
Doctoral Dissertations and Master's Theses 

Spring 2023 

Optical Orbit Tracking and Estimation Optical Orbit Tracking and Estimation 

Matthew Gillette 
Embry-Riddle Aeronautical University, gilletm3@my.erau.edu 

Follow this and additional works at: https://commons.erau.edu/edt 

 Part of the Navigation, Guidance, Control and Dynamics Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Gillette, Matthew, "Optical Orbit Tracking and Estimation" (2023). Doctoral Dissertations and Master's 
Theses. 751. 
https://commons.erau.edu/edt/751 

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted 
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons. 
For more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F751&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/226?utm_source=commons.erau.edu%2Fedt%2F751&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/751?utm_source=commons.erau.edu%2Fedt%2F751&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


 

 

i 

 

ACKNOWLEDGEMENTS 

The author would like to thank the individuals who contributed to this work and made it 

possible, both directly and indirectly. First, I would like to thank my parents and grandparents for 

their support and encouragement, which has been a constant from day 1 as a freshman. To David 

Zuehlke, for giving me this idea and for pointing me in the right direction at a moment’s notice 

when I needed it. To Dr. Henderson, whose instruction both inside and outside of class made it 

possible to piece together the research done here. To Dr. Prazenica, for helping me to realize, 

through his instruction both in and out of class, that it was not only possible for me to solve the 

problems put before me, but to understand the subject matter involved in doing so. Finally, thank 

you to Dr. Perera, whose patience and eagerness to help when learning became a struggle led to 

understanding linear algebra in a way that, at many times, seemed out of reach. The help of 

everyone mentioned here has been invaluable in ways that are both tangible and intangible, and 

there is simply no way to fully express my gratitude to each of them. 

  



 

 

ii 

 

ABSTRACT 

Angles-only initial orbit determination methods are currently limited in their use as they 

require some prior knowledge of where the observed object will be and when it will be there. This 

research aims to produce a viable method to automate this process so that objects whose 

trajectories are not saved in a user’s catalog can be observed. This study presents a novel approach 

to satellite recognition in an image. This method is used in addition to Astrometry to determine 

the right ascension and declination of the object. This information is then used to either obtain the 

initial conditions needed for a state estimator or is utilized by a Kalman Filter to correct any 

resulting error. In addition, an extra goal is set to create a modular process so that any stage of the 

end-to-end process can be changed to suit a user’s individual needs while still being able to perform 

the task for which it was assigned. Tests with varying times between measurements were first run 

to determine if a discrete-time Kalman Filter is a viable method to correct the error created by the 

state estimator, where coordinates were fed directly into the filter with no images. The results of 

these tests demonstrated the successful application of the Kalman Filter in adjusting the projections 

made by the mathematical projections of the satellite’s trajectory based on the measured data. After 

this, tests were done on images that were acquired in a manner similar to how the filter would have 

acquired them to test the entire end-to-end process. This test results signify that the efficacy of the 

Kalman Filter in aligning the mathematical projections of the satellite’s trajectory with the 

measurement data, thus demonstrating its successful application. This means that if the projection 

is in the middle of the image, the centroid of the satellite streak will be in the middle well. A final 

test was conducted to implement the Kalman Filter on a telescope system while utilizing a different 

image processing technique. This test demonstrated that the Kalman Filter worked as intended in 

real time. 
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1 Introduction 

The problem of determining the orbit of a body beyond Earth’s atmosphere has long been on 

the minds of mathematicians and astronomers. Historically, this centered on the motion of planets 

and stars. Now, the focus is on objects much closer such as the ever-increasing number of satellites 

and other objects in orbit around the Earth. In recent years, research has been done to utilize angles-

only initial orbit determination (AIOD) methods for objects in orbit around the Earth, primarily 

satellites. For more information on AIOD, its history, and the current challenge of monitoring the 

expanding number of objects in the sky, see Refs. [1,2] 

1.1 Problem Statement 

To date, the only way to get images across the sky of an object to use for an AIOD method is 

to utilize a software program or other means of knowing where the object will be and when it will 

be there. From here, the coordinates and the time for the image to be taken are then input into the 

software that interfaces with the telescope mount and camera. The goal of this research is to meet 

this need with a state estimator with a Kalman Filter that is capable of projecting a satellite’s path 

across the sky while making necessary adjustments after measurements are taken, all without a 

priori knowledge of the satellite’s orbit. 

1.2 Motivation 

One of the main goals of using AIOD is that it should be able to do its work autonomously. As 

stated above, current methods of AIOD are not autonomous. Therefore, the only objects that can 

be observed are objects whose orbit is already known. This is a great aid with testing AIOD 

methods but eliminates it as a method for observing objects whose trajectory is not in the catalogue 

that is used. The answer may seem obvious to use a state estimator. However, a state estimator 

will inherently produce error because of factors such as noise in the measurements, noise in the 

physical process being done, and any mathematical errors present in the model itself. Therefore, 
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the aim of this research is to combine these elements to create an end-to-end process that will get 

the images necessary to perform an AIOD process to estimate the orbit of an unknown object. 

1.3 Summary  

This research advances the existing efforts towards establishing a comprehensive AIOD 

process by developing an end-to-end methodology that encompasses image acquisition for precise 

orbit determination. This is accomplished through the creation of an algorithm for recognizing 

satellites in an initial image followed by a small propagation. This is done until enough initial 

conditions are gathered to begin using a state estimator. This state estimator will utilize a discrete-

time Kalman-Filter to allow the estimator to, essentially, correct itself of any error that results from 

a variety of sources such as process noise, measurement noise, and any error inherent in the model.  

1.3.1 Research Contributions 

This research provides 3 key contributions. The main contribution is the use of a state estimator 

with a Kalman Filter to project the path of a satellite across the sky without knowing its orbit. 

Another contribution is a satellite recognition method based on the Hough Transformation. The 

final contribution is a short-term projection method used prior to when the filter begins operating. 

This method simply projects a line made from the results of the Hough Transformation based on 

a ratio of the time between the start of the original image and a subsequent image and the exposure 

time. 
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2 Review of the Relevant Literature 

In this section, topics that are related to this research are explored, with a focus on the Kalman 

Filter and the two ways it can be applied, continuous-time and discrete-time. Other topics include 

coordinate systems, image processing, and some relevant methods from linear algebra focused on 

mathematical cost reduction.  

2.1 State-Space Representation 

Equation (2.1) shows a general form of an nth order differential equation, where a0, a1, …, an 

and b0 denote constants, x is a function of time, and u denotes an input. Brogan [3] shows this can 

be converted into a series of first-order differential equations. To achieve this, the system can be 

redefined using a new set of variables with the intent of creating these first-order differential 

equations as shown in Equation (2.2). Taking the derivatives of these yields Equation (2.3). 

𝑑𝑛𝑥

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1
+ ⋯+ 𝑎1

𝑑𝑥

𝑑𝑡
+ 𝑎0𝑥 = 𝑏0𝑢 

(2.1) 

𝑥1 = 𝑥, 𝑥2 =
𝑑𝑥

𝑑𝑡
, … , 𝑥𝑛 =

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1
 

(2.2) 

�̇�1 =
𝑑𝑥

𝑑𝑡
, �̇�2 =

𝑑2𝑥

𝑑𝑡2
, … , �̇�𝑛 =

𝑑𝑛𝑥

𝑑𝑡𝑛
 

(2.3) 

If the system is linear, the original differential equation (in state-space form) can be reformatted 

into the form shown in Equation (2.4), where a general form for A, shown in Equation (2.5), is 

comprised of the coefficients that are multiplied by the state variables, and B is the coefficients 

that are multiplied by the inputs. Here, 𝑥 is the state vector comprised of the states from Equation 

(2.2), while 𝑢 is a vector containing the inputs. 

�̇� = 𝐴𝑥 + 𝐵𝑢 (2.4) 

𝐴 = [
0 𝐼

−𝑎0 … −𝑎𝑛−1
] 

(2.5) 
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When trying to account for a second, also linear, differential equation at the same time as the 

first, the A matrices for each can be combined into a single A matrix using the format in Equation 

(2.6) where the states for the second equation start at n+1. This assumes that the two equations are 

independent of each other. If the states for each of the differential equations are linked (some of 

the states appear in both equations), the only change will be to one line of one or both of the zero 

matrices in the corners. This pattern is repeated for each additional differential equation that is 

added to this A matrix, where the A matrix for the individual equation falls on the diagonal. 

𝐴 =  [
𝐴1 [0]
[0] 𝐴2

] 
(2.6) 

The B matrix is related to the inputs. The number of columns is determined by the number of 

inputs and the number of rows is determined by the number of states. The constants inside the 

matrix correspond to the constants the inputs are multiplied by in the differential equations. 

Equation (2.7) shows the equation for the outputs, y. These outputs come from the sensors that 

are used to detect either the states or the inputs. The matrices for the state sensors, C, and the input 

sensors, D, are formed based on the number of outputs. The simplest way to form these 2 matrices 

is to put a 1 corresponding to the position that the output for that row represents if the sensors are 

directly sensing the states or inputs. 

𝑦 = 𝐶𝑥 + 𝐷𝑢 (2.7) 

 

2.2 State-Feedback Control  

The systems discussed in the previous section are the open-loop versions of those systems, 

meaning the control is designed around goals and any prior knowledge of the system and does not 

adjust itself based on the outputs. A closed-loop system, on the other hand, adjusts the input using 
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information about the system’s current states. This can be done using the states directly or by using 

sensor outputs. Using the states directly to control the system is called state-feedback control. 

The state-feedback controller is purely theoretical because the sensor outputs, y, are the only 

accessible signals that can be used for determining the current state. However, the creation of a 

state-feedback controller does involve methodology that will be useful in later sections. First, it 

must be determined whether the system is controllable. This is done by checking the rank of the 

control matrix, shown in Equation (2.8), which is explained in more detail in Ref. [4]. If the system 

is controllable, this means the eigenvalues of the controlled system can be arbitrarily placed. To 

do this, assume the control law in Equation (2.9) and substitute into the state-space form shown in 

Equation (2.4). This simplifies to Equation (2.10). From here, desired eigenvalues can be selected 

and applied by using Equation (2.11), where 𝜆 are the desired eigenvalues and 𝜆 are the actual 

eigenvalues and solving for the individual control gains in K [5]. 

𝑃𝑐 = [𝐵 𝐴𝐵 𝐴2𝐵 … 𝐴𝑛−1𝐵] (2.8) 

𝑢 = −𝐾𝑥 (2.9) 

�̇� = (𝐴 − 𝐵𝐾)𝑥 (2.10) 

det(𝐴 − 𝐵𝐾) = (𝜆 − 𝜆1)(𝜆 − 𝜆2)… (𝜆 − 𝜆𝑛) (2.11) 

 

2.3 State Estimation and Kalman Filtering 

Since the states themselves cannot be directly used to control a system, one method to try to 

address this is to estimate the states and determine the control input needed from those estimates 

while also comparing to the sensor outputs. Estimation is only possible for an observable system. 

This means that the rank of the observability matrix, shown in Equation (2.12), is equal to the 

number of states. To accomplish this, a new set of states is created, shown in Equations (2.13) and 
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(2.14), where �̂� denotes the estimated states. State estimation will inherently produce error. 

Sometimes, this error can be accounted for. One example of this is using a Kalman filter to account 

for noise. To do this, a Kalman gain, L, is used to make the eigenvalues of A-LC stable, which 

will drive the error to zero over time. The more negative the eigenvalues, the faster convergence 

will occur. However, making the values in the Kalman gain too large may result in amplifying the 

sensor noise. 

𝑃𝑜 = [𝐶𝑇 (𝐶𝐴)𝑇 (𝐶𝐴2)𝑇 …(𝐶𝐴𝑛−1)𝑇]𝑇 (2.12) 

�̇̂� = 𝐴�̂� + 𝐵𝑢 (2.13) 

�̂� = 𝐶�̂� + 𝐷𝑢 (2.14) 

Equation (2.15) shows the error between the actual and estimated states. This can be expanded 

to Equation (2.17) by substituting Equation (2.4) for �̇� and Equation (2.13) for �̇̂� and simplifying. 

This can be further simplified by substituting Equations (2.7) and (2.14) for 𝑦 and �̂� respectively 

to get Equation (2.18). 

𝑒 = 𝑥 − �̂� (2.15) 

�̇� = �̇� − �̇̂� (2.16) 

�̇� = 𝐴(𝑥 − �̂�) − 𝐿(𝑦 − �̂�) (2.17) 

�̇� = (𝐴 − 𝐿𝐶)𝑒 (2.18) 

This result is important because stable eigenvalues for the matrix A-LC mean that the estimation 

error will go to zero over time. 

2.4 Computing the Kalman Gain 

One way to design the Kalman Gain is through eigenvalue placement. If a system is observable, 

then the eigenvalues of the matrix A-LC can be placed arbitrarily. As shown in Equation (2.19), 
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this process is similar to the process described in Section 2.2. The main difference between here 

and Section 2.2 is solving for the individual constants in L instead of K. 

det(𝐴 − 𝐿𝐶) = (𝜆 − 𝜆1)(𝜆 − 𝜆2)… (𝜆 − 𝜆𝑛) (2.19) 

If, at a minimum, the statistics of the sensor noise are known or can be reasonably 

approximated, it is possible to calculate the Kalman Gain with that information. Equation (2.20) 

shows a variation of the state-space system shown earlier with an added term that accounts for 

noise, where 𝑣 is the process noise and G is used to map the process noise into the dynamics model. 

Equation (2.21) shows the sensor output for this system where 𝑤 is the sensor noise. 

�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐺𝑣 (2.20) 

𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝑤 (2.21) 

 

The Kalman Gain is computed using Equation (2.22), where �̂� represents the covariance of the 

measurement noise and 𝑃∞, the steady state value of the estimation error covariance, is the solution 

to the Algebraic Riccati Equation shown in Equation (2.23) and must be a positive definite matrix. 

More information on this variation will come in Section 2.5. For this equation, �̂� is the process 

noise covariance [5]. 

𝐿 = 𝑃∞𝐶𝑇�̂�−1 (2.22) 

0 = 𝐴𝑇𝑃∞ + 𝑃∞𝐴 − 𝑃∞𝐶𝑇�̂�−1𝐶𝑃∞ + 𝐺�̂�𝐺 (2.23) 

 

2.5 Duality 

Another method to create a Kalman filter is to create a dual system and solve for its control 

gain. As Ogata demonstrates in [6], if a system is observable, this means that the eigenvalues for 

the observer can be placed arbitrarily. Since this is, in essence, the same as arbitrarily placing the 
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eigenvalues for a state-feedback controller, the same methods can be used to solve for the Kalman 

filter. This property, known as duality, allows for the system to be redefined using the following:  

𝐴𝑇 = �̃� (2.24) 

𝐵𝑇 = �̃� (2.25) 

𝐶𝑇 = �̃� (2.26) 

𝐷 = �̃� (2.27) 

𝐿𝑇 = �̃� (2.28) 

This yields the new set of dual state-space equations shown in Equations (2.29) and (2.30). An 

important note about this new system is that the controllability matrix of the dual system is equal 

to the transpose of the observability matrix of the original system. This allows for the eigenvalues 

of the dual system to be arbitrarily placed. Using these new state space equations along with 

Equation (2.31), it can be shown that the eigenvalues of the controlled dual system are equal to the 

transpose of the eigenvalues of the state observer shown above. Therefore, designing the controller 

gains of the dual system is the same as designing the Kalman filter for the state observer of the 

real system. 

�̇̃� = �̃��̃� + �̃��̃� (2.29) 

�̃� = �̃��̃� + �̃��̃� (2.30) 

�̃� = −�̃��̃� (2.31) 

These results are important because they allow the use of MATLAB’s lqr function to create 

the Kalman Gain. The function is shown in Equation (2.32) for how the function is normally used 

for determining control gains, where Q is a weighting matrix for the states and R is a weighting 

matrix for the control inputs. Equation (2.33) shows how to input the dual system which, after 

transposing �̃�, will give the Kalman Gain. 
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[𝐾, 𝑆∞, 𝜆] = 𝑙𝑞𝑟(𝐴, 𝐵, 𝑄, 𝑅) (2.32) 

[�̃�, �̃�∞, 𝜆] = 𝑙𝑞𝑟(�̃�, �̃�, �̃�, �̃�) (2.33) 

This result comes from expanding on the dual system. Starting with the Algebraic Riccati 

Equation for the real system in Equation (2.34) [6], it can be seen that the same for the dual system 

will appear as shown in Equation (2.35). If it is assumed that Equations (2.36), (2.37), and (2.38) 

are true, then it can be seen that Equations (2.35) and (2.23) are, in fact, the same. This is what 

allows the use of MATLAB’s lqr function to determine the Kalman Gain 

0 = 𝑆∞𝐴 + 𝐴𝑇𝑆∞ − 𝑆∞𝐵𝑅−1𝐵𝑇𝑆∞ + 𝑄 (2.34) 

0 = �̃�∞�̃� + �̃�𝑇�̃�∞ − �̃�∞�̃��̃�−1�̃�𝑇�̃�∞ + �̃� (2.35) 

�̃�∞ = 𝑃∞ (2.36) 

�̃� = �̂� (2.37) 

�̃� = 𝐺�̂�𝐺 (2.38) 

2.6 Discrete-Time Systems and the Kalman Filter 

The above solutions for the Kalman Filter are for a continuous-time system, meaning the 

sensors are taking readings at a fast enough rate that it can be assumed they are continuous. 

However, that is sometimes not the case. When sensor readings are spaced out over a period of 

several seconds and beyond, it is advisable to use a discrete-time Kalman Filter instead. To do this, 

first the continuous-time system must be converted to a discrete-time system as shown in 

Equations (2.39) to (2.41). The idea is to propagate by steps of size ∆𝑡 instead of integrating 

continuously across that same time interval. [7] 

𝐹 = 𝑒𝐴∆𝑡 (2.39) 

𝐺 = 𝐵 (2.40) 

𝐻 = 𝐶 (2.41) 
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The process for determining the Kalman Filter using this method is shown in Equations (2.42) 

through (2.46). In these equations, �̂�𝑘
− and 𝑃𝑘

− comprise the “propagate” stage, where the model is 

propagated forward to generate the estimate. The last 2 equations to solve for �̂�𝑘
+ and 𝑃𝑘

+ are the 

update stage, which use the Kalman Gain, 𝐿𝑘, to correct for the error between the estimate and the 

measurement. In these equations, 𝑃𝑘 denotes the covariance matrix and �̃�𝑘 denotes the 

measurements. 

�̂�𝑘
− = 𝐹𝑘−1�̂�𝑘−1

+ + 𝐺𝑘−1𝑢𝑘−1 (2.42) 

𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1

+ 𝐹𝑘−1
𝑇 + 𝑄𝑘−1 (2.43) 

𝐿𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)−1 (2.44) 

�̂�𝑘
+ = �̂�𝑘

− + 𝐿𝑘(�̃�𝑘 − 𝐻𝑘�̂�𝑘
−) (2.45) 

𝑃𝑘
+ = (𝐼 − 𝐿𝑘𝐻𝑘)𝑃𝑘

−(𝐼 − 𝐿𝑘𝐻𝑘)
𝑇 + 𝐿𝑘𝑅𝑘𝐿𝑘

𝑇  (2.46) 

The Kalman Gain must be recalculated after each propagation. This is because the covariance 

matrix will be different each iteration as the error between the estimated results and measurements 

changes. [8] 

2.7 Coordinate Systems 

The equatorial coordinate system provides a consistent way to represent the location of an 

object in the sky because the coordinates of the object are the same, at any given point in time, no 

matter where it is viewed from. The equatorial coordinate system is comprised of the object’s right 

ascension and its declination angles. These coordinates happen to coincide with the latitude and 

longitude coordinates that are used to describe locations on the Earth, with the right ascension 

following along with longitude and declination with latitude. However, there is one key difference 

between right ascension and longitude. This difference is that right ascension divides the globe 
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into 24 equal sections (hours) to represent one rotation of the Earth for a day, with a positive value 

(or hour angle) being to the east up until the 12-hour mark. West will result in a negative value. 

The location of the 0-hour mark is at the vernal equinox, the longitudinal position where the sun 

crosses the equator during its movement relative to the background stars. Despite this, it is simple 

to switch from hours to degrees since 1 hour is equal to 15 degrees [9]. 

2.8 Image processing 

A digital image can be thought of as an intensity matrix, 𝐼(𝑥, 𝑦), where x and y are a pixel’s 

coordinates and the number contained in each cell is a measurement of the photons collected at 

that location. This means that dimmer objects will be harder to differentiate from background 

objects. This can be remedied by increasing the exposure time for the image, as that will allow 

extra time for more photons to be collected by each pixel. However, this increases the noise in the 

image. Therefore, the goal of image processing here is to reduce the noise in an image so that 

features may become more prominent [10, p. 50]. 

2.8.1 Noise Reduction 

There are several methods that can be employed to reduce the noise, some in conjunction with 

each other. One method is to use dark frames. A dark frame is an image that uses the same 

properties of a normal image, such as exposure time, with the telescope lens covered. This creates 

an image that captures some of the issues that will plague the normal image such as thermal noise 

and dead pixels. In addition, flat frames can be used to help correct issues with illumination in an 

image. This works by covering the camera’s field of view with an evenly lit surface. The image is 

taken, keeping all settings the same as the normal image except for the exposure time. The 

exposure time is adjusted to make use of as much of the camera’s dynamic range as possible. Flat 

frames help with correcting for issues such as areas that are darker. Flat frames may also show 

dust spots. The final frame type to help with noise is called a bias frame. A bias frame is similar 
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to a dark frame with the exception that the exposure time is set to be as short as possible. This 

helps to account for electronic read noise and any damaged pixels that may affect an image [10, 

pp. 53-55]. 

2.8.2 Noise Filtering 

Another approach to reducing the noise in the image, which can be done in addition to the 

reduction techniques discussed above, is to filter it. One way to do this is known as median 

filtering. Median filtering takes a small area of pixels and finds a median. If there is a significant 

change over a small area of pixels, there is likely noise in that area. A Gaussian smoothing filter 

attempts to suppress high-frequency content in an image by taking the convolution of a Gaussian 

kernel operator, shown in Equation (2.47) where 𝜎 is a chosen standard deviation, and creates a 

smoothed image where each pixel’s value is the weighted average of the neighboring pixels. 

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2
𝑒

−(
𝑥2+𝑦2

2𝜎2 )
 

(2.47) 

The final filtering method is threshold filtering, which removes noise by determining if the 

intensity in a pixel reaches a certain threshold for a smoothed image. If the intensity is below the 

threshold, the pixel at that coordinate is set to 0. The threshold is arbitrarily set, which means it 

can be chosen to be at or above the mean intensity value for an image [10, pp. 55-57]. 

2.8.3 Object Detection 

Centroiding, the practice of differentiating between objects and background and finding the 

approximate center of that object, is used to locate objects within an image so that they may be 

processed as noise, stars, or satellites. Noise and some smaller (relative to the image) stars can be 

filtered out by introducing a minimum area that an object must cover. One method that can be 

used, and is used in this research, is to use a weighted average of the intensities of the object as 

shown in Equation (2.48), where 𝑥𝑖 is the coordinates of the 𝑖𝑡ℎ pixel, 𝑤𝑖 is the intensity of the 



 

 

13 

 

pixel, N is the number of pixels in the object, and 𝑥𝑐 is the location of the centroid. Centroiding 

by way of intensity-weighting is capable of sub-pixel accuracy. In MATLAB, the function 

regionprops can be used to perform this task. 

𝑥𝑐 =
∑ 𝑥𝑖𝑤𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 
(2.48) 

The next step is to differentiate between point objects and streaks. For this, detecting corners 

is a useful way to find the streaks in an image. In a filtered image, there will be a strong bi-

directional gradient at a corner, or a sharp change in the intensity [11]. A corner can be discovered 

using the eigenvalues of the structural tensor shown in Equation (2.49). If the minimum of the 2 

eigenvalues of each 2x2 element of Z(x,y) exceeds a chosen threshold, then a corner has been 

detected. This is called the minimum eigenvalue method. However, this method will quickly 

become computationally expensive. One way to reduce the computational cost is to only search 

areas known to have objects from the above centroid detection. Another method is to use an 

approximation of the cornerness metric instead of solving for the eigenvalues outright. Harris 

Corner Detection uses a cornerness metric approximation, shown in Equation (2.50), to determine 

the likelihood that a particular pixel is a corner. A streak can be found by analyzing the distance 

between the corners as well as ensuring the respective corners correspond to a detected object. In 

MATLAB, the function detectHarrisFeatures can be used to accomplish this task. 

𝑍(𝑥, 𝑦) =

[
 
 
 
 (

𝛿2𝐼(𝑥, 𝑦)

𝛿𝑥2
)

2
𝛿𝐼(𝑥, 𝑦)

𝛿𝑥

𝛿𝐼(𝑥, 𝑦)

𝛿𝑦

𝛿𝐼(𝑥, 𝑦)

𝛿𝑥

𝛿𝐼(𝑥, 𝑦)

𝛿𝑦
(
𝛿2𝐼(𝑥, 𝑦)

𝛿𝑦2
)

2

]
 
 
 
 

 

(2.49) 
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𝑐ℎ(𝑥, 𝑦) = (
𝛿2𝐼(𝑥, 𝑦)

𝛿𝑥2
∗

𝛿2𝐼(𝑥, 𝑦)

𝛿𝑦2
)

2

− (
𝛿𝐼(𝑥, 𝑦)

𝛿𝑥
∗

𝛿𝐼(𝑥, 𝑦)

𝛿𝑦
)

2

− 𝑘 (
𝛿2𝐼(𝑥, 𝑦)

𝛿𝑥2
+

𝛿2𝐼(𝑥, 𝑦)

𝛿𝑦2
)

2

 

(2.50) 

To further reduce the computational cost of this method, the derivatives in Equations (2.49) 

and (2.50), known as the spatial derivatives, can be approximated using Prewitt operators shown 

in Equations (2.51) and (2.52). These can approximate a spatial derivative by simply multiplying 

them by the intensity matrix as shown in Equations (2.53) and (2.54). To get the second spatial 

derivative, simply multiply the corresponding Prewitt operator by the first spatial derivative. 

𝐾𝑥 = [
−1 0 1
−1
−1

0 1
0 1

] 
(2.51) 

𝐾𝑦 = 𝐾𝑥
𝑇 (2.52) 

𝛿𝐼(𝑥, 𝑦)

𝛿𝑥
≈ 𝐾𝑥 ∗ 𝐼(𝑥, 𝑦) 

(2.53) 

𝛿𝐼(𝑥, 𝑦)

𝛿𝑦
≈ 𝐾𝑦 ∗ 𝐼(𝑥, 𝑦) 

(2.54) 

Any noise remaining in an image after reduction and filtering (Sections 2.6.1 and 2.6.2) may 

create issues with these results. The effects of the noise can be mitigated by smoothing the image 

using a Gaussian kernel shown in Equation (2.55), where 𝐺(𝑥, 𝑦, 𝜎) comes from Equation (2.47). 

𝐼𝑠𝑚𝑜𝑜𝑡ℎ = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) (2.55) 

The Hough Transform can also be used to find streaks in an image by using parametric 

representations of line segments to locate the line segments. The Hough Transform uses 

thresholding parameters, such as streak length, to reduce the number of points in the image and 

create candidate segments from this reduced list. Adjusting these parameters will affect how many 

segments are detected [10, pp. 58-66]. 
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2.9 Cost Reduction 

A limiting factor to the number of images that can be taken during a satellite pass is the 

computation time required for an image to be processed and the states to be propagated. Therefore, 

effort should be put into attempting to reduce the computational complexity of any algorithm used 

to reduce the amount of time that elapses between images. 

2.9.1 Aitken’s and Neville’s Algorithm For Interpolation 

One method that can be used for interpolating points is called Aitken’s and Neville’s 

Algorithm. The algorithm, shown in Equation (2.56) uses a lower triangular matrix and forward 

elimination to create a polynomial that describes the series of points that are given, which is shown 

in Equation (2.57). 

[
 
 
 
 
1 0 0
1 𝑥1 − 𝑥0 0
1 𝑥2 − 𝑥0 (𝑥2 − 𝑥1)(𝑥1 − 𝑥0)

⋯ 0
⋯ 0
⋯ 0

⋮ ⋮ ⋮
1 𝑥𝑛 − 𝑥0 (𝑥𝑛 − 𝑥1)(𝑥1 − 𝑥0)

⋱ ⋮
⋯ 0]

 
 
 
 

[
 
 
 
 
𝑎0

𝑎1
𝑎2

⋮
𝑎𝑛]

 
 
 
 

=

[
 
 
 
 
𝑦0

𝑦1
𝑦2

⋮
𝑦𝑛]

 
 
 
 

 

(2.56) 

𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥
𝑛−1 + ⋯+ 𝑎1𝑥 + 𝑎0 = 𝑦 (2.57) 

The constants, denoted as 𝑎𝑖, are solved for by multiplying the vector of constants by the 

matrix, where each 𝑥𝑖 has a corresponding solution 𝑦𝑖 and setting each of those results equal to the 

corresponding row in the vector of solutions. The constants can then be solved for in the order they 

are presented in the vector [12]. 

2.9.2 Singular Value Decomposition 

Singular value decomposition (SVD) is a linear algebra technique that involves breaking down 

a matrix into 3 matrices that, when multiplied together, equal the original matrix. This is shown in 

Equation (2.58), where A is an mxn matrix, U is an mxm orthogonal matrix whose columns are 

the eigenvectors of AAT, Σ is an mxn diagonal matrix of singular values, and V is an nxn orthogonal 
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matrix whose columns are the eigenvectors of ATA. For the scope of this research, it is assumed 

that A is in the real domain, which means U, Σ, and V will also be in the real domain. 

𝐴 = 𝑈𝛴𝑉𝑇 (2.58) 

The off-diagonal terms of Σ will all be 0. The diagonal terms are equal to the square root of the 

eigenvalues of ATA and are all positive. The order they are arranged in is decreasing magnitude 

so that the first value, the one in the top-left corner of the matrix, has the greatest value. The rank 

of A is equal to the number of nonzero elements in Σ. The terms on the diagonal of Σ are called the 

singular values of A. Since the singular values are arranged based on decreasing magnitude, Σ can 

be arranged as shown in Equation (2.59), where Σ1 is a matrix of the nonzero singular values, 

arranged in descending order. 

𝛴 = [
𝛴1 0
0 0

] (2.59) 

This leads to arranging U and V as shown in Equations (2.61) and (2.62). Here, U1 and V1 are 

comprised of the eigenvectors that correspond to the nonzero eigenvalues of AAT and ATA 

respectively. 

𝑈 = [𝑈1|𝑈2] (2.60) 

𝑉 = [𝑉1|𝑉2] (2.62) 

This presents an opportunity to create a compact version of A using Equation (2.62). The 

columns of U1 and V1 then form an orthonormal basis for the row space of A and AT respectively. 

U2 and V2, on the other hand, form and orthonormal basis for the null space of AT and A 

respectively [13]. 

𝐴 = 𝑈1𝛴1𝑉1 (2.62) 

An application of SVD is in corner or edge detection. This is done by taking a target pixel and 

then forming a matrix out of it and the 8 pixels immediately surrounding it. The SVD of this matrix 
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is taken and then replace the original pixels with the maximum singular value and the gradient 

taken using a series of 8 convolution matrices to get a gradient set. This gradient set is compared 

to a threshold and, if the value for the pixel exceeds this threshold, it is a corner. If it does not 

exceed this threshold, it is not a corner [14]. 

SVD can also be used to eliminate noise in an image. This is because, after decomposing the 

image, noise is typically associated with the smaller singular values. Discarding these will result 

in a compressed matrix, as shown above [15]. In terms of its potential application here, using SVD 

for image processing is a topic for future research. 

2.10 Hypothesis 

The belief is that a Kalman Filter, when combined with a linear state estimator, will be able to 

project the path of a satellite in the RA-DEC coordinate frame while correcting error between 

projection and measurement. 
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3 Methodology 

Now that the necessary mathematical background has been explored, these tools can now be 

combined to create a novel approach to the problem of automating the AIOD process. First the 

end-to-end process will be discussed in detail, which will include pointing out which parts are 

interchangeable so as to meet the adaptability goal of this research. After this, the software that is 

utilized in this research and the hardware setup used for acquiring the images are also discussed. 

3.1 Procedure 

This process will follow a format of first setting up the matrices that will remain constant 

throughout as well as proving that the designed matrices for A and C will allow the chosen methods 

to be used. This is followed by the image processing and satellite recognition techniques that were 

used in this research. These methods were used as a continuation of the research done by Zuehlke 

[10]. Finally, an explanation of how the Kalman Filter is provided. It is important to remember 

that the focus of this research is the Kalman Filter. Its process is designed to only need initial 

conditions. The method used to get these initial conditions is up to the user provided their chosen 

method elicits the required material. There are also several aspects of the Kalman Filter that can 

be changed to suit a different setup than the one described here. 

3.1.1 Matrix Setup 

When designing the A, B, C, and D matrices, the telescope system itself must first be accounted 

for since it can have major implications on how those matrices are constructed. The system used 

here, as explained in Section (3.1.3), handles the control effort. This system only requires inputs 

for right ascension and declination and will proceed to those coordinates itself. This affects the A 

and B matrices because the states for the telescope itself do not need to be factored into the 

equations of motion. Therefore, only the satellite’s dynamics need to be considered here. The A 

matrix used here is shown in Equation (3.1). The reason this A matrix will be used is because, as 
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shown in Figure (3.1), the RA and DEC values for a satellite in a higher orbit will generally follow 

the equation of a line. Therefore, the velocity can be considered roughly constant for both RA and 

DEC. This is shown in Figures (3.1) and (3.2) which show the RA and DEC for 6 satellites that 

are in geostationary (GEO) orbit. The source of the data is explained in Section 3.4. The B matrix 

is a zero matrix because, since the control inputs are handled by the telescope itself, there is no 

need to factor any control effort into these state equations. 

𝐴 = [

0 1
0 0

0 0
0 0

0 0
0 0

0 1
0 0

] 

(3.1) 

 

Figure 3.1 The RA over time for 6 GEO satellites. 

 

Figure 3.2 The DEC over time for 6 GEO satellites. 
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The C matrix is shown in Equation (3.2). The telescope system used here has the ability to 

measure the right ascension and declination angles as well as their velocities. However, only the 

angles are needed because the goal of the estimator is to predict the location of the satellite in the 

right ascension and declination coordinate system. The D matrix is also a zero matrix since there 

is no need to measure the control effort. 

𝐶 = [
1 0 0 0
0 0 1 0

] (3.2) 

To determine if the system is fully observable, Equation (2.12) was used to get the 

observability matrix shown in Equation (3.3). The rank for this matrix is 4 which means it is fully 

observable and the eigenvalues for the filtered system can be arbitrarily placed. In other words, it 

is at least theoretically possible to create a state estimator using a Kalman Filter. 

𝑃𝑜 =

[
 
 
 
 
 
 
 
1 0
0 0

0 0
1 0

0 1
0
0
0
0
0

0
0
0
0
0

0 0
0
0
0
0
0

1
0
0
0
0]
 
 
 
 
 
 
 

 

(3.3) 

The next step is to determine the Kalman Gain. To use this method, �̂� and �̂� must be 

determined. These are shown in Equations (3.4) and (3.5) as functions of the reported measurement 

noise, which is explained in more detail in Section 3.3. �̂� is structured as a 2x2 matrix with the 

diagonal terms being functions of the measurement noise as reported by the telescope system’s 

instruction manual. Although there is no information in the manual for process noise, a reasonable 

�̂� was created using the noise in this scenario. G is assumed to be a 4x4 identity matrix for mapping 

�̂� into the system. These layouts for G, �̂�, and �̂� were chosen because the results produced with 

the matrices showed sufficiently small error while showing an acceptable ability to correct itself 

after measurements were factored in after each time step. 
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�̂� =  

[
 
 
 
 
𝑛𝑜𝑖𝑠𝑒

10
0

0 𝑛𝑜𝑖𝑠𝑒2

0         0
0         0

0          0
0          0

𝑛𝑜𝑖𝑠𝑒 0
0 𝑛𝑜𝑖𝑠𝑒2]

 
 
 
 

 

(3.4) 

�̂� = [𝑛𝑜𝑖𝑠𝑒2 0
0 𝑛𝑜𝑖𝑠𝑒2] 

(3.5) 

3.1.2 Image processing and Initial Satellite Recognition 

For the image processing, there is only a need for 2 methods to filter noise out of the image. 

The Gaussian smoothing filter and the threshold filter, both described in Section 2.8.2, are used to 

filter the noise, and create a smoothed image. The image is put through these 2 filters before 

attempting to locate centroids and streaks to reduce the likelihood of noise getting labelled as a 

centroid or streak. The method utilized to find the centroids is the intensity-weighted method 

described in Section 2.8.3. 

The initial method used in this research for locating a satellite in an image was to use the 

smoothed image, which would then be run through the Hough Transformation, described in 

Section 2.8.3, to get a set of candidate lines. These were then tested to ensure they did not cross 

within or near their endpoints. The first line is compared to the others by taking the equation of a 

line figuring out where it intersects with the others, one at a time. If these lines intersect between 

the endpoints of both lines, or reasonably close to the endpoints, then both lines are eliminated. 

The reason for this process is that, if the lines intersect close together, it can mean one of the lines, 

or potentially both, may be a result of noise or a star. After eliminating these lines, a line is chosen 

from the remaining lines for tracking over a short period. The criteria for selection can be altered 

based on certain parameters, the main 2 parameters being camera exposure time and the satellite’s 

altitude relative to the observer. The first criteria is important because a shorter exposure time 

means the satellite will make a shorter streak and vice versa. The second criteria is important 
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because an object orbiting at a higher altitude will typically make a shorter streak than at a lower 

altitude, all other factors being equal. 

Once the line is selected, the endpoints are then moved using the corners that were detected 

using the Harris Corner Detection method described in Section 2.8.3. This is accomplished by 

finding the distance between one endpoint and all of the corners and finding the minimum value. 

If this value is below a set threshold, that corner becomes the new endpoint. This process is 

repeated until both endpoints have moved to a position such that there are no more corners that are 

below the threshold. To prevent the endpoints from potentially moving endlessly between corners, 

another criteria is added. This new criteria is that the endpoint at the “top” of the line, relative to 

the image, cannot move to a point that is below it. Likewise, the endpoint at the bottom of the line 

cannot move to a point above it. Once this process is finished, the new endpoints form a new line 

to be used for propagating the satellite forward for a short period of time. A comparison between 

this method and the final method is described in Section 4.1. 

The final method for initially detecting a satellite starts similar to the process described above 

with one change. Instead of using the smoothed image in the Hough Transformation, a binarized 

version of the smoothed image is used instead. These results are shown in further detail in Section 

4.1. Figure (3.3) shows an example of the output of using the Hough Transformation this way, 

with the image on the left showing the entire image and the image on the right being a close-up of 

the satellite showing that the lines are all concentrated on the streak of the satellite. Unlike the 

above method, however, a different criteria was used for deciding which lines would not be used. 

Instead of determining which lines crossed, the angle they make with the vertical axis was used. 

If the angle was above a set threshold, the line was removed from consideration. This eliminated 

lines formed when stars were close to the satellite streak. After this, the remaining lines would 
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then be averaged to create a single line. This new line would then be propagated forward a small 

period in time to get the next position of the satellite. 

 

Figure 3.3 (Left) Image after the Hough Transform. (Right) Close-up of satellite. 

The first step in propagating the satellite forward is to compute the change along the x-axis. 

This is done using Equation (3.6), where 𝑥𝑎𝑣𝑔 is the x-coordinates for the averaged line and 𝑥𝑝𝑟𝑜𝑗 

is the projected x-coordinates. In the second term of the right hand side, 𝑑𝑥 is the difference in the 

x-coordinates of the averaged line and 𝑐 is a constant that is determined by how far forward the 

satellite is propagated as a ratio of the change in time from the beginning of the first image to the 

beginning of the second image, or the end of the first to the end of the second, compared to the 

exposure time itself. If, for example, the exposure is 10 seconds and there is a gap of 10 seconds 

between images, the constant will be 2 since the satellite needs to be propagated 20 seconds into 

the future with an exposure time of 10 seconds. However, if the exposure time was 5 seconds and 

the gap between images was 15 seconds, the propagation time would still be 20 seconds, but the 

constant would instead be 4. For the first image, there is a small change to be made to how the 

constant is used. This change is to set the constant as +𝑐 for one propagation and −𝑐 for another 

propagation. It is necessary to do this twice since it is not yet necessarily known which direction 

the satellite is moving. For future images, this only needs to be done once in the direction the 
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satellite is moving. Equation (3.7) shows the equation to propagate forward, where 𝑚 is the slope 

of the averaged line and 𝑏 is the y-intercept. Figure (3.4) shows this line and Figure (3.5) shows 

the projections. 

𝑥𝑝𝑟𝑜𝑗 = 𝑥𝑎𝑣𝑔 + 𝑐 ∗ 𝑑𝑥 (3.6) 

𝑦𝑝𝑟𝑜𝑗 = 𝑚 ∗ 𝑥𝑝𝑟𝑜𝑗 + 𝑏 (3.7) 

 

Figure 3.4 The resultant line after taking the mean of all Hough lines. 

 

Figure 3.5 The propagation lines that result from the first image. 

In subsequent images, the satellite needs to be found again. One method is to use the Hough 

Transformation again to get candidate lines. Also, same as before, lines are eliminated that do not 

meet a chosen criteria, which in this case will be if the angle made with the vertical axis exceeds 
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a set threshold. Typically, if there is only one streak in the image, this will be enough to find the 

satellite again, though more criterion can be added as needed. In the case of one satellite in the 

second image, the next step is to find which projected line the streak is closest to. 

One method is to find which projected line’s endpoints are the closest to the endpoints of the 

line derived from the Hough Transformation. When multiple streaks lines in different spots of the 

image are present, a method that can be used is to find which of the Hough lines the projected 

endpoints are closest to and then only take the average of the lines in the immediate vicinity. If 

observing objects at a higher orbit such as GEO, only 2 images and the 4x4 system are needed. It 

is important to note here that the above methods for tracking the satellite across these images 

requires that the telescope and camera do not move. This is because the coordinate system used is 

relative to the image and will not translate between images if the camera moves. However, a 

transformation matrix such as the one in Equation (3.8) can be used to convert the endpoints from 

x-y to RA-DEC by simply having Astrometry determine the RA and DEC positions of any objects, 

such as the satellite and stars, and then taking any 2 of these centroids with their RA-DEC and x-

y coordinates to satisfy Equations (3.9) and (3.10), which will give the constants needed to 

transform coordinate systems. Doing this on the first image allows the user to either convert back 

to x-y on the second image or to convert candidate endpoints to RA-DEC. The conversion back to 

x-y can be done by multiplying the left side of Equation (3.8) by the inverse of the 2x2 matrix 

(provided it is invertible) or by simply switching the 2 vectors so that the x-y coordinates are on 

the left side, remembering this will also switch the meaning of the variables. 

[
𝛼
𝛿
] = [

𝜑 𝛹
𝜁 𝛺

] [
𝑥
𝑦] 

(3.8) 

𝛼 =  𝜑𝑥 + 𝛹𝑦 (3.9) 



 

 

26 

 

𝛿 =  𝜁𝑥 + 𝛺𝑦 (3.10) 

3.1.3 The Kalman Filter 

To generate the initial conditions, Aitken’s and Neville’s Algorithm, shown in Equation (2.56), 

is used to create a second order polynomial for both the ascension and declination angles, shown 

in Equations (3.11) and (3.12) respectively where 𝛼 is the ascension angle and 𝛿 is the declination 

angle. These polynomials can be used to give the initial velocities and accelerations for the 

estimator by using the first and second derivatives. The initial velocities can be solved for by taking 

the derivatives of Equations (3.11) and (3.12). An example of these derivatives for the ascension 

is shown in Equation (3.13) where �̇�0 denotes the initial condition for velocity that will be used in 

the estimator. The initial angles will come from the second set of coordinates used in solving for 

the polynomials. This process is used twice, once for RA and once for DEC, to yield a total of 4 

initial conditions. 

𝑎1∆𝑡 + 𝑎0 = 𝛼 (3.11) 

𝑏1∆𝑡 + 𝑏0 = 𝛿 (3.12) 

𝑎1 = �̇�0 (3.13) 

The next step is to propagate the states forward in time to get an estimate of where the satellite 

will be. The method used for estimation is the discrete-time Kalman Filter discussed in Section 

2.6. This process starts with the last image used for acquiring the initial conditions and first 

involves assuming the initial updated covariance, 𝑃𝑘
+, which here is assumed to be a 4x4 diagonal 

matrix with each diagonal term being set to 0.001. At this stage, the updated state vector, 𝑥𝑘
+ is set 

to the initial conditions. These are then propagated forward by a set ∆𝑡. This means first solving 

for the matrix F using Equation (2.39). As long as ∆𝑡 remains constant, the same F may be used 

across all iterations. If ∆𝑡 changes, then F must be solved for again. 
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The next step is to solve for 𝑥𝑘+1
−  using Equation (2.42) and then to solve for 𝑃𝑘+1

−  using 

Equation (2.43) For subsequent images, as soon as the measurement is ready, the process outlined 

in Figure (3.6) is used until the end of the test. This process starts by computing the Kalman Gain 

from Equation (2.44), followed by updating the state vector with Equation (2.45) and then 

computing the updated covariance with Equation (2.46). These are then used to propagate to the 

next iteration by solving for 𝑥𝑘
− and 𝑃𝑘

−. 

 

Figure 3.6 The discrete-time Kalman Filter. 

3.2 Software 

The primary software used in this research is Matrix Laboratory (MATLAB), made by 

MathWorks. All of the image processing, satellite recognition, and state estimation was done in 

this program with the exception of attaining RA and DEC values for images, which is explained 

below. 

Astrometry is a software program that uses plate-solving as a method to determine what section 

of the sky an image shows based on star positions in the image compared to a database [16]. 

Astrometry is a Linux program, so it does require an interface program to be able to work with 

other operating systems. To interface with Windows, as was the case here, a Cyg-win must be used 
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to get the Unix interface needed to be able to utilize Astrometry’s functions. The particular 

astrometry configuration used here is provided by ANSVR [17]. 

For acquiring the images, a software program called TheSkyX Professional Edition was used. 

This is the software program that interfaces with the telescope mount. The software is capable to 

driving the telescope mount to coordinates set by a user as well as interfacing with the camera to 

control when it takes a picture and how long the exposure time is [18]. 

3.3 Hardware 

The telescope mount that is used here is the Paramount MyT. As stated above, this telescope 

mount is capable of handling its own dynamics and the control effort. This means that only 

coordinates need to be input for the mount to operate. The mount was also used for determining a 

value for the variable 𝑛𝑜𝑖𝑠𝑒 used in Equations (3.4) and (3.5). This value is assumed to be 4 

arcseconds, 
4

3600
 degrees of a circle. This assumption comes from the image system, where the 

scale is approximately 4 arcseconds per pixel [18]. 

The camera used for this research is the ASI1600MM Pro. This model is a monochrome 

camera, meaning its images will be in grayscale. This camera comes with a built-in cooling system 

capable of significantly reducing the temperature of the sensor depending on the current. For 

instance, at 0.5A, the camera sensor can be cooled to just below 32oF from an ambient temperature 

of 84oF. This means that there will be a reduction in the thermal noise in the image. The camera 

also has certain settings that are adjustable and help with improving the signal to noise ratio of 

images. It is recommended to set the camera gain lower for longer exposure pictures to have a 

higher dynamic range. For shorter exposure times, it is recommended to set this gain higher to 

reduce the read noise. Read noise includes circuit noise, analog to digital converter (ADC) 

quantization error noise, and pixel diode noise. Another adjustable parameter is the quantum 
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efficiency (QE), which is the portion of the photons that are turned into electric signals in the 

camera [21]. This creates the image intensity. It is recommended that this is set to 60%. These two 

settings, when adjusted correctly for the images being collected, along with the cooling, account 

for much of what the frames mentioned in Section 2.8.1 attempt to account for. This is because the 

gain helps with electronic read noise, like the bias frame. The cooling system helps with the 

thermal noise, like the dark frame. Lastly, the QE along with the gain help to maximize the 

dynamic range of the camera for the image, like the light frame. This is the reason the frames were 

left out of the image processing portion of the process mentioned in Section 3.1 [20]. 

The telescope used here is a Rowe Ackermann Schmidt Astrograph (RASA) telescope with an 

11-inch lens. This telescope was a good candidate for this research because it is designed for 

capturing images at night, especially for wide, flat-field imaging.[21] 

3.4 Images and Testing Data 

The images that were used for testing the Hough Transformation, as explained in Section 4.1, 

constitute images that were acquired for the purpose of testing the Kalman Filter in an end-to-end 

test and other images that were acquired for testing purposes. To get these images, the hardware 

setup from Section 3.3 is used and TheSkyX Professional Edition is used for software. 

The data that is used in Section 4.2 for the purposes of testing a continuous-time system and 

for initial testing of the discrete-time system was acquired as part of research related to using a 

template matching method for tracking a satellite constellation. In this constellation, there are 6 

satellites. However, the data for only 1 was used for testing the Kalman Filter across various values 

of ∆𝑡. It is important to note that, occasionally, the template matching system would incorrectly 

label some of the satellites as different satellites. This is useful for testing the Kalman Filter 

because it essentially provides a “disturbance” that could occur from an image processing 

technique labelling a star as the target satellite. Therefore, this provides an excellent opportunity 
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to see how the Kalman Filter reacts to such a disturbance and whether it can regain the correct 

trajectory [22]. 

The images that are used for the end-to-end testing done in Section 4.3 were acquired using 

the hardware setup in Section 3.3 and TheSkyX Professional Edition software mentioned in 

Section 3.2. These images were captured across a 4 minute and 39 second timeframe. These images 

were captured in such a way that essentially mimicked the process in Section 3.1. This was done 

to simulate how the process would work in its entirety when implemented on a real system. 

Another advantage of acquiring images this way is that it allows for testing with real-world 

measurement and process noise. This is arguably more valuable than simulated noise since it 

allows the Kalman Filter to be run the way it is designed, which is for implementation.  
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4 Results 

A variety of tests were conducted. The first test listed will pertain to image processing and the 

Hough Transform to show the results of changing the image that is used in the Hough Transform. 

The second set uses data that was acquired at a prior date to provide the ability to test the Kalman 

Filter in different scenarios to ensure it had the ability to follow the trajectory it is supposed to 

while adjusting itself to account for error, such as when another object is mistaken for the target 

satellite. The last set of tests utilized the full end-to-end process described in Section 3.1 to 

determine how it would handle the entire process of acquiring the data itself and then propagating. 

4.1 Image Testing 

The final method for recognizing satellites involved using a binarized version of an image after 

being smoothed with the Gaussian smoothing filter, known in this section as Process 2. The prior 

method involved using the smoothed image, known here as Process 1. Both were meant to be run 

through the Hough Transform, and Process 1 was also run through the Harris corner detection 

method to find corners in the image. These methods were tested on multiple images of varying 

exposures to see which would give the best chance at successfully discerning a satellite from the 

objects and noise in an image. The first set, shown in Figure 4.1, show the same image run through 

each method, with Process 1 on the left and Process 2 shown on the right. Both methods output 8 

lines. However, Figure 4.2 shows a close-up of one of the lines from Process 1 between 3 stars, 

whereas Process 2 did not determine a line to be here. All 8 lines for Process 2 are concentrated 

on the satellite streak in the middle of the image. The 7 remaining lines for Process 1 are also 

concentrated on the streak. 
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Figure 4.1 (Left) Result of Process 1. (Right) Result of Process 2.  

 

Figure 4.2 Close-up of one line from Process 1 that falls along 3 apparent stars. 

Figure 4.3 shows the output of a particularly noisy image for each process. Process 1 

determined that there were 194 lines, none of which were the satellite streak in the image. While 

Process 2 also did not identify the satellite streak with a line, it did only identify 105 lines. The 

importance of this is that it shows the Hough Transform is less sensitive to any remaining noise in 

an image when using the binarized image instead of the smoothed image. This decreases the 

chances of somehow factoring in a line that is not part of the satellite into any method used for 

recognizing the satellite. 



 

 

33 

 

  

Figure 4.3 (Left) Process 1 on poorly filtered image. (Right) Process 2 on same image. 

It is important to note that the reason these images retained as much noise as they did is because 

the threshold parameter for the noise filtering was set too low, meaning there was a significant 

amount of noise that made it through the image processing phase. When the thresholding parameter 

is raised from 2.5 to 4.5 for both processes, they both output 4 lines. The results are shown in 

Figure 4.4, where all 4 lines for Process 2 fall on the satellite streak whereas one of the lines for 

Process 1 falls on objects that can be labelled as either lines or noise. 

   

Figure 4.4 (Left) Lines from Process 1 after threshold increase. (Right) Lines from Process 2 

for the same image. 
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4.2 Reliability Testing 

To test whether it is possible to use a Kalman Filter in this scenario, a test was run using a 

continuous-time Kalman Filter that was designed using MATLAB’s lqr function as described in 

Section 2.5. The resulting Kalman Gain is shown in Equation (4.1) and the corresponding 

eigenvalues for the estimator are shown in Equation (4.2). This method was tested using 

information on a satellite that was gathered prior, as explained in Section 3.4. Figures (4.5) and 

(4.6) shows the RA and DEC plots for this test. 

𝐿 = [

9.59 0
1
0
0

0
30.03

1

] 

(4.1) 

det(𝐴 − 𝐿𝐶) = [

−0.03
−0.11
−9.49
−30.00

] 

(4.2) 

 

Figure 4.5 RA for the continuous-time test. 

The error for this test, shown in Figure 4.7, shows, in more detail, that the continuous-time 

system was able to follow the measurements it was being fed since the error would change when 

the input was changed, but would return to 0. Although it may be difficult to see, this test shows 

that the filter was able to follow the path created by the measurements. Since this is a continuous-
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time test, the space between measurements was interpolated by MATLAB so that a continuous-

time system could be used. 

 

Figure 4.6 DEC for the continuous-time test. 

 

Figure 4.7 Error for the continuous-time test. 

After the continuous-time system was tested, a discrete-time Kalman Filter was tested using 

the same satellite information as used in the first test. Initially, a test was run with a typical ∆𝑡 of 

approximately 5.5 seconds to determine if the discrete-time Kalman Filter could keep the error 

small. However, the time between measurements would fluctuate occasionally. Figures 4.8 and 

4.9 show the results of using this filter and Figure 4.10 shows the errors over time across the test 

run. The propagated and updated covariance plots are shown in Figure 4.11. The updated 
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covariance plot shows that the Kalman Filter was able to successfully update the state vector to 

the measurements that were being given to it. The propagated covariance, on the other hand, has 

some spikes. This is expected since the spikes correspond to the times where measurement time 

increased significantly.  

 

Figure 4.8 RA for typical ∆𝑡 of 5.5 seconds. 

 

Figure 4.9 DEC for typical ∆𝑡 of 5.5 seconds. 
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Figure 4.10 Propagation error for typical ∆𝑡 of 5.5 seconds. 

 

Figure 4.11 Covariance for propagation step for typical ∆𝑡 of 5.5 seconds. 

 

Figure 4.12 Covariance for update step for typical ∆𝑡 of 5.5 seconds. 
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After testing with a small change in time between readings, another test was conducted with 

the same data, this time skipping over readings to only use every tenth measurement, for a typical 

measurement gap of approximately 1 minute. The results of this test are shown in Figures 4.13 and 

4.14 with the error being shown in Figure 4.15. The covariance for the propagated step is in Figure 

4.16 and the updated step shown in Figure 4.17. The updated covariance again shows the filter 

was able to correct the state vector based on measurements while the propagated covariance 

showed a similar behavior as the test before, with slightly higher magnitudes. 

 

Figure 4.13 RA for a typical ∆𝑡 of 1 minute. 

 

Figure 4.14 DEC for a typical ∆𝑡 of 1 minute. 
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Figure 4.15 Propagation error for a typical ∆𝑡 of 1 minute. 

 

Figure 4.16 Covariance for propagation step for typical ∆𝑡 of 1 minute. 

 

Figure 4.17 Covariance for update step for typical ∆𝑡 of 1 minute. 
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4.3 Hypothesis Testing 

After these tests were successfully performed, a full test was performed combining both the 

image processing and the Kalman Filter. The first run was performed on a set of 20 images that 

had a 10 second exposure time and were taken across a 4 minute and 39 second interval. 

Figure 4.18 shows the measured and predicted RA values for this test on the left while Figure 

4.19 shows the measured and predicted DEC values. These figures show that the Kalman Filter 

was able to successfully propagate the states forward and then update itself after each reading. 

Figure 4.20 shows the error between the projections and measurements. 

 

Figure 4.18 End-to-end RA for typical ∆𝑡 of 10 seconds. 

 

Figure 4.19 End-to-end DEC for typical ∆𝑡 of 10 seconds. 



 

 

41 

 

The typical error for RA in the first 10 images is on the order of 10-4 with the exception of the 

very beginning, where the error is approximately -0.035 degrees. However, this error is smaller 

than the size of the field of view, which extends approximately 0.62 degrees from the center in the 

RA direction and 0.82 degrees from the center in the DEC direction. Figure 4.21 shows the 

propagated covariance, 𝑃𝑘
−, and Figure 4.22 the updated covariance, 𝑃𝑘

+. The updated covariance 

plot shows that the Kalman Filter was able to reliably update the current state after a measurement 

was included in the process, as the order of magnitude was 10-6. Once again, the updated 

covariance plot shows that the filter successfully updated the state vector for the next propagation. 

 

Figure 4.20 End-to-end error for typical ∆𝑡 of 10 seconds. 

 

Figure 4.21 End-to-end covariance for the propagation step for typical ∆𝑡 of 10 seconds. 
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Figure 4.22 End-to-end covariance for the propagation step for typical ∆𝑡 of 10 seconds. 

Figures 4.23 and 4.24 show the results for the last hypothesis test for the Kalman Filter that 

was conducted. This used the same image set as above, except readings were skipped over. The 

initial satellite recognition used the same 2 first images as the above test and the same process. 

This time, the Kalman Filter was run with changing values for ∆𝑡. These values were, in seconds, 

40, 40, 76, 40, and 50. The error is shown in Figure 4.25, where the highest magnitude for the error 

is approximately 0.15 degrees for RA, which falls after the first propagation. As stated above, the 

prediction needs to be within 0.62 degrees of the center of the image to at least be in the image for 

RA. Figure 4.26 show the propagated and updated covariances for this test. While the errors may 

have been larger than before, the updated covariance plot shows that the Kalman Filter was still 

able to correct the current state each time a measurement was made. The propagated covariance, 

however, rapidly settled with no spikes. This appears to show that, when looking at Figure 4.26 in 

combination with the earlier propagated covariance plots, there appears to be a trend where the 

spikes in the propagated covariance are more likely to occur with a sharp increase in ∆𝑡, with a 

larger increase in the magnitude correlating to a larger increase in ∆𝑡. 
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Figure 4.23 End-to-end RA for varying ∆𝑡 of 40, 50, or 76 seconds. 

 

Figure 4.24 End-to-end DEC for varying ∆𝑡 of 40, 50, or 76 seconds.  

 

Figure 4.25 End-to-end error for varying ∆𝑡 of 40, 50, or 76 seconds. 
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Figure 4.26 End-to-end covariance for propagation step for varying ∆𝑡 of 40, 50, or 76 

seconds. 

 

Figure 4.27 End-to-end covariance for the update step with varying ∆𝑡 of 40, 50, or 76 

seconds. 

4.4 Image Testing 

The last test run on the Kalman Filter was an implementation test using the software and 

hardware setup described in Sections 3.2 and 3.3. However, this test differs from the previous test 

because, instead of the image processing and satellite recognition technique described in Section 

3.1.2, a neural network was used (see Ref [23]). The method used for the Kalman Filter, including 

acquiring the initial conditions, remained the same. Figures 4.28 and 4.29 show the results of this 

test. 
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Figure 4.28 Right Ascension over time for the implementation test. 

 

Figure 4.29 The declination over time for the implementation test. 

 Figure 4.30 shows the error across this test. Even though the magnitude of the error is 

consistently larger than earlier tests, the error did stay within the bounds set earlier of 0.62 degrees 

for RA and 0.82 degrees for DEC, with the largest error magnitude being less than 0.3 degrees for 

RA. The propagated covariance values stayed higher than the previous test for RA and DEC but 

stayed relatively close to the prior values for the updated covariance. This shows that the 

propagation has more expected deviation compared to prior tests, but the update step is still able 

to correct for the error. 
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Figure 4.30 The error over time for the implementation test. 

 

Figure 4.31 Propagated covariance for the implementation test. 

 

Figure 4.32 Updated covariance for the implementation test. 
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5 Discussions, Conclusions, and Recommendations 

5.1 Discussion 

The tests discussed in Section 4.1 demonstrated that switching the image that was used for the 

Hough Transform from the smoothed image to a binarized version of the smoothed image resulted 

in an improved ability to recognize the streaks that the satellites were making. The second test 

showed that if the threshold gain is set too low, namely for pictures with a short exposure time, 

that the binarized image resulted in fewer erroneous streaks connecting spots of noise and stars. In 

the other tests that were run, where the threshold gain was set sufficiently high for each particular 

image, the binarized image proved less likely to have excess streaks covering objects that were not 

the streak that the satellite made. 

The tests done in Section 4.2 proved that the state estimator worked under a variety of 

conditions. The first test, using a continuous-time system, proved that using a Kalman Filter was 

possible under ideal circumstances. However, since continuous-time readings would not be 

possible to acquire under the current setup, a discrete-time system was devised and tested on the 

same satellite used for the continuous-time test, except the measurements were only accounted for 

as they had actually happened. Typically, this was approximately every 5.5 seconds, but some 

measurements had larger gaps. The Kalman Filter was able to successfully project the path that 

the satellite followed. The only times that it deviated from its course were times when the readings 

would be for a different satellite. However, despite the large error that would result from this, the 

filter would then correct itself once the readings were back to the correct satellite. The last test in 

this section involved skipping measurements so as to create larger values of ∆𝑡. The typical time 

between readings was approximately 55 seconds to 1 minute. This test showed that, even with 

larger values of ∆𝑡, the filter was still able to create reliable predictions as long as the 

measurements were for the correct satellite. Of note for the last 2 tests is that the updated 
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covariance plots both show that the covariance remained low. This shows that the standard 

deviation is small since the standard deviation for each state is equal to the square root of the 

corresponding diagonal. This shows that the Kalman Filter was able to successfully update the 

current state to the measured values. That is a desired behavior for the filter since the 

measurements, with the setup utilized, are considered to be more reliable than the model. 

Section 4.3 contains the end-to-end tests. The first test shows that the system was able to 

successfully propagate the satellite’s position across the sky while keeping the error small enough 

to keep it well within the image. The determination of whether the Kalman Filter succeeded or 

failed comes from the error plot in Figure (4.25) and the updated covariance plot in Figure (4.27). 

The error plot shows that the predictions would always keep the satellite both within the image 

and close to the center. The updated covariance plot shows that, after a measurement is made, the 

system is able to correct itself so that the next propagation begins from the correct location. 

Section 4.4 shows the final tests, when the Kalman Filter was implemented on a telescope to 

track a satellite in real time. The error plot for this test, Figure (4.30), shows that the filter was able 

to keep the satellite within the camera’s field of view for the duration of the test. The updated 

covariance in Figure (4.32) then shows that, despite the error, the system was still able to update 

itself correctly. These results show that the filter successfully propagated the satellite’s position 

and corrected any resultant error. This test also shows that the filter will work with other image 

processing techniques, provided the necessary coordinates can be obtained. 

5.2 Future Work 

Future work for this research is mainly comprised of 3 paths, changing the image processing 

and satellite recognition techniques used for other techniques and making the necessary changes 

and testing so that the estimator will work on lower orbiting bodies. Another possible path for 

future work would be to add to the entire process to account for the possibility of multiple satellites 
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in the same image. Fortunately, the Kalman Filter is designed to be modular, with the full, end-to-

end process having several methods, and parts of methods, that are interchangeable. 

5.2.1 Image Processing and Satellite Recognition 

As stated earlier, the Kalman Filter was designed so that it would only need the initial 

conditions and to be fed measurements after each image. Therefore, the image processing and 

satellite recognition methods can be changed. One possible change could include the 

implementation of SVD to reduce the noise in an image. This can be attempted along with the 

Gaussian filter that was used or as a replacement. Another possibility would be to perform corner 

detection or edge detection using SVD as a way to help generate projection lines. 

For the satellite recognition portion, work can be done to help the system with handling 

multiple satellites in the same image. In its current form, it is designed to handle one satellite streak 

in an image. This can be done by either using a process to pick one satellite and follow that or to 

attempt to center the prediction on the middle of a cluster, if there is good reason to believe all the 

satellites are moving in the same direction at roughly the same rate. Something similar to the 

original method that was used for satellite recognition in Section 3.1, using the longer streak after 

eliminating any streaks that do not meet set criteria, is one possibility for picking out one streak 

out of multiple candidates. 

5.2.2 Changes to the Dynamics 

Implementing a 6-state system would involve first making changes to the A and C matrices as 

shown in Equations (5.1) and (5.2). The main limitation of the 4-state system is that it can only be 

used for higher orbits, such as GEO. Lower orbits, such as those classified as LEO, will form a 

parabolic arc when plotting their RA and DEC locations. Therefore, an extra state can be added 

for both RA and DEC to account for the constant acceleration needed to get this arc. Since the A 

and C matrices are changed in order to account for these extra states, the observability matrix must 
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be recalculated using Equation (2.12). This result is shown in Equation (5.3) and has a rank of 6. 

Since the rank is equal to the number of states, this system is still observable. 

𝐴 =

[
 
 
 
 
 
0 1 0
0 0 1
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 1 0
0 0 1
0 0 0]

 
 
 
 
 

 

(5.1) 

𝐶 = [
1 0 0 0 0 0
0 0 0 1 0 0

] (5.2) 

𝑃𝑜 =

[
 
 
 
 
 
 
 
 
 
 
 
1
0
0
0
0

0
0
1
0
0

0
0
0
0
1

0
1
0
0
0

0
0
0
1
0

0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

1
0
0
0
0
0
0]
 
 
 
 
 
 
 
 
 
 
 

 

(5.3) 

Since the size of the A matrix has changed, �̂� will need to be changed as well. One possible 

example is shown in Equation (5.4). This matrix is essentially the same as Equation (3.4), but 

accounts for the process noise of the acceleration. Even though C has changed in size as well, �̂� 

does not need to be changed since there are still only 2 measurements being recorded. 

�̂� =

[
 
 
 
 
 
 
𝑛𝑜𝑖𝑠𝑒

10
0 0

0 𝑛𝑜𝑖𝑠𝑒2 0
0 0 𝑛𝑜𝑖𝑠𝑒2

0         0           0
0         0           0
0         0           0

0          0            0
0          0            0
0          0            0

𝑛𝑜𝑖𝑠𝑒 0 0
0 𝑛𝑜𝑖𝑠𝑒2 0
0 0 𝑛𝑜𝑖𝑠𝑒2]

 
 
 
 
 
 

 

(5.4) 

Since this system has 2 extra states, there is a need for 2 extra initial conditions. Aitken and 

Neville’s Algorithm can be used here to get all of the initial conditions. However, a third RA-DEC 

reading is required to be able to get enough data to use this algorithm. Equations (5.5) to (5.6) 
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show the second order polynomials needed for RA and DEC. Equations (5.7) and (5.8) show the 

derivatives needed to solve for velocity and acceleration. The constants can be solved for using 

Equations (2.56) and (2.57). 

𝑎2∆𝑡2 + 𝑎1∆𝑡 + 𝑎0 = 𝛼 (5.5) 

𝑏2∆𝑡2 + 𝑏1∆𝑡 + 𝑏0 = 𝛿 (5.6) 

2𝑎2∆𝑡 + 𝑎1 = �̇� (5.7) 

2𝑎2 = �̈� (5.7) 

Since objects in lower orbits are in the sky for a shorter period of time, it is imperative to begin 

using the estimator as early as possible. In some cases, getting 3 separate images to be able to 

begin using the estimator may be impractical. However, as discussed in Section (3.1), it is possible 

to switch between the x-y coordinates of the image to RA-DEC. Therefore, by converting the 

endpoints of the satellite to RA-DEC and using the centroid of the streak as a third point, it is 

possible to obtain all of the needed initial conditions to begin using the estimator. A longer streak 

will produce more reliable initial conditions for the velocities and accelerations.  

5.3 Conclusions 

The use of a Kalman Filter to estimate the position of a satellite as it travels through the sky 

can be considered successful since it proved capable of handling every test that was implemented. 

In addition, the filter also proved capable of working with different image processing techniques. 

Lastly, because the Kalman Filter works as a method for tracking objects across the sky, by way 

of estimating their position and correcting error, this will give amateur astronomers, or maybe 

someone conducting their own AIOD research, another tool to draw from for their studies. It is 

worth noting, however, that the filter is only going to be as reliable as the measurements, which 

are a product of the techniques used for image processing and satellite recognition. Fortunately for 

those that wish to use this method for their own endeavors, they will easily be able to utilize newer, 



 

 

52 

 

faster, algorithms as they present themselves as they create a version of what is presented here that 

best suits their own needs and the equipment they utilize. 
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