performance of dynamic modeling between the

classic analytical method: Lagrange’s equation, and Kane’s method, the latter provides a

higher performance than the former in CPU time and number of operations for large mul-
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tiple body systems [6, 7]. With this method, Lagrange multipliers and quasi-coordinates in

the dynamics are avoided, the translational kinematics of the system are included, and the

attitude parameters can be selected after the equations of motion are already derived. With

Kane’s equation, the generalized speeds of the system are defined, and the partial velocities

of each body are solved with respect to each generalized speed. Therefore, with the idea

that a finite amount of displacement sensors can be mounted on the flexible appendage,

and feed their measurements back in the spacecraft’s controller, the system is modeled as a

hub connected to a n-series of rigid links connected by torsional springs and dampers. Its

equations of motion are derived using Kane’s equation given the multiple-bodies nature of

the system, and the acting torques generated by the spacecraft and the joints’ springs can

be isolated for control and online estimation of the springs coe�cients. Kane’s equations

can be e�ciently represented in matrix form, which are easy to implement in a script and

compute the equations of motion for any number of rigid bodies attached to each other [8].

One of the main challenges in the controller design of flexible spacecraft is the possibility

of the spacecraft experiencing frequencies of modes that exceeds the controller’s capabilities.

If a complete sweep of the higher and lower frequencies of the flexible appendage is available

for on-ground testing, the right controller can be designed and selected a priori. However, on-

ground testing is limited in a sense that a full picture of the appendage’s bandwith is hard to

obtain. For example, the Deployable Optical Telescope (DOT, 9-10) was only tested for small

deformations at high frequency [9]. Moreover, results of the flexible behavior obtained from

on-ground testing su↵er from errors in mathematical modeling and more importantly could

di↵er from permanent deformations that occur during storage and launch. For example, the

Near-Earth Asteroid (NEA) Scout has four deployable booms to form a solar sail and it has

been stored in the CubeSat deployer for several months before the mission’s launch. Once

deployed, the flexible behavior that was previously observed on-ground is not guaranteed to

reflect the behavior the NEA Scout will experience during its mission due to the longevity

of storage time.
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To take into account of unknowns in a system’s dynamics and improve the controller’s

robustness, the traditional approach is to treat the unknowns as a disturbance and com-

pensate for it using a classic feedback controller. However, we are interested in accurately

estimating unknowns in the dynamics to improve the controller’s performance during the

spacecraft’s mission, and to save time and resources during on-ground testing. In this way,

the controller can compensate unexpected uncertainties like failure in complete deployment

or permanent deformations of the flexible appendage. One approach is to concurrently esti-

mate the unknown variables in the dynamics using persistent excitation of the system, but

persistently exciting a spacecraft is not ideal in a real-life scenario [10]. However, when state

derivatives are observable and finite di↵erence is not required in obtaining them, the per-

sistent excitation required to estimate the unknowns can be replaced by a finite excitation

[11]. To overcome the use of state derivatives, Integral Concurrent Learning (ICL) can be

included to generate a finite excitation for online estimation [12]. With ICL, the dynamics is

integrated over a small window of time and the available inputs and outputs measurements

are used to build a learning matrix that is positive definite and guarantees convergence of

the unknown parameters. Spacecraft maneuvering by employing ICL in the control scheme

has already found application [13]. The control objective of this investigation is to track a

desired trajectory, keeping physical quantities like the angle displacements and the angular

velocities of the hub bounded. During the attitude tracking, the ICL collects information

about the system’s mechanics that are uncertain and uses it to provide a better estimation

of the flexible appendage’s mechanics.

The novelty of this investigation is to provide a more generalized framework for flex-

ible spacecraft control design by exploiting Kane’s method to include online parameters

estimation using novel adaptive techniques. Furthermore, this research aims at minimizing

resources employed in on-ground operations like limiting the amount of sensors mounted on

a flexible appendage and its vibration analysis. The paper starts by introducing the mathe-

matical development of the dynamics of the system using Kane’s method and its kinematics
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using quaternions as attitude parameters. Then, the controller design is presented, together

with the implementation of integral concurrent learning in the adaptive law. The stabil-

ity of the system is then proven using Lyapunov’s theory and main results for two real-life

applications for a CubeSat with a flexible appendage are reported.

4



2 Preliminaries

In this section, some preliminaries on the conventions and notations used throughout this

paper for vector and matrix representations, transformation matrices, quaternions and their

related operations are listed.

2.1 Vectors and Matrices

Vectors will be expressed in bold italic letters as x 2 Rn. The ith component of the

vector x will be expressed as xi. To describe the coordinate system a vector is expressed in,

a superscript capital letter will precede the vector. For example, the vector Nx is expressed

in the N coordinate system and the vector Bx is expressed in the B coordinate system.

The cross product between two vectors can be represented as x⇥ y = x⇥y = �y⇥x, where

the superscript ⇥ on a vector x 2 R3 represents its skew-symmetric matrix:

x⇥ ,

2

66664

0 �x3 x2

x3 0 �x1

�x2 x1 0

3

77775
(2.1)

The operator B = blkdiag(A1, · · · , An) 2 Rnm⇥nm with A 2 Rm⇥m is read as:

B = blkdiag(A1, · · · , An) =

2

66664

A1 0 0

0
. . . 0

0 0 An

3

77775
(2.2)

2.2 Transformation Matrices

General matrices will be expressed in capitalized italic letter as A 2 Rm⇥n. Transforma-

tion matrices are matrices that translate one vector from one coordinate system to another.

Commonly, in analytical dynamics, the term rotation matrix refers to the matrix that con-

verts a vector from an inertial coordinate system to the body-fixed coordinate system, and

the term direction-cosine matrix represents the transformation from body-fixed coordinate
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system to the inertial one. To avoid confusion, the following notation is used for general

rotations from coordinate system A to coordinate system B: R
A!B. Successive rotations

are obtained as:

R
A!C = R

B!C ·RA!B (2.3)

2.3 Quaternions

A quaternion is a set of parameters composed of a scalar term qw 2 R and a vectorial

part qv 2 R3. For attitude representation, the unit quaternion is used, meaning the norm

between the scalar and vectorial part is equal to 1 because of the constraint imposed to bring

the representation to three degrees of freedom (DoF). In this paper, the quaternion order

has the vectorial part first and scalar term last. Then, a quaternion is q =


qT

v
qw

�T
2 R4

with the following constraint:

qw =
p

1� qT
v
qv (2.4)

The addition between two quaternions q and p follows the same vector algebra, whereas the

product between two quaternion is defined using ⌦ and is calculated as follows:

q ⌦ p =

2

64
qwpv + pwqv + q⇥

v
pv

qwpw � qT

v
pv

3

75 (2.5)

Throughout this paper, quaternions represent the attitude of a rigid body expressed in the

inertial coordinate system; therefore, it can be used to derive the transformation matrix from

a body-fixed coordinate system to the inertial one as follows:

R
B!N =

⇣⇥
N
qw

⇤2 �
⇥
Nqv

⇤T ⇥Nqv

⇤⌘
I3 + 2

⇥
Nqv

⇤ ⇥
Nqv

⇤T � 2
⇥
N
qw

⇤ ⇥
Nqv

⇤⇥
(2.6)

Furthermore, the quaternion of a rotating rigid body follows the following kinematic law:

N q̇ =
1

2

2

64
B!B

0

3

75⌦ Nq =
1

2
Nq ⌦

2

64
N!B

0

3

75 (2.7)
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where N!B 2 R3 is the rotation of the coordinate system B with respect to N , expressed in

the N coordinate system.
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3 Kinematics and Modeling

3.1 Kinematics

Consider a flexible appendage attached to the spacecraft hub as shown in Figure 3.1. To

provide a high-fidelity model of the flexible appendage, we design it as a series of n-links

connected by torsional springs and dampers as shown in Figure 3.2. The spacecraft hub has

mass mh, height H in the b̂z component, length L in the b̂x component, and width W in the

b̂y component. Each link has length ly defined in the y component of the body and mass ml,

and it has a rectangular cross-sectional area of lx ⇥ lz. Furthermore, each joint has torsional

spring coe�cient of ks and damping coe�cient of cs. It is assumed the flexible appendage

has one degree of freedom about the body z axis, but a general formulation is provided.

Figure 3.1 Spacecraft with a flexible appendage

Figure 3.2 Spacecraft with a flexible appendage modeled as n-links with torsional springs
and dampers

The spring coe�cients of each joint of the flexible appendage can be determined by

analyzing each link and equating the bending moment due to the deflection by a tip load
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to the spring moment at that joint [14]. It is important to note that these coe�cients are

only calculated with this approach to run the simulation of the dynamics of the system and

evaluate the performance of the update law. In reality, the controller will best estimate the

true values of these coe�cients. The spring coe�cients at each joint are evaluated as:

ki =
EIy

llink
(3.1)

where E is the Young’s modulus, Iy is the moment of inertia about the cross-sectional

area of the link, llink is the length of the link, and i = 2 : n with n being the number

of links modeled. The joint that attaches the flexible appendage to the hub is the joint

of the deployment mechanism, which by design is known, but is also treated as uncertain

parameter because of potential deformations during storage or failure in deployment. The

damping coe�cient at each joint is evaluated as:

ci = 2⇣i
p

mLki (3.2)

where mL is the mass of the link and ⇣i is the damping ratio, for i = 1 : n.

3.2 Positions

The position vectors of each body are determined as:

NrH =NrH (3.3)

NrL1 =
NrH + NrH!j1 � NrL1!j1 (3.4)

NrLi =
NrLi�1 +

NrLi�1!ji � NrLi!ji (3.5)

where NrLi!ji is the path vector going from the center of mass of the link i to joint i and

obtained as:

NrLi!ji =
1

2
R

Li!N


0 llink 0

�T
(3.6)

9



with llink being the length of the link.

3.3 Velocities

The inertial angular velocity of each body expressed in its body-fixed frame is obtained

as:

H!H =H!H (3.7)

Li!Li =R
H!Li H!H +

iX

k=1

R
Lk!Li  ✓̇k (3.8)

where H!H is the angular velocity vector of the hub expressed in the body-fixed frame,

 is the partial joint matrix that defines the degrees of freedom of the joint for which its

derivation can be seen from Reference [8], and ✓̇i is the angular displacement rate of the ith

link relative to the previous one. The inertial linear velocity of each body expressed in the

inertial frame is obtained after taking the first time derivative of the position vectors and

using the transport theorem because of the di↵erent rotations each body experiences.

NvH = vH (3.9)

NvL1 =
NvH +

�
R

H!NH!H

�⇥ NrH!j1 �
�
R

L1!NL1!L1

�⇥ NrL1!j1 (3.10)

NvLi =
NvLi�1 +

�
R

Li�1!NLi�1!Li�1

�⇥ NrLi�1!ji +

�
�
R

Li!NLi!Li

�⇥ NrLi!ji (3.11)

3.4 Generalized Speeds and Partial Velocities

Kane’s equation introduces the concept of generalized speeds and partial velocities to

derive the equations of motion of the system. Let the generalized speeds vector of the

system be:

u =


H!T

H
✓̇1 · · · ✓̇n

NvT

H

�T
2 R6+n (3.12)

where, H!H is the angular velocity components of the hub in its frame, ✓̇1:n are the angular

rate displacements of each link with respect to one another with n being the number of links
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modeled, and NvH is the linear velocity of the hub expressed in the inertial frame. Thus,

both the velocities of each body are rewritten as a function of the partial velocities and

generalized speeds. If we collect the velocities of each body into vectors, we obtain:

v =


NvT

H

NvT

L1 · · · NvT

Ln

�T
= V u (3.13)

! =


H!T

H

L1!T

L1 · · · Ln!T

Ln

�T
= ⌦u (3.14)

where ⌦ 2 Rq⇥m is the angular partial velocity matrix defined in (A.1) and V 2 Rq⇥m is the

linear partial velocity matrix defined in (A.2), with q = 3 + 3n and m = 6 + n.

3.5 Accelerations

From this parametrization, we can derive the linear accelerations a and the angular

accelerations ↵ of each body as:

a = V u̇+ V̇ u (3.15)

↵ = ⌦u̇+ ⌦̇u (3.16)

The decomposition of the accelerations in Equation (3.15) and (3.16) will be exploited in

the derivation of the equations of motion as it allows writing them as a first order di↵erential

equation with respect to the generalized speeds u [8].

11



4 Equations of Motion

The equations of motion are determined using Kane’s equation in matrix form as:

V
TF + ⌦TT = V

T
Ma+ ⌦T

�
J↵+ {!}⇥J!

�
(4.1)

where F 2 Rq and T 2 Rq are respectively the forces and torques applied on each body,

J = blkdiag(JH , JL1, · · · , JLn) 2 Rq⇥q, M = blkdiag(mHI3,mL1I3, · · · ,mLnI3) 2 Rq⇥q,

and {!}⇥ , blkdiag
�

H!⇥
H
,

L1!⇥
L1, · · · , Ln!⇥

Ln

�
2 Rq⇥q, with blkdiag defined in Equation

(2.2) and q = 3+3n. Substituting Equation (3.15) and (3.16) in Equation (4.1), a first-order

di↵erential equation is obtained:

�
V

T
MV + ⌦T

J⌦
�
u̇ = V

TF + ⌦TT �
⇣
⌦T

J⌦̇+ ⌦T{!}⇥J⌦+ V
T
MV̇

⌘
u (4.2)

In Kane’s equation, only the forces and torques directly applied to each individual body

are included thanks to the use of partial velocities, which map the contribution of all the

forces and torques to a specific body.

4.1 Applied Torques

The torques applied to the spacecraft hub are the ones generated by the controller ⌧k 2 R3

and the first joint, whereas the ones applied on each link are the net torques generated by

its two end joints. The torque generated by the ith joint is:

⌧ji = ki ✓i + ci ✓̇i (4.3)

where ki and ci are the spring and damping coe�cients, respectively, ✓i is the relative angular

displacement of the ith link with respect to the previous one and ✓̇i its time derivative.

The vector form of the applied torques is then:

T =


(⌧k � ⌧j1)T (⌧j1 � ⌧j2)T · · · (⌧jn�1 � ⌧jn)T ⌧ T

jn

�T
(4.4)
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The control torques are then isolated from the joints’ torques as:

T = ⌧c + ⌧j (4.5)

where ⌧c is:


⌧ T

k
01⇥3n

�T
with n, again, being the number of links modeled. Furthermore,

the product ⌦T⌧c is equal to ⌧c because the first 3 ⇥ 3 block of ⌦T is the identity matrix,

and its other columns are multiplied by zeros.

Since the objective of this paper is to estimate the parameters of the flexible dynamics

like the spring and damping coe�cients of each joint, a vector of constant unknowns ⇥ is

defined:

⇥ ,

kj1 · · · kjn cj1 · · · cjn

�T
(4.6)

Then, a linear regression matrix Y allows the joints torque to be linearly parametrized as:

⌦T⌧j = Y⇥ (4.7)

with:

Y = ⌦T

2

66666666664

 ✓1 0 0 0  ✓̇1 0 0 0

� ✓1  ✓2 0 0 � ✓̇1  ✓̇2 0 0

0
. . . . . . 0 0

. . . . . . 0

0 0 � ✓n�1  ✓n 0 0 � ✓̇n�1  ✓̇n

0 0 0 � ✓n 0 0 0 � ✓̇n

3

77777777775

(4.8)

4.2 Applied Forces

Since the springs and dampers at each joint exert pure torques, they do not apply forces

on any of the bodies of the system. Thus, we only consider any external forces applied on

the center of mass of each body, which could be gravitational, drag, and/or thruster forces.

Based on the system design and working scenarios, the force vector F is built and in general

terms takes the form: F =


F T

H
F T

L1 · · · F T

Ln

�T
where Fi is the force applied on the ith

13



body.

4.3 Simplified Representation of the Equations of Motion

For further simplification of the upcoming control design, the following terms are defined:

W , V
T
MV + ⌦T

J⌦ (4.9)

N , V
TF �

⇣
⌦T

J⌦̇+ ⌦T{!}⇥J⌦+ V
T
MV̇

⌘
u (4.10)

The equations of motion for the system then become:

W u̇ = N + Y⇥+ ⌧c (4.11)

and they can be numerically solved using LDL Cholesky decomposition by exploiting the

symmetry of W .

4.4 Equations of motion in terms of the actuated states

As previously mentioned, the controller only applies torques on the spacecraft hub, and

the control objective is to track the angular velocity of the hub and its attitude. The system

is underactuated because there are more states than actuated ones. Then, Equation (4.11)

is rewritten as a function of the actuated states only using a rearrangement of the equations

of motion [15].

The actuated states are ua = H!H and the underactuated states are uu =
h
✓̇1, · · · , ✓̇n, NvH

iT
.

Thus, the equation of motion is now rewritten by generating blocks within the matrices in

Equation (4.11) as:

2

64
Waa Wau

Wua Wuu

3

75

2

64
H!̇H

u̇u

3

75 =

2

64
Na

Nu

3

75+

2

64
Ya

Yu

3

75⇥+

2

64
⌧k

0

3

75 (4.12)
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With some manipulation, the equation can be rewritten to be solved for only H!̇H as:

Wd
H!̇H = Nd + Yd⇥+ ⌧k (4.13)

where:

Wd ,Waa �WauW
�1
uu

Wua (4.14)

Nd ,Na �WauW
�1
uu

Nu (4.15)

Yd ,Ya �WauW
�1
uu

Yu (4.16)

and the underactuated dynamics is:

Wuuu̇u = Nu + Yu⇥�Wua
H!̇H (4.17)
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5 Control Design

The control objective is to have a flexible spacecraft of partially unknown dynamics track

a desired trajectory while estimating the unknowns.

5.1 Control Law

The desired trajectory is made of a desired attitude trajectory and desired angular ve-

locity of the spacecraft hub. Therefore, an auxiliary error state is introduced and used to

design the controller. The error state is defined as:

r(t) = H!̃(t) + ↵q̃v(t) (5.1)

where H!̃(t) is the di↵erence between the angular velocity of the hub at time t with the

desired angular velocity at that same time, ↵ is a positive scalar control gain, and q̃v(t)

is the vector part of the quaternion error between the body-fixed frame H and the desired

reference frame D.

Since the desired angular velocity is represented in the desired reference frame D, it needs

to be expressed in the body-fixed frame H. Therefore,

H!̃(t) = H!H(t)�R(t)D!H D!des(t) (5.2)

The transformation matrix R(t)D!H is obtained as successive rotations using:

R(t)D!H = R(t)N!H ·R(t)D!N =
⇥
R(t)H!N

⇤T ·R(t)D!N (5.3)

The transformation matrices R(t)H!N and R(t)D!N are obtained with Equation (2.6) using

H!H(t) and D!des(t) respectively. The quaternion error q̃(t) is obtained with the quater-

nion kinematic law in Equation (2.7), which results in the vectorial and scalar parts of the
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quaternion error to be obtained as:

˙̃qv(t) =
1

2

⇣
q̃⇥
v
(t) + q̃w(t)I3

⌘
H!̃(t) (5.4)

˙̃qw(t) =� 1

2
q̃T

v

H!̃(t) (5.5)

using H!̃(t) instead of B!. At any time t, the quaternion error can also be computed

using the quaternion product between the inverse of the desired quaternion qdes(t) and the

spacecraft quaternion q(t) as:

q̃(t) = q�1
des

(t)⌦ q(t) (5.6)

The open-loop error dynamics is obtained by taking the first-time derivative of Equation

(5.1) and substituting the dynamics from Equation (4.13), resulting in:

ṙ(t) = W
�1
d

(t) (Nd(t) + Yd(t)⇥+ ⌧k(t)) + ⌧track(t) (5.7)

with ⌧track(t) , �Ṙ(t)D!H D!des(t)�R(t)D!H D!̇des(t) + ↵ ˙̃qv(t).

For the nonlinear system of equations with unknown dynamics, the following Lyapunov-

based controller is proposed:

⌧k(t) = �Nd(t)� Yd(t)⇥̂(t)�Wd(t)⌧track(t)�Wd(t)P
�1
�
r(t) + �q̃v(t)

�
(5.8)

where ⇥̂(t) is the estimate of the unknowns ⇥ at time t,  and � are positive scalar control

gains, and P is a positive definite Lyapunov matrix which will be selected in the stability

analysis. The error between the actual unknowns and their estimate at time t is defined

as: ⇥̃(t) = ⇥� ⇥̂(t). Then, the closed-loop dynamics is obtained by substituting Equation

(5.8) in (5.7), resulting in:

ṙ(t) = W
�1
d

(t)Yd(t)⇥̃(t)�Wd(t)P
�1
�
r(t) + �q̃v(t)

�
(5.9)
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5.2 Estimation of the Unknown Parameters

The control law in (5.8) uses the current estimates of the unknown parameters to drive

the system to a desired trajectory. Therefore, an update law for the estimates must be

designed. For these types of problems, the most common approach is to treat the unknowns

as a disturbance and update the estimates of the unknowns with a linear feedback law

to compensate for them and drive the spacecraft attitude error to zero. However, this

investigation aims to accurately learn the unknown parameters to improve the performance

of the controller for specific maneuvers. If the flexible appendage has a payload like a camera

or is a deployable flexible panel for which its motion must be precisely controlled, having a

high-fidelity model of the flexible dynamics is required. If the system is subject to persistent

excitation (PE), the estimates of the unknown will accurately converge to their true value

[10]. However, PE is hard to check onboard and undesirable for real-life applications. Instead,

a finite excitation (FE) can be employed to make the update law more realistic in a sense

that it finds applications to real-life scenarios, and a basis function for the unknown error can

be derived from the dynamics. The work from Reference [11] shows that this basis function

can be obtained from the equations of motion when the first-time derivative of the states are

available for measurement and not estimated. Again, this approach has assumptions that

do not hold in real-life applications since time derivatives of the states are most likely not

available, and using di↵erentiation techniques have several drawbacks like numerical errors,

singularities, and inaccuracies that depend on the capabilities of the onboard computer.

However, if the dynamics is integrated over a small window of time after a FE is applied

to the system, the resulting integrals of the applied inputs and output states can be collected

over time to build a positive definite learning matrix[12]. This approach is referred as integral

concurrent learning (ICL) and o↵ers a solution for estimating unknowns that can be linearly

parametrized and are function of known variables like inputs and states. For the purpose of

this investigation, the states are assumed to be perfectly measureable and noise-free.
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Then, the update law for this system becomes:

˙̂
⇥(t) = proj

 
�
⇥
PW

�1
d

(t)Yd(t)
⇤T

r(t) + �⇤

 
NX

i=1

YT

i
Yi

!
⇥̃(t)

!
(5.10)

where � and ⇤ are positive definite control gain matrices,
⇣P

N

i=1 YT

i
Yi

⌘
is a positive definite

learning matrix obtained using ICL. A projector operator proj(·) is introduced in the adaptive

law to bound the estimates to physically meaningful values. Details on building the learning

matrix and guaranteeing its positive-definiteness follow.

5.2.1 Building the ICL matrix

Reconsider the system in Equation (4.11) and integrate over a small window of time �t:

u̇(t) =W
�1(t) (N (t) + Y (t)⇥+ ⌧c(t)) (5.11)

u(ti)� u(ti ��t) =

Z
ti

ti��t

W
�1(t) (N (t) + Y (t)⇥+ ⌧c(t)) dt (5.12)

We now define the following integrals:

Yi = Y(ti) ,
Z

ti

ti��t

W
�1(t)Y (t) dt (5.13)

U i = U(ti) , u(ti)� u(ti ��t)�
Z

ti

ti��t

W
�1(t) (N (t) + ⌧c(t)) dt (5.14)

So that, Equation (5.11) becomes:

U(ti) = Y(ti)⇥ (5.15)

The integral terms Yi and U i are collected until the sum
P

N

i=1 YT

i
Yi is positive definite. This

condition is met when:

�min

 
NX

i=1

YT

i
Yi

!
� �̄ (5.16)
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where �̄ is a positive scalar used as threshold for the finite excitation, and N is the number of

data points stored. The collection of the ICL terms Yi and U i is optimized using a singular

value decomposition algorithm [16] which discards repeating or very similar data points and

only implements the ones that would enrich the learning matrix by maximizing its singular

values. The integrals in Equation (5.13) and (5.14) are obtained using the Riemann Sum in

order to reduce the propagation of numerical errors.

5.2.2 Self-Tuning Method for ICL

One of the novelties of this paper is the introduction of the concept of self-tuning for the

learning matrix. As the number of links modeled increases, so does the number of observable

modes of the flexible appendage, and more information about the mode shapes experienced

by the flexible body is collected. This leads to the resulting ICL matrix having convergence

rates or eigenvalues associated with each unknown of di↵erent orders of magnitude because

more information is being added in the learning matrix until the condition of minimum

eigenvalue in Equation (5.16) is met. Eigenvalues of di↵erent orders of magnitude result in

a much faster convergence for some unknowns compared to others; therefore, the projector

operator in Equation (5.10) will prevent the fast estimates to update since they would exceed

the operator bounds. The solution to this problem proposed in this paper is to tune the

control gain matrix ⇤ such that the product ⇤
P

N

i=1 YT

i
Yi has a desired spectrum of eigen-

values. This is accomplished by exploiting the positive definiteness of
P

N

i=1 YT

i
Yi, meaning

that it is not singular and its inverse exists. The matrix is decomposed using a singular value

decomposition (SVD):
NX

i=1

YT

i
Yi = U⌃LT (5.17)

Then, a matrix that conserves the same coupling of the ICL matrix but has di↵erent eigen-

values is designed as KICL = U⌃desL
T , and the control gain matrix ⇤ is designed as:

⇤ = KICL

"
NX

i=1

YT

i
Yi

#�1

(5.18)
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The control gain matrix ⇤ can only be determined when
hP

N

i=1 YT

i
Yi

i�1

exists, so it is

switched in the adaptive law as:

⇤ =

8
>><

>>:

0 0  t  t�

KICL

hP
N

i=1 YT

i
Yi

i�1

t�  t < 1
(5.19)

where t� is the time when the condition in Equation (5.16) is met and implies det
⇣P

N

i=1 YT

i
Yi

⌘
6=

0.

From this development, two adaptive laws are obtained: Equation (5.10) is the one used

for proof of stability, and one for controller implementation is obtained by combining the

relationship found in Equation (5.15) and (5.10), leading to:

˙̂
⇥(t) = proj

 
�
⇥
PW

�1
d

(t)Yd(t)
⇤T

r(t) + �⇤
NX

i=1

YT

i

⇣
U i � Yi⇥̂(t)

⌘!
(5.20)
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6 Stability Analysis

Two theorems are formulated to show the stability of the system’s response during and

after the finite excitation stage. The first theorem is used to show boundedness of the

unknowns and convergence of the tracking error during the excitation applied to enrich the

learning matrix, whereas the second theorem is employed to show the error of the unknowns

is driven to zero with the ICL matrix after the excitation has been applied.

Theorem 1. Consider the system described in Equation (4.13) with attitude dynamics de-

scribed by Equation (2.7). Then the control law designed in Equation (5.8) and update law de-

signed in Equation (5.10) guarantee global asymptotic stability for the attitude tracking error

q̃v and the spacecraft’s angular velocity tracking error !̃ in a sense that limt!1


!̃ q̃v

�
= 0

and boundedness of the unknowns error ⇥̃ for any 0  t < t�.

Proof. Consider the extended state ⌘ =


!̃T q̃T

v
⇥̃

T

�T
2 R6+p with p being the number

of unknowns, and let V (⌘) be a positive definite Lyapunov’s function defined as:

V (⌘) =
1

2
rT

Pr +
1

2
⇥̃

T��1
⇥̃+ �

⇥
q̃T

v
q̃v + (q̃w � 1)2

⇤
(6.1)

and bounded by:

�1||⌘||2  V (⌘)  �2||⌘||2 (6.2)

where �1 and �2 are positive bounding scalars.

Substituting Equation (5.4), (5.5), (5.7),(5.8), and (5.10) in the first-time derivative of

Equation (6.1) leads to:

V̇ (⌘) = �rT (r̃ + �q̃v) + �q̃T

v
!̃ (6.3)

Since Equation (6.3) is not enough to show stability of the attitude mismatch and angular

velocity error, the tracking signal r is expanded in Equation (6.3) using (5.1), which yields:

V̇ (⌘) = �!̃T
!̃ � q̃T

v

�
↵� + ↵

2

�
q̃v � 2↵!̃T q̃v (6.4)
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Further, Equation (6.4) can be upper-bounded using Hölder’s inequality: ||xT
y||  ||x|| ||y||

as:

V̇ (⌘)  �||!̃||2 � �q||q̃v||2 � 2↵||!̃|| · ||q̃v|| (6.5)

with �q equal to (↵� + ↵
2
). Equation (6.5) can then be manipulated as:

V̇ (⌘)  �
✓
� 

2
↵
2

�q

◆
||!̃||2 �

 
p
�q||q̃v||+

↵||!̃||p
�q

!2

(6.6)

Then, V̇ (⌘) from Equation (6.6) is negative definite for  � 
2
↵
2

�q
> 0, showing that the

candidate Lyapunov function V (⌘) in Equation (6.1) is bounded in L1 and that V (⌘) is

decreasing. From Equation (6.5) is inferred the error signals !̃, q̃v 2 L2, whereas ⇥̃ 2 L1

meaning it remains bounded. Therefore, by invoking Barbalat’s Lemma, it can be concluded

that both the attitude and angular velocity of the spacecraft converge to the desired values

since:

lim
t!1


!̃ q̃v

�
= 0 (6.7)

Theorem 2. Consider the system described in Equation (4.13) with attitude dynamics de-

scribed by Equation (2.7). Then the control law designed in Equation (5.8) and update law

designed in Equation (5.10) guarantee global asymptotic stability for the attitude tracking

error q̃v, the spacecraft angular velocity tracking error !̃, and the error of the estimates of

the unknown ⇥̃ in a sense that limt!1


!̃ q̃v ⇥̃

�
= 0 for any t�  t  1.

Proof. Consider the extended state ⌘ =


!̃T q̃T

v
⇥̃

T

�T
and let V (⌘) be a positive definite

Lyapunov’s function defined as:

V (⌘) =
1

2
rT

Pr +
1

2
⇥̃

T��1
⇥̃+ �

⇥
q̃T

v
q̃v + (q̃w � 1)2

⇤
(6.8)

23



and bounded by:

�1||⌘||2  V (⌘)  �2||⌘||2 (6.9)

where �1 and �2 are positive bounding scalars. Substituting Equation (5.4), (5.5), (5.7),(5.8),

and (5.10) in the first-time derivative of Equation (6.8) leads to:

V̇ (⌘) = �rT (r̃ + �q̃v) + �q̃T

v
!̃ � ⇥̃T

KICL⇥̃ (6.10)

Since Equation (6.3) is not enough to show stability of the attitude mismatch and angular

velocity error, the tracking signal r is expanded in Equation (6.10) using (5.1), which yields:

V̇ (⌘) = �!̃T
!̃ � q̃T

v

�
↵� + ↵

2

�
q̃v � 2↵!̃T q̃v � ⇥̃T

KICL⇥̃ (6.11)

Further, Equation (6.11) can be upper-bounded using Hölder’s inequality: ||xT
y||  ||x|| ||y||

as:

V̇ (⌘)  �||!̃||2 � �q||q̃v||2 � 2↵||!̃|| · ||q̃v||� �ICL||⇥̃||2 (6.12)

with �q equal to (↵� + ↵
2
), and �ICL the minimum eigenvalue of KICL. Equation (6.12)

can then be manipulated as:

V̇ (⌘)  �
✓
� 

2
↵
2

�q

◆
||!̃||2 �

 
p

�q||q̃v||+
↵||!̃||p

�q

!2

� �ICL||⇥̃||2 (6.13)

Then, V̇ (⌘) from Equation (6.12) is negative definite for � 
2
↵
2

�q
> 0, showing that the

candidate Lyapunov function V (⌘) in Equation (6.8) is bounded in L1 and that V (⌘) is

decreasing. From Equation (6.12) is inferred the error signals !̃, q̃v, ⇥̃ 2 L2. Therefore, by

invoking Barbalat’s Lemma, it can be concluded that in addition to the results of Theorem

1 for attitude and angular velocity of the spacecraft, the update law with integral concurrent
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learning will drive the estimates of the unknown parameters to their true value since since:

lim
t!1

⇥̃ = 0 (6.14)
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7 Flexible Spacecraft Maneuvers

In this chapter, the performance of the designed controller in Equation (5.8) and update

law in Equation (5.10) subject to the dynamics from Equation (4.13) is validated for two

scenarios: the first one is to align the long axis of the flexible appendage with the relative

linear velocity of the spacecraft as the system is following a circular orbit around Earth, and

the second scenario is to perform set of arbitrary slew maneuvers. Furthermore, results of

the response of the system and unknown estimations for di↵erent number of links modeled

will be presented for comparison. For all scenarios, the P matrix of the Lyapunov function

in Equation (6.1) is selected to be the principal moment of inertia of the main body JH

to provide a natural weighting of the angular velocity components due to the mass and

dimensions of the spacecraft. The objective of the first scenario is to investigate how the

proposed eigenvalue placement for the tuning matrix of the ICL-based adaptive law reacts

as the number of modeled links for the same appendage is changed. The goal is to highlight

the e↵ectiveness of this approach to shape the behavior of the estimation of any number of

unknowns. The objective of the second scenario is to investigate the behavior of the system

in response to the adaptive law designed in Equation (5.10) and compare it to the response

of a non-adaptive controller that does not estimate the unknown parameters. The goal is

to highlight the advantage of implementing the ICL-based adaptive scheme in the controller

for a flexible spacecraft.

7.1 Flexible appendage pointing to spacecraft relative velocity

7.1.1 Initial Conditions

Consider a 3U CubeSat that has been deployed from the International Space Station

(ISS) and it has began its de-tumbling operation and that the deployment of the flexible

appendage from the system has caused an initial tumble to it. The flexible appendage is

assumed to be initially at rest and fully deployed, and the spacecraft has an initial tumble

as described in Table 7.1. The mechanical properties like mass and dimensions for both the

spacecraft hub and the flexible appendage are listed in Table 7.2. The inertial coordinate
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system N is considered to be the one described by Earth-Centered Inertial (ECI).

Table 7.1 Initial Attitude, Position, and Velocities of the Spacecraft Hub

Initial Parameters x y z Units
qv(0) -0.1344 -0.7317 0.6543 /

NpH(0) 7.5⇥ 103 0 0 km
NvH(0) 0 7.288 0 km/s
N!H (0) 0.100 -0.050 0.200 rad/s

Table 7.2 Mass and dimensions of the spacecraft bodies

Body Mass (kg) Height (m) Length (m) Width (m)
Hub 4.800 0.100 0.300 0.100

Appendage 0.113 0.050 1.500 5⇥ 10�4

7.1.2 Desired Trajectory

Based on the initial position and velocity of the spacecraft, the initial values for propa-

gating the desired attitude over time are selected by aligning the inertial x component with

the body-fixed y component, the inertial y component with the opposite of the body-fixed

x component, and the inertial z component with the body-fixed z component as shown in

Figure 7.1, which results in qdes(0) =


0 0 1 0

�T
. The desired angular velocity of the hub

is obtained from the angular velocity of the circular orbit generated by the initial velocity

and position from Table 7.1 and is D!des(0) =


0 0 �9.972⇥ 10�4

�T
rad/s.

7.1.3 Controller Parameters

The number of data points collected for the integral concurrent learning is N = 30,

which is collected using a window time of �t = 4ts, where ts is the integration step size for

the simulation. For actual controller implementation, it should match the time required to

process the output measurements. The finite time excitation threshold is set to �̄ = 5⇥10�3.

A summary of the control gain matrices employed in the simulation is presented in Table

7.3. The control gain parameters , ↵, �, � are tuned to achieve the desired response. In

particular, the first three gains: , ↵, � are responsible for the convergence rate of the error

27



Figure 7.1 Visual Representation of desired trajectory for scenario 1. The flexible
appendage is aligned with the velocity vector of the circular orbit around Earth, always

facing normal to Earth.

Table 7.3 Control Gains Parameters

 ↵ � � ⌃des N �̄

0.01 0.15 0.0025 1.25 1  �i  10 30 5⇥ 10�3

in the angular velocity of the hub and its attitude as shown in Equation (6.4), whereas �

plays a role in the finite time excitation of the system for estimation of the unknowns as

shown in Equation (5.10). ⇤ from Equation (6.11) dictates the convergence rate of the error

in the unknown parameters. However, since the only tune-able parameters of ⇤ are the

desired singular values for the ICL learning matrix, they are selected from a random normal

Gaussian distribution from 1 to 10, and diagonalized in ⌃des.

7.1.4 Simulation Results

Using a 4th order Runge-Kutta solver with integration fixed size of dt = 0.005 s, a

simulation of the dynamics of the spacecraft described in Equation (4.1) with the control

law in Equation (5.8) and the adaptive law in Equation (5.10) is performed. The initial

estimates of the unknowns ⇥̂ were all set to zero to provide a worst-case scenario where the

joints do not apply torques on the structure. The response of the system is obtained for a

flexible appendage modeled as n = 3, 6, 12 links.

For all three cases, the controlled maneuver drove the attitude of the spacecraft and
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angular velocity to the desired trajectory while following a circular orbit around Earth as

shown in Figure 7.2. This can be confirmed by the mean of both !̃ and q̃v reaching values

less than 1 ⇥ 10�5. Because the flexible appendage is more accurately modeled as the

number of links increases, the tracking error improves since it approaches values closer to

zero. Furthermore, the flexible appendage shows an initial excitation for the first oscillations

due to the mismatch in the estimates of the unknowns, and for higher number of links, the

excitation is more accentuated as shown in Figure 7.3. Once the learning phase is completed,

the appendage dampens down to steady-state and the decay rate for which it happens is

slower for larger number of links.

An insightful result is that the controller was able to meet the attitude tracking objective

before the flexible appendage reached steady-state. That is because the controller has esti-

mated spring and damping coe�cients almost true to their actual values, meaning that is

able to compensate for the oscillations of the appendage while maintaining the desired atti-

tude, which can be observed from the behavior of the controller input over time in Figure 7.4.

In fact, the estimates of the unknown parameters reach a relative percent error of less than

1% as shown in Table 7.4, meaning that the update law with Integral Concurrent Learning

and the self-adjusting tuning proposed in this paper is e↵ective to accurately estimate con-

stant unknowns that can be linearly parameterized from the dynamics of the system. The

magnitude of the percent errors from Table 7.4 can be attributed to small numerical errors

due to the collection of the integrals Yi and Ui which are propagated in the sum
P

YT

i
Yi.

The finite excitation stage and the convergence stage of the ICL are distinguishable from

Figure 7.5 and 7.6, which indicates the minimum eigenvalue condition in Equation (5.16)

has been met.
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Figure 7.2 Behavior of the tracking error represented as the mean of the attitude mismatch
and spacecraft angular velocity error over a time span of 1200s. Both errors converge closer

to zero as the number of links increases.
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Figure 7.3 Behavior of the relative angular displacements of each link over a time-span of
1200s. The excitation phase of the update law emphasizes the initial oscillations of the

appendage as the number of links increases. However, once the estimates of the unknowns
reach their true values, the frequency of the oscillations remains constant and the decaying

rate of the waves is slower as n increases.
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Figure 7.4 Behavior of the input commanded torques to the spacecraft hub over a
time-span of 1200s. As the number of links increases, the behavior of the controller reflects

the oscillations of the flexible appendage to maintain the desired attitude trajectory.
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Figure 7.5 Behavior of the estimated spring coe�cients compared to their actual values
over a time-span of 1200s. The controller with ICL accurately estimates the unknown
spring coe�cients after the initial finite excitation that lasts about 20 seconds. For

constant tuning parameter � for all three models, the excitation applied to the estimates of
the unknown spring coe�cients is less aggressive as the number of unknowns increases, but
still su�cient to collect information for the learning matrix to drive the estimates to their

true values.
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Figure 7.6 Behavior of the estimated damping coe�cients compared to their actual values
over a time-span of 1200s. The controller with ICL accurately estimates the unknown
damping coe�cients after the initial finite excitation that lasts about 20 seconds. For

constant tuning parameter � for all three models, the excitation applied to the estimates of
the unknown damping coe�cients does not show a significant di↵erence as the number of

unknowns increases.
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Table 7.4 Relative percent error of the final unknown estimates for di↵erent number of
links modeled

Number links modeled n = 3 n = 6 n = 12

Unknown Error k̃i c̃i k̃i c̃i k̃i c̃i
1st link 0.887% 0.145% 0.013% 0.209% 0.007% 0.068%

2nd + links 0.094% 0.007% 0.303% 0.256% 0.148% 0.043%

7.2 Slew-Maneuvers

Initial Conditions

Consider the same spacecraft from Section 7.1 with the same initial conditions and me-

chanical properties described in Table 7.1 and 7.2 respectively. The flexible appendage is

modeled as n = 5 links for both cases. The initial estimates of the unknowns k̂ and ĉ are

described in Table 7.5 and they represent an initial wrong assumption of the joint springs

and dampers.

Table 7.5 Initial estimates of the unknowns and their constant true values

Parameter j = 1 j = 2 j = 3 j = 4 j = 5 Units
kj 0.00424 0.00212 0.00212 0.00212 0.00212 N �m/deg

k̂j(0) 0.00246 0.00209 0.00208 0.00158 0.00191 N �m/deg

cj 0.00185 0.00131 0.00131 0.00131 0.00131 N �m� sec/deg

ĉj(0) 0.00106 0.000932 0.00126 0.00117 0.00128 N �m� sec/deg

7.2.1 Desired Trajectory

To perform slew maneuvers, the desired attitude parameters qdes are changed every 200 s

by performing one rotation of an angle about one axis and a visualization of the desired

maneuvers is shown in Figure 7.7. The trajectory map is selected as:

qdes =

8
>>>>>>>>>>><

>>>>>>>>>>>:


0 1 0 0

�T
0  t < 200s


0.5000 0 0 0.8660

�T
200  t < 400s


0 0 �0.3827 0.9239

�T
0  t < 600s


1 0 0 0

�T
t > 600s

(7.1)
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The desired angular velocity of the hub is set to zero in order to maintain a constant target

attitude even when it is switching.

Figure 7.7 Visual representation of the desired slew maneuvers performed every 200
seconds.

7.2.2 Simulation Results

Using a 4th order Runge-Kutta solver with fixed step size of dt = 0.005 s, a simulation of

the dynamics of the spacecraft described in Equation (4.1) with the control law in Equation

(5.8), control tuning parameters defined in Table 7.3 and desired attitude maneuvers defined

in Equation (7.1) is performed.

The significant di↵erence between the two cases is that the estimation of the unknowns

was obviously accurately met by the ICL-based adaptive law as shown in Figure 7.8, whereas

the estimates for the second case were not updated and kept constant with values described

by Table 7.5. The mean error of the quaternion and angular velocity for both cases is

depicted in Figure 7.9. Without estimation, the controller does not achieve good tracking by

the time the next maneuver is requested. The response of the displacements of the flexible

appendage is shown in Figure 7.10, and it shows the expected mismatch in flexible dynamics

for oscillations amplitude and decay due to the non-adaptive controller constantly using the
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Figure 7.8 Mean error of the unknown parameters over a time-span of 1500s. The
estimates of the unknowns accurately reach their true value for each maneuver as the

magnitude of the mean error between actual and estimated values converges to 1⇥ 10�12 at
the end of each maneuver.

wrong estimates for the spring and damping coe�cients of the joints. The same behavior is

appreciated by the commanded input torques over time that reflects the magnitude of the

oscillations of the flexible appendage as shown in Figure 7.11.
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Figure 7.9 Behavior of the tracking error for the second scenario represented by the
attitude mismatch and spacecraft angular velocity error over a time span of 1500s. By the
end of each maneuver, the mean of both errors for the controller with ICL converges closer

to zero than the one of the non-adaptive controller.
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Figure 7.10 Behavior of the relative angular displacements of each link for the second
scenario over a time-span of 1500s. The oscillations of the flexible appendage controlled by
a non-adaptive law have a higher decay rate than the ones controlled by the ICL-based

adaptive law. However, a higher wave amplitude is observed for the first three maneuvers
when the control law does not use the correct estimates of the unknown spring and

damping coe�cients.
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Figure 7.11 Behavior of the input commanded torques on the spacecraft hub for the second
scenario over a time-span of 1500s. For both cases of the second scenario, the x and y

component of the torques do not di↵er, whereas the z component of the non-adaptive
controller shows higher magnitude for the first three maneuvers which reflects the behavior

of the flexible appendage.
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8 Discussion

Both scenarios have yielded the expected results and validated the theorems of stability

introduced in Chapter 6. That is the controller and adaptive law designed in Equation

(5.8) and (5.10) for the system in Equation (4.1) is able to drive the spacecraft attitude and

angular velocity to a desired one, and accurately estimate the unknown parameters.

In Scenario 1, the performance of the control and adaptive law was presented when

the flexible appendage was modeled with a di↵erent number of rigid links. The results

were satisfactory since the proposed approach of self-tuning the eigenvalues of the learning

matrix allowed estimating unknowns of an appendage modeled with higher number of links,

improving accuracy and identification of modes of frequency. Furthermore, since the spring

and damping coe�cients are concurrently estimated, the proposed algorithm would be able

to capture the changes in the actual coe�cients when other modes are excited. That is

because the natural frequency of the ith mode is determined as shown in Reference [17]:

!i = (�L)2

s
EI

⇢L4
=

r
ki

m
(8.1)

with (�L) being the solution of the characteristic equation of the shape function (Equation

4.45 in Reference [17]), L being the length of the beam, ⇢ being the density of the material.

The Lyapunov-based controller drives the spacecraft hub to its desired attitude and angu-

lar velocity even when the flexible appendage is still oscillating. The control objective is

met thanks to the accurate estimation of the underactuated unknown dynamics because the

controller compensates for that dynamics and maintains the desired trajectory. This conclu-

sion is discerned from the results of the last scenario since it was observed the non-adaptive

controller cannot accurately drive the spacecraft to the desired orientation and angular ve-

locity in the required time for the maneuver. This response is due to the uncertainty in the

modeled flexible dynamics; therefore, the control input applied to the spacecraft results in

residual torques the controller does not compensate for. The motivation behind accurately
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estimating the dynamics of the flexible appendage is to, in fact, being able to select the

appropriate controller. A mismatch between the actual dynamics of the flexible appendage

and the one assumed from the controller could generate an uncontrollable excitation be-

cause it could exceed the frequency bandwidth of the controller, or not meeting the control

tracking objective because of the poor modeling. Furthermore, the improvement provided

in the current ICL scheme of implementing a self-tuning gain matrix shows that a better

performance for the estimation algorithm can be included for larger number of unknowns.

In both scenarios, constraints and limitations on the control input were not imposed, but

for a real mission, considerations on the maximum required torques, frequency bandwidths,

time-delays and other mechanical constraints imposed by the proposed controller unit must

be taken into account.

42



9 Conclusions

In conclusion, modeling the spacecraft with a flexible appendage by considering the flex-

ible component as a finite series of rigid bodies connected by torsional joints is selected as

a method to estimate the unknown flexible dynamics by performing an onboard estimation

of unknown parameters of the flexible joints using integral concurrent learning. Two sce-

narios of desired trajectories were tested: a smooth time-varying trajectory in Scenario 1

and a switched trajectory in Scenario 2. The results from the first scenario showed that

the designed self-tuning control gain matrix allows for accurate and improved estimation of

any number of unknown parameters in the system without exceeding the estimation bounds

and guaranteeing a uniform convergence rate for all the unknowns. Furthermore, the results

from the second scenario showed that estimating the unknowns is necessary for achieving

the control objective of tracking a desired attitude trajectory in a fixed amount of time.

Moreover, learning about the flexible dynamics helps with determining the controller design

requirements like maximum output torque and frequency bandwidth, and it opens opportu-

nities for accurately maneuvering the flexible appendage. Future works include testing the

proposed theory in an experimental environment subject to measurement noise and time

delays, and considering size and mass of the flexible appendage as unknowns. A further

investigation will be applying to a continuous flexible appendage and using the discretized

model for unknown estimation
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A Appendix

A.1 Partial velocity matrices

The angular partial velocity matrix ⌦ is obtained as:

⌦ =

2

66666666664

I3 0 0 0 0 0

R
H!1

 0 0 0 0

R
H!2

R
1!2
  0 0 0

...
...

...
. . . 0 0

R
H!n

R
1!n
 · · · R

n�1!n
  0

3

77777777775

(A.1)

The linear velocity matrix V is obtained as:

V =

2

66666664

0 0 · · · 0 I3
�

NrL1!J1 � NrH!J1
�⇥

RH!N
�

NrL1!J1
�⇥

R1!N 0 0 I3
...

...
. . . 0 I3

�
NrLn!J1 � NrH!J1

�⇥
RH!N

�
NrLn!J1

�⇥
R1!N · · ·

�
NrLn!Jn

�⇥
Rn!N I3

3

77777775

(A.2)

where the vector xLi!Jk is the path vector from the center of mass of link i to the kth joint,

for i = 1 : n and k = 1 : n� 1 with n being the number of links modeled.

The time-derivative of ⌦ is calculated as:

⌦̇ =

2

66666666664

03 0 0 0 0 0

Ṙ
H!1 0 0 0 0 0

Ṙ
H!2

Ṙ
1!2
 0 0 0 0

...
...

...
. . . 0 0

Ṙ
H!n

Ṙ
1!n
 · · · Ṙ

n�1!n
 0 0

3

77777777775

(A.3)

where Ṙ
i!j = R

i!j( i!i!j)⇥ read as the cross product between the transformation matrix

from frame i to frame j with the angular velocity of the two frames expressed in the i frame.
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The time-derivative of V is calculated as:

V̇ =

2

66666664

0 0 0 0 0

V̇10 V̇11 0 0 0
...

...
. . . 0 0

V̇n0 V̇n1 · · · V̇nn 0

3

77777775

(A.4)

with each element determined as:

V̇i0 =
�

N ṙLi!J1 � N ṙH!J1

�⇥
R

H!N +
�

NrLi!J1 � NrH!J1

�⇥
Ṙ

H!N (A.5)

V̇ik =
�

N ṙLi!Jk

�⇥
R

k!N
 +

�
NrLi!Jk

�⇥
Ṙ

k!N
 (A.6)

for i = 1 : n and k = 1 : i.
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