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ABSTRACT 

This thesis presents a Linearized Euler Equation (LEE) solver that was developed for OpenFOAM. 

OpenFOAM is an open-source Computational Fluid Dynamics (CFD) package that is widely used 

by industry and academia. The LEE’s are a set of equations used in Computational Aeroacoustics 

(CAA). They can solve the acoustic solution directly and quickly. The solver developed, named 

leeFoam, was tested against analytical solutions to verify accuracy and then was utilized to predict 

the acoustics of a heated supersonic rectangular jet. The rectangular jet (RJET) results were 

compared against experimental data. 

The results from this work show that OpenFOAM can be used as an effective platform to develop 

CAA specific solvers. The leeFoam solver successfully predicted acoustic solutions accurately and 

quickly. To aid in the production of accurate results several other tools were developed to go along 

with the leeFoam solver to enhance its capabilities. This included boundary dampening to prevent 

reflections and artificial viscosity to aid in stability. In all, this allowed the leeFoam solver to 

produce accurate CAA results allowing this code to be used by any professional looking to run the 

Linearized Euler Equations in their workflow.   
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1  Introduction 

From the beginning of the turbojet era in the 1940’s to the modern-day engineering marvel of 

today’s jet engines, jet noise research still remains a high priority in the aerospace sector. Jet noise 

first became a problem for communities surrounding airports as they were suddenly experiencing 

much louder and lower frequency noise compared to previous propeller driven aircraft [1]. Today, 

with increasing population density more people have migrated around airport vicinities and 

regulators have been tasked with pushing the industry towards a quitter future.  

The effects of jet noise and other forms of noise pollution have been well studied in the past 50 

years. Researchers such as Dutchen have shown that:  

“Noise pollution not only drives hearing loss, tinnitus, and hypersensitivity to sound, but 

can cause or exacerbate cardiovascular disease; type 2 diabetes; sleep disturbances; stress; 

mental health and cognition problems, including memory impairment and attention 

deficits; childhood learning delays; and low birth weight” [2]. 

These are good reasons for regulators to implement action and for the aerospace industry to work 

on solutions.  

The work presented in this thesis is meant to be a tool to assist the academic community and 

industry in formulating these aforementioned solutions. This tool is a computational code to solve 

noise generation and propagation utilizing the Linearized Euler Equations (LEE). Before we get 

into the details however, we must first understand the basics of jet noise and how it is produced. 

1.1 Jet Noise Sources   
Precise interpretation of the exact source or main contributing factor leading to jet noise still 

remains the holy grail for any jet noise researcher. The fact is, turbulent flows in and around jet 
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exhaust plumes are very complex. The current big picture understanding however, is that the noise 

source is within that jet plume turbulence [3]. 

Early versions of jet aircraft and modern-day military aircraft utilize low-bypass turbojet engines. 

This type of jet engine produces high jet exit velocities and high amounts of noise. The high jet 

velocity core mixes with the relatively low velocity surrounding atmosphere. This mixing region 

is where the noise is produced as complex turbulent structures are formed. Researchers have 

discovered most of the turbulence that contributes to the noise is concentrated within 2 potential 

core lengths of the jet and within this region exists a separation of scales [4]. See figure 1.1. Small 

scale structures are those smaller than the jet diameter while large scale structures are larger than 

the jet diamcheck1eter. The large-scale structures form the dominate noise source as they decay 

into smaller scale components through merging and cascading [4]. This breakdown of turbulent 

structures form pressure disturbances that propagate through the surrounding atmosphere as 

waves. 

 

Figure 1.1 Jet Noise Structures [4] 
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Noise produced from a jet can be visualized using Schillerian imagery. Figure 1.2 shows a snapshot 

of a jet exhaust taken with Schillerian imagery. Note the complex turbulent structures in the 

exhaust and the propagating waves traveling outward away from the jet.  

 

Figure 1.2 Schillerian Imagery of a Supersonic Jet [5] 

1.2 Jet Noise Reduction 
Over the years the industry has made advancements in reducing jet noise. Current advancements 

actively deployed on aircraft flying today are increased bypass ratios, chevrons, and acoustic 

treatment material. We will not get into the details of how these work as the scope of this thesis is 

not on noise reduction methods. However, the premises of these first two methods is to treat the 

problem of the jet core interacting with the surrounding atmosphere. The high-bypass ratio creates 

a cooler and slower moving jet which surrounds the hotter and faster moving core[6]. This provides 

a buffer zone for the noise radiating from the core and also helps with performance. Chevrons 

accelerate the mixing with the jet and the surrounding atmosphere producing a smaller noise source 

area thus, helping with noise but, with the cost of a performance penalty [7].  Figure 1.3 shows a 

GE 9X engine on the Boeing 787 with high-bypass ratio and chevrons.  
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Figure 1.3 GE 9X on Boeing 787 (NASA) 

Methods for designing and testing noise reduction techniques utilize experimental testing and 

numerical modeling. Experimental testing offers the most accurate way to determine whether a 

technique or device works. However, experimental testing especially at a full scale is expensive. 

This is a monetary and time expense. Numerical modeling offers a total lower cost advantage over 

experimental testing as multiple simulations can be conducted simultaneously. Resources to 

conduct numerical simulations are also relatively inexpensive. Since this thesis focuses on the 

numerical side, we will discuss the methods used to conduct computational aeroacoustics (CAA) 

simulations.  

1.3 Computational Aeroacoustics (CAA) 
There are three numerical approaches commonly mentioned in the literature. The first one is direct 

numerical simulation (DNS). DNS solves the compressible Navier-Stokes equations directly 

throughout the computational domain to predict noise generation and propagation [8]. DNS, 
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however, is highly computationally demanding, making it impractical even with today’s advances 

in computational power. Another approach that has become more practical with today’s resources 

is the use of Large-Scale Eddy Simulations (LES). In LES, large scale turbulent components are 

calculated, and the small scales are not captured [9]. LES has been used to compute noise sources 

in jet cases and has been proven in the literature to perform well. Figure 1.5 shows a numerical 

Scherlin image from a LES simulation. Compare this to figure 1.2. LES does however require fine 

numerical meshes along with low time stepping to remain accurate and stable, so it is usually only 

commonly used to compute the noise sources and near-field regions. To compute into the far-field 

with LES is impractical due to the high computational time required for the lather as adding the 

far-field drastically increases the mesh size. Also, the physics associated with sound propagation 

is much simpler than generation. So, performing LES in the far-field gives no benefit compared to 

taking a simpler approach. Typically, the far-field for LES simulations is calculated by a 

Lighthill’s analogy [10,11]. Lighthill’s papers really began the advancements in jet noise [12].  

 

Figure 1.4 LES of Supersonic Jet [19] 
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An even faster approach compared to LES that also does not need Lighthill’s analogy is the use of 

the Linearized Euler Equations (LEE). LEE has the benefit of solving for the acoustic solution 

directly. All other physics that are not related to the acoustic propagation are ignored thus saving 

computational time.  

1.4 Linearized Euler Equations (LEE) 
As mentioned, the LEE equations greatly improve time to solution for aeroacoustics. This is due 

to the nature of the equations. The LEE equations can be derived from the Navier-Stokes equations 

by first removing all viscous and non-linear effects. The large-scale structures in free shear flows 

are inviscid [8]. The large-scale turbulent structures however do have some non-linear properties 

but, these effects seem to be more important to subsonic jets [8]. Since we are interested in the 

sound generation and propagation by the breakdown of large-scale structures in supersonic jets 

this is a valid assumption.     

The LEE’s can be derived by first removing the viscous terms from the Navier-Stokes equations. 

This will lead us down to the Euler equations for compressible flow. The next step is to remove 

all nonlinear terms by linearizing the equations around a mean flow. This leads to a perturbation 

and mean flow component. Since sound can be described by a pressure perturbation in a medium, 

solving for these perturbations directly leads to the acoustic solution. For the medium, a mean flow 

must be given. By definition, this flow is stagnant in time as it is a time averaged flow. So, a time 

average solution or a RANS solution can be used as the mean flow. More details on this will come 

in a later section but, Equations 1-3 describe the governing equations, continuity, momentum, and 

energy respectively. A full derivation is shown in appendix A.  
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𝜕𝜕𝜌𝜌′

𝜕𝜕𝜕𝜕
+  𝛻𝛻 ∙ (𝜌𝜌′𝑼𝑼 + 𝜌𝜌𝒖𝒖′) = 𝑆𝑆𝑐𝑐  (1.1) 

𝜕𝜕𝒖𝒖′

𝜕𝜕𝜕𝜕
+ ��𝒖𝒖′ +  

𝜌𝜌′

𝜌𝜌
𝑼𝑼�  ∙  𝛻𝛻�𝑼𝑼 + (𝑼𝑼 ∙  𝛻𝛻)𝒖𝒖′ +  

1
𝜌𝜌
𝛻𝛻𝑝𝑝′ = 𝑆𝑆𝑚𝑚 (1.2) 

𝜕𝜕𝑝𝑝′

𝜕𝜕𝜕𝜕
+ 𝑼𝑼′ ∙  𝛻𝛻𝛻𝛻 + 𝑝𝑝′𝛾𝛾(𝛻𝛻 ∙ 𝑼𝑼) + 𝑼𝑼 ∙ 𝛻𝛻𝑝𝑝′ +  𝛾𝛾𝛾𝛾(𝛻𝛻 ∙ 𝑼𝑼′) = 𝑆𝑆𝑒𝑒 (1.3)   

 

There have been many LEE solvers developed by many researchers and even some commercial 

codes exist. However, these codes are not available for a mass audience. Also, in the Aeroacoustics 

field research into the supersonic rectangular jet has been a hot topic in recent years and LEE has 

not been utilized. So, this Thesis has two main purposes and hypothesis that corelate together. 

First, can LEE be implemented into OpenFOAM? There are some challenges to implementing 

such as code that will be discussed however, the benefits of doing so are massive. Second, can an 

OpenFOAM LEE code predict supersonic rectangular jet noise? LEE has been used in the past to 

predict jet noise as shown by the Mankbadi, 1998 reference [8]. If the OpenFOAM LEE solver is 

accurate, then it is hypothesized to be possible.  
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2  The leeFoam Solver 

As mentioned, the LEE solver for this Thesis was developed in OpenFOAM. OpenFOAM (Open-

source Field Operation and Manipulation) is an open-source Finite-Volume (FVM) CFD package 

written in C++ originally released in 2004. Due to the opensource nature of OpenFOAM it is 

relatively easy to write custom solvers that can utilize pre-existing code inside the package. For 

example, the leeFoam solver written for this thesis can run on thousands of CPUs utilizing 

OpenFOAM’s built in parallelization tools and while benefiting from built in numerical methods 

inside OpenFOAM.  

2.2 Numerical Schemes Available  
OpenFOAM has many numerical schemes available for a user’s arsenal. The following sections 

provide a brief description of the schemes tested for the leeFoam solver and comments on their 

performance. In a later section different schemes will be tested against each other and compared 

for accuracy on a verification case.  

2.2.1 Temporal Discretization Schemes  
The leeFoam solver, like any LEE code, is naturally transient in time thus OpenFOAM’s transient 

time schemes are used. The code has the ability to run fully explicitly however, it has been found 

to run with greater stability semi-implicitly. The continuity and momentum equations are implicit 

while p’ is calculated explicitly in this setup. The schemes available are Euler, Crank-Nicolson, 

and Backward. The Euler scheme is the most stable but is 1st order accurate. The Backward scheme 

offers full 2nd order accuracy, but it can become too oscillatory causing it to ruin any accuracy 

gain. Crank-Nicolson offers a blend between pure 2nd and 1st order that is set with a blending factor. 

The schemes are shown below, and the performance of these schemes is shown in a later section. 
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The Euler temporal discretization scheme is shown in equation 2.1. The scheme calculates the 

derivative of the current time 𝜑𝜑 from the previous  time 𝜑𝜑0 [13]. 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  
𝜑𝜑 −  𝜑𝜑0

∆𝑡𝑡
 (2.1) 

  The backward scheme shown in equation 2.2 is true 2nd order accurate and it uses three-time 

levels 𝜑𝜑,𝜑𝜑0,  and 𝜑𝜑00 to calculate the current time [13]. 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  
3𝜑𝜑 −  4𝜑𝜑0 +  𝜑𝜑00

2∆𝑡𝑡
 (2.2) 

The Crank-Nicolson scheme [14] uses the midpoint between the current and old-time levels to 

make the Euler scheme 2nd order accurate. OpenFOAM offers a blending factor that corresponds 

to the Euler scheme if set to 0 and pure Crank-Nicolson if set to 1 as shown in equation 2.3 [13].  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= (1 +  𝜆𝜆)
𝜑𝜑 −  𝜑𝜑0

∆𝑡𝑡
 +  𝜆𝜆[𝐴𝐴|𝑏𝑏]0𝜑𝜑0 (2.3) 

Another important concept in the temporal discretization is the Courant Number (Co#). The Co# 

is dimensionless and describes how long a particular particle spends in a cell. A value of 1 means 

the particle spends each new time step in the next cell. Anything above 1 means the particle is 

skipping cells. This is important when determining accuracy and stability as skipping cells can 

lead to discontinuities. For the leeFoam solver the Acoustic Courant Number is used (ACo#) as 

shown in equation 2.4. The speed of sound is c and Δ𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum cell length. Typically, 

the user will reference the max ACo# thus the Δ𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 is the smallest cell length in the domain.    

𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑐𝑐Δ𝑡𝑡
Δ𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

 (2.4) 
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2.2.2 Gradient Discretization Schemes  
OpenFOAM offers two main gradient schemes Gauss Linear and Least-Squares. Both are 2nd order 

accurate, however, the Least-Squares method can become oscillatory with the leeFoam solver thus 

causing stability issues. The Gauss Linear scheme uses standard Gauss integration from the FVM 

as shown in equation 2.5 and the face values 𝜑𝜑𝑓𝑓are interpolated from the cell centers linearly [15].  

∇𝜑𝜑 =  lim
∆𝑉𝑉→0

1
∆𝑉𝑉

� 𝜑𝜑𝜑𝜑𝜑𝜑
𝑆𝑆

= 
1
𝑉𝑉
�𝑆𝑆𝑓𝑓𝜑𝜑𝑓𝑓  
𝑓𝑓

 (2.5) 

 

For the Least-Squares method [15] the gradient is calculated using a weighted difference between 

cell centers and neighboring cells. This helps reduce the error between cells. This is shown in 

equation 2.6 then the gradient is calculated in equation 2.7. 

𝐺𝐺 =  �𝑤𝑤𝑖𝑖𝑖𝑖2 ∆𝑑𝑑∆𝑑𝑑
𝑓𝑓

 (2.6) 

∇𝜑𝜑 =  
1
𝑉𝑉
�𝑤𝑤𝑖𝑖𝑖𝑖2 𝐺𝐺−1  ∙  ∆𝑑𝑑(𝜑𝜑𝑁𝑁 −  𝜑𝜑𝑃𝑃)
𝑓𝑓

 (2.7) 

OpenFOAM does have gradient limiters to help prevent oscillations however some initial testing 

was performed with the leeFoam solver, and it was found limiting the gradient added allot of 

diffusion error.  

2.2.3 Divergence Discretization Schemes 
OpenFOAM has many divergence schemes available to choose from. The most popular schemes 

are Gauss Upwind (1st order accurate), Gauss Linear (2nd order accurate), and the TVD scheme 

Gauss Limited-Linear which uses a limiter that varies from 1st to 2nd order accurate depending on 

the conditions. The TVD scheme Gauss Limited-Linear with a limiter set to 1.0 was found to work 
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well with the leeFoam solver. The Gauss Upwind scheme does provide the most stability to the 

solver, however, the 1st order accuracy creates noticeable diffusion in the solution. The pure Gauss 

Linear scheme works well for simple cases, however cases with strong mean flow gradients such 

as with a jet tend to become too oscillatory. TVD schemes help solve this issue as they apply a 

limiter that limits towards upwind in strong gradients.  

The TVD scheme can be visualized with a Sweby diagram shown in figure 2.1. In order for 

schemes to be classified as a TVD it must remain in the shaded area [13] Schemes that lie on or 

towards to upwind side of the diagram tend to be the most stable but also the most diffusive. The 

Sweby diagram also offers another parameter when comparing TVD Schemes. If the scheme lies 

on the β = r line before reaching linear then the scheme is symmetric, and the gradient limiter is 

applied evenly. If not, then uneven limiting can lead to distortion [13].  

.    

 

Figure 2.1 Sweby Diagram 

Figure 1.2 shows the Sweby diagram of the Limited-Linear scheme as well as another popular 

scheme in OpenFOAM the Minmod scheme. Notice how the Minmod scheme is symmetric but 
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also limits more to the upwind. Some initial tests were performed with this scheme on the 

rectangular jet and found it did well. However, it was noticeably more diffusive than Limited-

Linear. Limited-Linear is not symmetric as can be seen but no distortion was noticed in any test 

and thus was chosen for its accuracy and robustness. The performance of these schemes is shown 

in a later section.  

 

Figure 2.2 Sweby Diagram with Limited-Linear and Minmod 

2.3 Additional Numerical Tools Available  
The LEE equations are prone to stability issues as they are linear in nature with no viscous 

dissipation present thus spurious instabilities can grow uncontrollably. These Instabilities can form 

in the domain or boundaries [8]. To counteract boundary treatment issues and stability problems 

in the domain two additional tools were developed for the leeFoam solver. An Acoustic Relaxation 

Term (ART) can be added to the momentum equation and acts as artificial viscous dissipation for 

the entire domain. For the boundaries, a Boundary Dampening term can also be activated to 

prevent issues such as reflections and stability problems. These tools will be discussed in detail in 

this section.  

2.3.1 Boundary Dampening  
 The built in outflow boundary code available from OpenFOAM that works best with the leeFoam 

solver is the acusticwaveTransmissive boundary condition. The acusticwaveTransmissive 
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boundary condition works by solving for the flux term across the boundary with a given advective 

velocity U. See equation 2.8 [16] This advective velocity for the acoustic boundary treatment is 

the speed of sound at the boundary.  

𝐷𝐷∅
𝐷𝐷𝐷𝐷

=  
𝜕𝜕∅
𝜕𝜕𝜕𝜕

+ 𝑼𝑼 ∙  ∇∅ = 0 (2.8) 

𝐷𝐷∅
𝐷𝐷𝐷𝐷

 ≈  
𝜕𝜕∅
𝜕𝜕𝜕𝜕

+ 𝑼𝑼𝑛𝑛  ∙  
𝜕𝜕∅
𝜕𝜕𝒏𝒏

= 0 (2.9) 

The acusticwaveTransmissive boundary in OpenFOAM is not a perfect boundary treatment and 

not all boundary codes can produce zero reflections however, the OpenFOAM implementation 

does have a setback. The advection velocity is assumed to be perpendicular to the boundary face. 

See equation 2.9 [16] This causes an issue when the incoming wave is not perpendicular to the 

boundary face. When the code was first tested issues persisted where the non-normal component 

of the incoming wave was reflected into the solution causing an entire failure as a result. This is 

an issue that can be resolved with future development in OpenFOAM as other commercial codes 

do employ more advanced boundary conditions.  

With the built in OpenFoam outflow boundary condition not preforming in an optimal way, one 

solution is to kill any waves before they reach the boundary in order to prevent reflections. This 

can be done with grid stretching or with applying artificial dampening in set zones before the 

boundaries. Grid stretching is tricky with the leeFoam solver and will be discussed later. Boundary 

damping is the preferred method.   

Artificial dampening works by applying a sink to the governing equations. The sink can be 

controlled by a coefficient that includes strength and location applied to the computational domain. 
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Equation 2.10 describes how the dampening is applied to the momentum equation. v is the 

dampening coefficient and is described in equation 2.11.   

𝑆𝑆𝑚𝑚 = −𝜈𝜈𝒖𝒖′ (2.10) 

𝜈𝜈 = 𝑤𝑤𝑤𝑤(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) (2.11) 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �
1

𝑟𝑟22 −  𝑟𝑟12
� (𝑅𝑅 −  𝑟𝑟12) (2.12) 

Equation 2.12 shows the blending factor. The blending factor is what controls the strength of the 

dampening coefficient as a ratio between 0 and 1 with 1 being the strongest. The ratio is controlled 

by varying the radial distance between the two R values. This creates a “sponge zone” that is placed 

before the boundary to absorb any incoming waves. An illustration of this is shown in figure 1.3. 

This “sponge zone” absorbs incoming waves thus preventing any boundary condition issues. 

 

Figure 2.3 Boundary Dampening Sponge Zone 
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2.3.2 Acoustic Relaxation Term 
To counteract instabilities not caused by the boundaries but inside the domain an acoustic 

relaxation term was added in the governing momentum like in equation 2.13 where 𝝈𝝈 is the ART 

relaxation factor [17]. This can be turned on or off and some cases do not require it. For the 

rectangular jet case it was used and a relaxation factor 𝝈𝝈 was chosen that provided dampening to 

unwanted high frequency noise while having minimal effect to the frequency being tested. Further 

details of ART being implemented are in the jet section.  

𝑆𝑆𝑚𝑚 =  𝛻𝛻[𝜎𝜎(∇ ∙ 𝒖𝒖′)] (2.13) 

2.4 Code Verification Test 
Like most new CFD codes the leeFoam solver was benchmarked and compared for accuracy 

against known solutions. Presented in this thesis and in the next few sections the leeFoam solver 

is compared to analytical solutions that are available. The solver is first tested against a 1-D wave 

with zero mean flow then against a Gaussian pulse. The Gaussian Pulse is a common benchmark 

for CAA codes. In this case, it is tested with a uniform mean flow. Unfortunately, an analytical 

benchmark for a non-uniform mean flow was not available. However, for the jet case we are 

comparing the code to experimental data so that will suffice. 

2.4.1 1-D Wave 
The 1-D wave test conducted for this work was a simple sine wave convecting through a stagnant 

men flow. The goal of the test is to verify a disturbance properly convects through the domain 

which, in this case, is a sinusoidal oscillation at the inlet. The analytical solution follows the form 

in equation 2.14. Figure 2.4 shows the results. 

𝑓𝑓(𝑡𝑡) = sin �
2𝜋𝜋𝜋𝜋
𝜆𝜆 � (2.14) 
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Figure 2.4 1-D Wave test 

 As can be seen the leeFoam solver convects the disturbance without any dissipation or dispersion 

errors. The numerical schemes for this test were of pure 2nd order accurate in both time and space.  

2.4.2 Gaussian Pulse in Uniform Mean Flow 
The next verification is the 2-D Gaussian Pulse in a uniform mean flow. It is important to note 

OpenFOAM naturally runs in 3-D. So, the Gaussian Pulse is technically calculated in 3-D. 

However, the mesh is extruded by 1 block and boundary conditions are set thus making the case 

behaves like a pure 2-D case. This is a normal procedure noted in the OpenFOAM documentation.   

The initial conditions and solution are from the work of Tam and Webb, 1992 [18] and is shown 

in equations 2.15 and 2.16. The parameters of those equations are shown in table 2.1.  

𝑝𝑝′(𝑥𝑥, 𝑡𝑡0) =  𝜖𝜖𝑒𝑒−𝛼𝛼�𝑥𝑥2+ 𝑦𝑦2 𝑧𝑧2� (2.15) 
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𝑝𝑝′(𝑥𝑥, 𝑡𝑡) =  
𝜀𝜀
𝛽𝛽
� 𝛿𝛿2𝑒𝑒−

𝛿𝛿2
4𝛼𝛼 cos(𝑡𝑡𝑡𝑡) 𝑗𝑗0(𝛿𝛿𝛿𝛿)𝑑𝑑𝑑𝑑 

∞

0

 (2.16) 

Table 2.1 Gaussian Pulse Parameters 

Parameter Symbol Value 
Amplitude ε 1 
Pulse Half-Width b 9 
- α ln(2) /𝑏𝑏2 
- 𝑛𝑛 �(𝑥𝑥 −𝑀𝑀𝑀𝑀)2 +  𝑦𝑦2 
- β 2𝛼𝛼√𝜋𝜋𝜋𝜋 
- j0 sin(𝛿𝛿𝛿𝛿) /𝛿𝛿𝛿𝛿 
Inflow Mach Number M 0.2 

 

The results of this test are presented in figures 2.5 and 2.6. The numerical schemes used for this 

test are of pure 2nd order accurate. As can be seen the leeFoam solver convects the pulse without 

any dissipation or dispersion errors. Next, we will look into how OpenFOAM’s various numerical 

schemes affect the Gaussian Pulse solution.  

 
Figure 2.5 Gaussian Pulse  
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(a) 

 
(b) 

Figure 2.6 Gaussian Pulse contours  

2.5 Numerical Schemes Test on Gaussian Pulse 
This section will demonstrate the leeFoam solvers performance while using various numerical 

schemes on the Gaussian Pulse case. A grid independence study was also conducted. The result of 

this study provides insight on how the leeFoam solver performs and what schemes should be used 

for cases such as with the rectangular jet.   

2.5.1 Grid Independence  
 A common practice for any CFD case is to eliminate errors due to the numerical grid used. To do 

this it is common to refine either the entire domain or certain sections and check for differences in 

the solution. For example, if refining the grid causes the solution to change sufficiently then the 

solution is not grid independent and the accuracy should be questioned. The grid should then be 

further refined until there is no significant change in solution. This was performed for the Gaussian 

Pulse as shown in figure 2.7. The grid was refined on a domain of length L = 400 by varying the 

number of cells from N = 100 to N = 800. Figure 2.8 shows the change in relative error between 

the different grid sizes. Ultimately the grid of N = 800 was used in all other shown Gaussian Pulse 

cases.  
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Figure 2.7 Grid Independence Study 

 

Figure 2.8 Grid Independence Study Relative Error 

2.5.2 Temporal Discretization Schemes Test 
This section tests the performance of the temporal discretization schemes available to the leeFoam 

solver shown in figure 2.9. The relative errors are shown in table 2.2. As can be seen there is 

minimal effect on the time schemes chosen when run at the same Acoustic Co#. It is interesting 

however as the Euler and Crank-Nicolson 0.0 schemes can run at CO#’s much higher while still 
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maintaining accuracy. The other schemes failed to produce a solution as they became unstable at 

ACo#’s above 0.027.   

Table 2.2 Temporal Schemes Error 

Scheme  Acoustic Co# % Relative Error 
Euler / Crank-Nicolson 0.0 1.092 0.0739 
Euler / Crank-Nicolson 0.0 0.027 0.0717 
Crank-Nicolson 0.0 0.027 0.0717 
Crank-Nicolson 0.5 0.027 0.0745 
Crank-Nicolson 1.0 0.027 0.0750 
Backward 0.027 0.0750 

 

 
(a) 
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(b) 

Figure 2.9 Temporal Schemes Test 
 

2.5.3 Gradient Discretization Schemes 
This section tests the performance of the gradient discretization schemes available to the leeFoam 

solver shown in figure 2.9. The relative errors are shown in table 2.3. As can be seen there is no 

difference between the two and both are 2nd order accurate schemes. The OpenFOAM 

documentation claims the least squares method is more accurate but can be oscillatory. This was 

not noticed in the Gaussian Pulse while this was noticed later in the rectangular jet.    
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Table 2.3 Gradient Schemes Error 

Scheme  % Relative Error 
Linear 0.0755 
Least Squares 0.0755 

 

 
(a) 
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(b) 

 

Figure 2.10 Gradient Schemes Test 
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2.5.4 Divergence Discretization Schemes 
This section tests the performance of the divergence discretization schemes available to the 

leeFoam solver shown in figure 2.10. The relative errors are shown in table 2.4. As can be seen 

the 1st order accurate Gauss Upwind scheme does affect the solution by showing diffusion error 

and this would be expected. There is minimal difference between the Gauss Linear and the TVD 

Gauss Limited Linear 1.0 Scheme.   

 
(a) 
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(b) 

Figure 2.11 Divergence Schemes 
 
 

Table 2.4 Divergence Schemes Error 

Scheme  % Relative Error 
Upwind 0.1050 
Limited Linear 1.0 0.0751 
Linear 0.0750 
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3  The Heated Supersonic Rectangular Jet 

This chapter discusses the leeFoam solver use on a heated supersonic rectangular jet. Supersonic 

jet aircraft either military or upcoming civilian more commonly use rectangular jet design as 

airframe geometry is rather strict for this purpose [19]. For the civilian side, future air travel at 

supersonic speeds has a massive obstacle to overcome. Noise regulations are increasingly 

becoming more stringent and jet noise still poses a massive problem for such aircraft.  

The leeFoam solver’s ability to produce an estimate of the expected near and far field noise levels 

quickly and affordably can assist a designer in the aeroacoustics design phase. For example, the 

cases presented in this chapter on average took between 4-6 hours of CPU time on parallel clusters 

with less than 4 nodes. This is significantly faster than LES methods. LES methods as will be seen 

offer a more complete analysis, but the LEE approach can serve as an initial general solution or 

accompany traditional LES methods.    

3.1 Geometry 
 Figure 3.1 shows the geometry of the rectangular jet nozzle used in this study. This is based on 

experimental studies by Mora et al. [5]. The design operating mach number of this 2:1 aspect ratio 

rectangular converging-diverging (C-D) nozzle is Mach 1.5. The temperature ratio (TR) and 

pressure ration (NPR) are set to design experimental condition by Mora et al. Figure 3.1 shows a 

drawing of the nozzle and table 3.1 presents the design parameters.  
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Figure 3.1 Rectangular Converging-Diverging (C-D) Nozzle Geometry [5] 
 

Table 3.1 Rectangular Converging-Diverging (C-D) Nozzle Parameters 

Parameter  Value 
Exit Minor Axis (W) 12.95 [mm] 
Exit Major Axis (H) 25.91 [mm] 
Equivalent Diameter (D) 20.65 [mm] 
Design Mach Number 1.5 
Area Ratio 1.18 
Nozzle Pressure Ratio (NPR) 3.67 
Nozzle Temperature Ratio (TR) 3.0 

 
3.2 Numerical Grid 
The numerical grid used in this study follows an acoustic grid approach. The grid is fine enough 

to properly capture the mean flow structure then expands to meet the minimum points per 

wavelength (PPW) of 15 cells/wavelength in the far field. In the literature 7 to 15 cells/wavelength 

is the standard operating practice [20]. Caution must be taken in the expanding process to not 

exceed a cell volume ratio of 1.015 to neighboring cells. Large cell volume ratios were observed 

in initial testing to cause wave distortion and internal reflections.  

The grid itself extends up to 50 jet diameters axially and 60 jet diameters radially. This is a notably 

much larger domain than used for LES cases however, with LEE we are capturing the far-field 
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noise in the domain itself instead of projecting it with FW-H. This is one of the main benefits of 

performing LEE. Also, the grid in this study has half of the total cells due to the courser nature 

compared to the LES study from Salehian and Mankbadi. With the simpler calculations involved 

in LEE and low cell counts this allows the leeFoam solver to produce results within a fraction of 

the required time compared to LES.  

Figure 3.2 illustrates a schematic of the numerical domain with table 3.2 showing the grid 

parameters. Figure 3.3 shows the 3D numerical grid. Figures 3.4 and 3.5 show the numerical grid 

sliced in the major and minor planes respectively.  

 

Figure 3.2 Schematic of Numerical Domain 

 

 

 

 



37 
 

Table 3.2 Grid Parameters  

Parameter  Value 
X-Dir 50D 
Y-Dir 55D 
Z-Dir 55D 
Cell Count 41 million (60 million for St = 0.2 case) 

 

 

Figure 3.3 3D Numerical Grid 
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Figure 3.4 Major and Minor Planes Numerical Grid 

3.3 Mean Flow 
The LEE’s require a mean flow to be given which can be from an analytical or a verified RANS 

solution. For the rectangular jet case, a RANS solution was given from the Salehian and Mankbadi 

paper. The authors did not present their RANS solution in the paper as their main focus was on 

LES results but, since RANS is commonly run before transitioning to LES it was available. The 

provided RANS solution was run further to confirm convergence and accuracy was compared to 

mean flow data provided by an experiment. See figure 3.5.  
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Figure 3.5 Jet Core Mean Flow Axial Velocity along Jet Centerline vs Experiment [19,24] 

The rectangular jet is unique compared to traditional round jets. The jet core emerging from the 

nozzle is initially rectangular but then transitions to a round state. This can be seen in the 3D mean 

flow figures 3.6 and 3.7. 
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Figure 3.6 Jet Velocity Mean Flow 

 

Figure 3.7 Jet Density Mean Flow 

  



41 
 

Figures 3.8 to 3.11 show the u, v, w mean flow quantities along the major and minor planes. 

 

Figure 3.8 u Velocity Mean Flow along Major Plane 

 

Figure 3.9 v Velocity Mean Flow along Major Plane 
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Figure 3.10 u Velocity Mean Flow along Minor Plane 

 

Figure 3.11 w Velocity Mean Flow Along Minor Plane 
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Figures 3.12 and 3.13 show the jet density mean flow in the major and minor planes respectably. 

 

Figure 3.12 Density Mean Flow Along Major Plane 

 

 Figure 3.13 Density Mean Flow Along Minor Plane 



44 
 

Figures 3.14 and 3.15 show the jet pressure mean flow in the major and minor planes respectably. 

 

Figure 3.14 Pressure Mean Flow Along Major Plane 

 

Figure 3.15 Pressure Mean Flow Along Minor Plane 
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3.4 Numerical Methods 
OpenFOAM has several finite-volume schemes available to choose from. This was one of the 

benefits of choosing OpenFOAM as the developing environment for this code as the numerics are 

already present. No work was required to code any custom numerical schemes but, it was required 

to select the proper numerical schemes. As it was important to understand how each available 

scheme affects the code and the rectangular jet case.  

3.4.1 Finite-Volume Schemes  
The schemes chosen for the rectangular jet case are outlined in table 3.3 below. These schemes 

were chosen based on their best ability to maintain wave properties and provide stability. The 

details of these schemes were presented in chapter 2. Note the use of TVD schemes. TVD schemes 

limit towards upwind in steep gradients. With sharp mean flow gradients in the jet core terms 

dealing with the mean flow benefit from this upwind limiting approach. This helps provide stability 

with small amounts of numerical diffusion.  

For temporal discretization the Crank-Nicolson 0.9 with a ACo# of 0.1 was used. This is not quite 

2nd order accurate, but it does provide stability at the slight expense to accuracy.  It is notable that 

most CAA codes, especially using Finite- Difference (FDM) utilize high order schemes that can 

achieve 4th order accuracy. However, when utilizing OpenFOAM’s 2nd order schemes it is shown 

the solver can remain accurate and stable. Other test cases were run with 1st order Euler temporal 

schemes and the ACo# was able to be much higher but being closer to pure 2nd order is preferred.  
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Table 3.3 Finite-Volume Numerical Schemes for the Rectangular Jet 

 Scheme Order 
Time Crank-Nicolson 0.9 ≈2nd 
Gradient Gauss Linear 2nd 
Divergence Limited Linear 1.0 2nd 

 
3.4.2 Boundary Conditions 
The boundary conditions (BC) play an important role especially in acoustics simulations. It is very 

important reflections from the outflow boundaries are minimized as much as possible. Reflections 

can interact with the simulation producing unrealistic results or even instabilities causing a 

simulation to fail. For an LEE code this is a magnified problem as spurious modes can be 

introduced at the boundaries [8]. 

The inflow boundary condition acts as the input disturbance to the leeFoam solver. The location 

is shown in figure 3.16. In this case a direct sinusoidal disturbance is used as to simulate an 

instability wave type disturbance.  
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Figure 3.16 Inflow Boundary location 

To produce the disturbance needed for the 3D jet LEE simulation the inflow boundary is an 

oscillating type of boundary that varies u’ with time. This boundary is custom coded into 

OpenFOAM and follows equations 3.1-3.3. Equation 3.1 describes the sinusoidal oscillation. A 

fraction of the jet exit velocity from the mean flow is varied with time at a frequency described by 

equation 3.2. The frequency is dependent on the Strouhal Number and jet exit parameters. This 

Strouhal Number chosen for this simulation is based on the peak acoustic frequency determined 

by Salehian and Mankbadi [20] and is approximately St = 0.1.   
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𝑢𝑢′ = 𝑢𝑢𝑒𝑒𝑒𝑒(0,𝑦𝑦, 𝑡𝑡)) = 𝜖𝜖 𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤𝑤𝑤) 𝑢𝑢�(0,𝑦𝑦) (3.1) 

   With, 

𝜔𝜔 = 𝑆𝑆𝑆𝑆 �
4𝜋𝜋𝑈𝑈𝑗𝑗
𝐻𝐻 �  (3.2) 

𝜖𝜖 = 0.1 (3.3) 

The boundary layer at the inlet is also modeled in the disturbance in order to prevent any 

discontinuous gradients. A discontinuous gradient in the disturbance can cause a discontinuity that 

leads to a solution failure event. The boundary layer is modeled by a hyperbolic tangent function 

that is applied to the mean flow parameter as shown in equation 3.4 below. Table 3.4 provides 

parameters for the input disturbance.  

𝑢𝑢�(𝑦𝑦+, 𝑧𝑧+) =
𝑢𝑢�
2
�1 + tanh�

𝜂𝜂𝑥𝑥
4𝜃𝜃+

�
𝜂𝜂𝑥𝑥

|𝑦𝑦+ + 𝑧𝑧+| −
|𝑦𝑦++ 𝑧𝑧+|

𝜂𝜂𝑥𝑥
���   (3.4) 

Table 3.4 Inflow Boundary Condition Parameters 

Parameter Value 
St 0.05 to 0.2 (by case) 
𝝐𝝐 0.075 
H 20.65 [mm] 
𝑼𝑼𝒋𝒋 750 [m/s] 

 

For this simulation the outflow boundaries use the built in acusticwaveTransmissive in 

OpenFOAM. The locations are shown in figure 3.16. The acusticwaveTransmissive boundary 

condition was discussed in chapter 2. Boundary dampening was also applied as was discussed in 

chapter 2 and is shown in figure 3.17.  
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Figure 3.17 Dampening Sponge Zone  

3.4.3 Acoustic Relaxation Term  
As mentioned earlier an acoustic relaxation term (ART) can be applied to the LEEs in order to 

dampen/kill unwanted numerical noise. These spurious frequencies can develop due to grid issues, 

numerical schemes, or time stepping. ART has been shown to provide decent frequency selective 

properties in the rectangular jet case while minimizing diffusion error [17]. Figure 3.18 

demonstrates ART’s effects as frequency is increased. These tests were run experimentally on the 
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1D wave test with reasonably similar mean flow conditions as the jet core. The shock formations 

are omitted thus to keep the test simple and achieve the overall objective.  

   
(a) (b) (c) 

 

Figure 3.18 ART Tested Experimentally 

 

The ART coefficient can also be determined analytically as shown in the Bernicke paper [17]. The 

derivation comes from the imaginary component of the 1-D wave equation solution in Fourier 

space [17]. See equation 3.4. By setting a fixed ART coefficient we can plot the resulting frequency 

vs damping as shown in figure 3.19. Notice how the damping increases exponentially as the 

frequency increases. The goal is to maximize the damping at the higher frequencies while 

maintaining little to no diffusion for the wanted frequencies. ART in this case was chosen to be 

0.04. 
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𝑘𝑘𝑖𝑖(𝜔𝜔,𝜎𝜎) =  −
√2
2
�𝜔𝜔

2(√𝜔𝜔2𝜎𝜎2 + 1 − 1
𝑐𝑐02 + 𝜔𝜔2𝜎𝜎2

 (3.4) 

 

   

 
Figure 3.19 ART Analytical Coefficient 
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4 Rectangular Jet Results 

This chapter will present the results from the rectangular jet case. The still images for the major 

and minor planes along with Root Mean Square contours, OASPL contours, Directivity, and 

convergence criteria will be presented. Limited discussion will be provided as the main concluding 

arguments are presented in Chapter 5 Conclusions.   

Sections 4.1 and 4.2 split the still images between the major and minor planes with the data 

previously mentioned. Figure 4.1 shows an illustration of the locations of the major and minor 

planes in the domain. Sound Pressure Level (SPL) contours are calculated with equation 4.1. 

 
Figure 4.1 Illustration of Major and Minor Planes 

 

𝑆𝑆𝑆𝑆𝑆𝑆 = 20 log10 �
𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅′

2𝐸𝐸 − 05
�  (4.1) 

Major Plane Minor Plane 
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4.1 Sliced Snapshots in Major Planes 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.2 p’ contours major plane (a) St = 0.05, (b) St = 0.07, (c) St = 0.1, (d) St = 0.2 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.3 u’ contours major plane (a) St = 0.05, (b) St = 0.07, (c) St = 0.1, (d) St = 0.2 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.4 w’ contours major plane (a) St = 0.05, (b) St = 0.07, (c) St = 0.1, (d) St = 0.2 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.5 rho’ contours major plane (a) St = 0.05, (b) St = 0.07, (c) St = 0.1, (d) St = 0.2 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.6 p’ rms contours major plane (a) St = 0.05, (b) St = 0.07, (c) St = 0.1, (d) St = 0.2 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.7 SPL contours major plane (a) St = 0.05, (b) St = 0.07, (c) St = 0.1, (d) St = 0.2 
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4.2 Sliced Snapshots in Minor Planes 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.8 p’ contours minor plane (a) St = 0.05, (b) St = 0.07, (c) St = 0.1, (d) St = 0.2 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.9 u’ contours minor plane (a) St = 0.05, (b) St = 0.07, (c) St = 0.1, (d) St = 0.2 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.10 v’ contours minor plane (a) St = 0.05, (b) St = 0.07, (c) St = 0.1, (d) St = 0.2 
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(a) 

 
(b) 

 
(c) 

 

 
(d) 

Figure 4.11 rho’ contours minor plane (a) St = 0.05, (b) St = 0.07, (c) St = 0.1, (d) St = 0.2   
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.12 p’ rms contours minor plane (a) St = 0.05, (b) St = 0.07, (c) St = 0.1, (d) St = 0.2 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.13 SPL contours minor plane (a) St = 0.05, (b) St = 0.07, (c) St = 0.1, (d) St = 0.2 
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4.3 Directivity   
This section presents Directivity and Iso-Surface plots for the rectangular jet case. As the case only 

simulates a single frequency excitation comparison of spectral data is not useful unlike LES. 

However, as can be seen the jet can be broken down and directivity can be seen with individual 

frequencies. See figure 4.14. The Iso-Surface at a particular SPL of interest can be generated as 

shown in figure 4.15. 

 

Figure 4.14 Directivity R = 40D 
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(a) 

 
(b) 
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(c) 

 
(d) 

 

Figure 4.15 Directivity Iso Surfaces 138 dB (a) St = 0.05, (b) St = 0.07, (c) St = 0.1, (d) St = 0.2 
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4.4 Convergence 
Like any good CFD practice convergence is extremely important in determining when the solution 

can be stopped. Convergence in simple terms is when the solution no longer changes with 

significant value. To test this on the rectangular jet points in the grid were sampled and the OASPL 

was calculated for each time step. As the solution progresses in time the OASPL at each sample 

point changes. When that change reached negligible value, the solution was deemed converged. 

See figure 4.16.  

 

  

  

Figure 4.16 Convergence  

  



69 
 

4.5 FFT to Show Linear Propagation  
As the leeFoam solver is a linear solver it is important to check that any inputs propagate linearly. 

This can be checked by performing an FFT inside the domain. By preforming the FFT as shown 

in figure 4.17 it can be seen the input frequency, being St = 0.1 in this example, remains the 

dominate frequency. It is also interesting to note the reduction of the high frequency noise. This 

shows the effectiveness of the ART term in dampening unwanted higher frequencies.  

 

  

Figure 4.17 FFT to Show Linear Propagation  
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5  Conclusions and Recommendations  

This chapter presents concluding arguments and recommendations from this work. This Thesis 

had two main objectives. Develop an LEE solver for OpenFOAM and utilize this solver on a 

rectangular supersonic jet. So, to conclude and to present recommendations for future work several 

questions need to be answered such as the following: 

• Does the solver check out against analytical solutions and is it accurate?  

• Can the solver maintain stability and how does it perform? 

For the jet case, the questions challenge the solver based on other LEE codes run on supersonic 

jets and the experimental data presented. This chapter will present arguments to these questions in 

the following sections.  

5.1 leeFoam Solver on Analytical Solutions  
As shown in chapter 2 the leeFoam solver does compare to analytical solutions well. With the 

proper grid and numerical setup, the relative error is very low i.e., < 1%. This shows the solver 

can predict the acoustic solution accurately.  

5.2 leeFoam Solver on the Rectangular Jet 
For the supersonic rectangular jet, the case and the methods used in this work to solve the jet 

present numerous conclusions. To start, the main purpose of an LEE code is to produce an accurate 

acoustic solution quickly. The leeFoam solver achieves this goal as it does produce a solution 

quickly. The jet cases as mentioned were able to be completed in just a few hours on small amounts 

of resources of less than 200 CPUs. This is a vast improvement compared to LES. However, do 

the LEE results here hold any weight compared to LES? This is where we enter potentially 

problematic territory.  
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As mentioned, the major difference between LEE and LES is the physics being solved. LES solves 

for the flow physics and the acoustic solution is derived from this. LEE on the other hand only 

solves for the acoustic solution. LEE leaves out viscous and non-linear physics and these are 

present in supersonic jets. So, the question is, how much does the viscous and non-linear terms 

matter? Looking at the results, this is inconclusive at this time. The code does not match up with 

expected linear-stability results in the jet core. Looking at Figure 5.1 the leeFoam results are 

compared with results from the Mankbadi 1998 [8] work. It is clear there are some discrepancies 

in the jet core.  

 

(a) 

 
 

(b) 

Figure 5.1 Axial Velocity Disturbance Field leeFoam (a) Mankbadi 1998 (b) 

One possible problem is the jet case tested here has shock formations as shown in the mean flow 

figures from chapter 3. The jet from the Mankbadi 1998 work was a round jet with no shock 

structure so it is a hard comparison to accurately make. The jet tested in this case is a perfectly 
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expanded jet and ideally there would be no shocks present. However, it is common in real world 

jets to still have a shock structure in the core due to slight imperfections. The OpenFOAM RANS 

results also agree with the experimental results, so this is a valid mean flow.  

It is possible the shock structure is interfering with the results as the LEE’s do not modal non-

linear effects that are present in the given mean flow. This could also explain the stability issues 

faced in earlier simulations. So, further testing should be performed to rule this problem out.    

What is conclusive however, is the solver produces an outstanding acoustic radiation field from 

the jet. This matches up with the results in chapter 2 and the acoustic field from the Mankbadi 

1998 work [8].  

The acoustic solution, however, is notably a lot simpler than LES results. The method presented 

in this work is a single mode and single frequency excitation. The real-world jet is not this simple 

as there are many frequencies and modes present. This is why spectra analysis comparison to 

experiment is not useful. However, the method used does offer a starting point for future work and 

it is possible to see how individual frequencies propagate through the domain. Other results that 

are beyond the scope of this thesis can be extracted from this approach such as the work from 

Malczewski, 2023 [21]. It is strongly encouraged to review that paper which is in the second 

publication from this thesis.   

The final conclusion for the rectangular jet is on the numerical grid. The grid is arguably the most 

important aspect of any CFD project, especially for LEE. As mentioned before, the LEE’s can 

become unstable as there are no viscous dissipation terms stabilizing any instabilities. Grid to grid 

oscillations is a real problem for the leeFoam solver even with artificial dissipation added. It is 
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therefore recommended; grids should be structured and with the least amount of non-orthogonality 

possible.   

5.3 Overall Conclusions  
Overall, even though there are some further tests that should be accomplished it appears the 

leeFoam solver can produce an acoustic solution like other LEE codes. The results show the 

solution is accurate, free from instabilities, and free of reflections from the boundary treatment. 

The fast nature of the LEE’s and the OpenFOAM environment allow this code to be easily used in 

a CAA researchers workflow. The main benefit really in developing this code in OpenFOAM was 

found clear as the code can easily be run in parallel and with custom 3D grids. Other LEE codes 

are usually closed to the public but the leeFoam solver is open and is simple to use once a 

fundamental understanding of OpenFOAM is achieved.      

5.4 Recommendations for Future Work 
Recommendations for future work should revolve around continuing research on LEE and the 

supersonic jet. Further testing should be accomplished on how the code performs in the mean flow 

region of the jet. As mentioned before, it is hypothesized the issues revolve around the shock core 

structure but, this has yet to be proven. In reality if this is the problem then it is recommended the 

leeFoam solver needs to be coupled with an LES solver and be used strictly for the far-field 

propagation. This would be slower than pure LEE, however it is hypothesized greater overall 

accuracy and usefulness would be achieved. The benefit of this method would be a whole domain 

could be simulated and there would be no need to perform FW-H.  

Another future consideration that would be less complicated and might shed some light on the jet 

core issues would be to run a random excitation on the inlet. The work from Mankbadi 1998 [8] 

showed the random input performed better than the single mode in predicting the directivity and 

this would be a good next step.    
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Appendix A: Derivation of the Linearized Euler Equations  

This section presents a derivation of the Linearized Euler Equations (LEE). There are many 

methods published of how to obtain the LEE’s and this method is a combination of them. It is set 

to give the equations in a form that is easy to deploy in OpenFOAM. It is suggested to check out 

the derivations from the following works shown below as this method took influence from. 

• Mankbadi, 1998 

• Bogey et al., 2002 

• Blom, 2003 

• Tam, 2012 

• Akhnoukh, 2015 

Out of all of the differences between the researchers mentioned above they all derive the LEE’s 

based on separating the mean and fluctuating components denoted by X0 and X’ respectively. See 

equation A.1, this will be used to derive the LEE’s.  

𝜌𝜌 =  𝜌𝜌0 +  𝜌𝜌′         𝑼𝑼 = 𝑼𝑼𝟎𝟎 + 𝑼𝑼′         𝑝𝑝 =  𝑝𝑝0 + 𝑝𝑝′ (𝐴𝐴. 1) 

A.1 Continuity Equation  

The first equation from the Euler equations which comes from neglecting viscous effects in the 

Navier-Stokes equations is the continuity equation as shown in equation A.2. 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝜌𝜌𝑼𝑼) =  𝑆𝑆𝑐𝑐  (𝐴𝐴. 2) 
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A.2 then can be broken down using equation A.1 into the mean and fluctuating components. See 

equation A.3. 

 

𝜕𝜕𝜌𝜌0
𝜕𝜕𝜕𝜕

 +  
𝜕𝜕𝜌𝜌′

𝜕𝜕𝜕𝜕
+ ∇ ∙ (𝜌𝜌′𝑼𝑼0) +  ∇ ∙ (𝜌𝜌0𝑼𝑼′)  + ∇ ∙ (𝜌𝜌0𝑼𝑼0)  +  ∇ ∙ (𝜌𝜌′𝑼𝑼′) =  𝑆𝑆𝑐𝑐  (𝐴𝐴. 3) 

The mean flow is stagnant in time so pure mean flow terms can be removed. Also, the perturbations 

are deemed to be small so any pure perturbation terms can be removed as well. The final product 

is shown in equation A.4.   

𝜕𝜕𝜌𝜌′

𝜕𝜕𝜕𝜕
+ ∇ ∙ (𝜌𝜌′𝑼𝑼0) +  ∇ ∙ (𝜌𝜌0𝑼𝑼′) =  𝑆𝑆𝑐𝑐  (𝐴𝐴. 4) 

The next equation is the momentum equation as shown in equation A.5. The before procedure 

follows except the extra terms mean some cluttering so they are broken up into the time and space 

components for ease of the reader.   

𝜌𝜌
𝑑𝑑𝑼𝑼
𝑑𝑑𝑑𝑑

+  𝜌𝜌(𝑼𝑼 ∙  ∇)𝑼𝑼 +  ∇𝑝𝑝 =  𝑆𝑆𝑚𝑚 (𝐴𝐴. 5) 

 

𝜌𝜌′
𝑑𝑑𝑼𝑼𝟎𝟎
𝑑𝑑𝑑𝑑 +  𝜌𝜌0

𝑑𝑑𝑼𝑼′

𝑑𝑑𝑑𝑑
+  𝜌𝜌′

𝑑𝑑𝑼𝑼′
𝑑𝑑𝑑𝑑 + 𝜌𝜌0

𝑑𝑑𝑼𝑼𝟎𝟎

𝑑𝑑𝑑𝑑
=  𝑆𝑆𝑚𝑚,𝑡𝑡 (𝐴𝐴. 6) 

 

 𝜌𝜌0
𝑑𝑑𝑼𝑼′

𝑑𝑑𝑑𝑑
 =  𝑆𝑆𝑚𝑚,𝑡𝑡 (𝐴𝐴. 7) 
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𝜌𝜌′�𝑼𝑼′∙ ∇�𝑼𝑼0 +  𝜌𝜌′�𝑼𝑼′∙ ∇�𝑼𝑼0 + 𝜌𝜌′�𝑼𝑼′∙ ∇�𝑼𝑼0 + 𝜌𝜌0(𝑼𝑼0  ∙  ∇)𝑼𝑼′ +  𝜌𝜌0(𝑼𝑼0  ∙  ∇)𝑼𝑼 + 𝜌𝜌0(𝑼𝑼 ∙  ∇)𝑼𝑼′

+  𝜌𝜌0(𝑼𝑼0  ∙  ∇)𝑼𝑼0 +  𝜌𝜌0(𝑼𝑼0  ∙  ∇)𝑼𝑼0 + 𝜌𝜌0(𝑼𝑼0  ∙  ∇)𝑼𝑼0 =  𝑆𝑆𝑚𝑚,𝑠𝑠                         (𝐴𝐴. 8) 

 

 𝜌𝜌0(𝑼𝑼0  ∙  ∇)𝑼𝑼′ +  𝜌𝜌′(𝑼𝑼0 ∙ ∇)𝑼𝑼0 +  𝜌𝜌0(𝑼𝑼′ ∙  ∇)𝑼𝑼0 + ∇p′ =  𝑆𝑆𝑚𝑚,𝑠𝑠 (𝐴𝐴. 9) 

 

 𝜌𝜌0
𝑑𝑑𝑼𝑼′

𝑑𝑑𝑑𝑑
+ 𝜌𝜌0(𝑼𝑼0  ∙  ∇)𝑼𝑼′ +  𝜌𝜌′(𝑼𝑼0 ∙ ∇)𝑼𝑼0 +  𝜌𝜌0(𝑼𝑼′ ∙  ∇)𝑼𝑼0 + ∇p′ =  𝑆𝑆𝑚𝑚 (𝐴𝐴. 10) 

 

After some manipulation, 

𝑑𝑑𝑼𝑼′

𝑑𝑑𝑑𝑑
+  (𝑼𝑼0  ∙  ∇)𝑼𝑼′ + 

𝜌𝜌′

 𝜌𝜌0
(𝑼𝑼0  ∙  ∇)𝑼𝑼0 + (𝑼𝑼′ ∙  ∇)𝑼𝑼0 +  

1
 𝜌𝜌0

∇p′ =  𝑆𝑆𝑚𝑚 (𝐴𝐴. 11) 

 

Same procedure for the energy equation. 

𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕

+  ∇  ∙ (𝜌𝜌𝜌𝜌𝑼𝑼) =  𝑆𝑆𝑒𝑒 (𝐴𝐴. 12) 

 

𝜌𝜌 =  
𝑝𝑝
𝑅𝑅𝑅𝑅

   𝑒𝑒 =  𝐶𝐶𝑣𝑣𝑇𝑇 (𝐴𝐴. 13) 
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𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑝𝑝0 + 𝑝𝑝′

𝛾𝛾 − 1
� +  

1
2

(𝜌𝜌0𝑼𝑼0𝑼𝑼0 + 𝜌𝜌′𝑼𝑼0𝑼𝑼0 + 𝜌𝜌0𝑼𝑼0𝑼𝑼′ + 𝜌𝜌0𝑼𝑼′𝑼𝑼′) =  𝑆𝑆𝑒𝑒,𝑡𝑡 (𝐴𝐴. 14) 

 

∇�
𝑝𝑝0 + 𝑝𝑝′

𝛾𝛾 − 1
� +  ∇�

1
2

(𝜌𝜌0𝑼𝑼0𝑼𝑼0 + 𝜌𝜌′𝑼𝑼0𝑼𝑼0 +  𝜌𝜌0𝑼𝑼0𝑼𝑼′ +  𝜌𝜌0𝑼𝑼′𝑼𝑼′)� =  𝑆𝑆𝑒𝑒,𝑠𝑠 (𝐴𝐴. 15) 

 

After some manipulation, 

 

𝜕𝜕𝑝𝑝′

𝜕𝜕𝜕𝜕
+ 𝒖𝒖′ ∙  𝛻𝛻𝛻𝛻 + 𝑝𝑝′𝛾𝛾(𝛻𝛻 ∙ 𝑼𝑼) + 𝑼𝑼 ∙ 𝛻𝛻𝑝𝑝′ +  𝛾𝛾𝛾𝛾(𝛻𝛻 ∙ 𝒖𝒖′) = 𝑆𝑆𝑒𝑒 (𝐴𝐴. 16) 
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