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ABSTRACT 

The defect detection problem is of outmost importance in high-tech industries such as 

aerospace manufacturing and is widely employed using automated industrial quality 

control systems. In the aerospace manufacturing industry, composite materials are 

extensively applied as structural components in civilian and military aircraft. To ensure the 

quality of the product and high reliability, manual inspection and traditional automatic 

optical inspection have been employed to identify the defects throughout production and 

maintenance. These inspection techniques have several limitations such as tedious, time-

consuming, inconsistent, subjective, labor intensive, expensive, etc. To make the operation 

effective and efficient, modern automated optical inspection needs to be preferred. In this 

dissertation work, automatic defect detection techniques are tested on three levels using a 

novel aerospace composite materials image dataset (ACMID). First, classical machine 

learning models, namely, Support Vector Machine and Random Forest, are employed for 

both datasets. Second, deep CNN-based models, such as improved ResNet50 and 

MobileNetV2 architectures are trained on ACMID datasets. Third, an efficient defect 

detection technique that combines the features of deep learning and classical machine 

learning model is proposed for ACMID dataset. To assess the aerospace composite 

components, all the models are trained and tested on ACMID datasets with distinct sizes. 

In addition, this work investigates the scenario when defective and non-defective samples 

are scarce and imbalanced. To overcome the problems of imbalanced and scarce datasets, 

oversampling techniques and data augmentation using improved deep convolutional 

generative adversarial networks (DCGAN) are considered. Furthermore, the proposed 

models are also validated using one of the benchmark steel surface defects (SSD) dataset. 
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CHAPTER 1: INTRODUCTION 

The defect detection problem is extensively applied in automated industrial quality 

control systems. It is broadly used for quality control to monitor the manufactured 

components to ensure product quality is maintained. Traditionally, quality inspection in the 

industry is usually performed by human workers. However, the worker-based inspection 

operation is tedious, time consuming, and requires experienced workforce. In the current 

times of cyber manufacturing, smart manufacturing, and industry 4.0, new solutions such 

as automatic optical inspection (AOI) are essential to enable real-time quality assessment 

and monitoring. Automatic inspection significantly reduces the workload of human 

experts, as well as the needed labor cost. In addition, the literature reports it improves the 

quality of the product [1].  

This study focuses on the inspection of aerospace components to identify defects. 

To identify and evaluate the possible defects, the aerospace components are examined 

manually by human experts in practice. The inadequacy of this operation comprises that it 

is tedious, subjective, labor-extensive, inconsistent, and even-biased. To make the 

operation more effective and efficient, automated optical inspection (AOI) system is 

preferred to evaluate the aerospace composite components (ACC). Ideally, the AOI system 

should deliver more consistent, accurate, and unbiased assessment results than manual 

inspections.     

Even though the models and systems have been developed in the past to classify 

the defects in the aerospace or other manufacturing industry, most of them are traditional 
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automated optical inspection, namely, statistical methods [2]–[5], spectral methods [6]–

[8], model-based methods [9], [10], and learning-based methods [11]–[16]. The first 

limitation of these approaches is to depend on the expert views and the other drawback is 

to employ the methods in a two-stage manner. To extract the features, skilled laborers are 

required to design specific rules and adjust many parameters. In the next stage, classical 

machine learning or other models are used to identify the defects. These challenges can be 

overcome by using the recent advancement of computer vision techniques. Deep learning-

based models for AOI problems are widely recognized in several domains such as steel 

surface defects [17], [18], aerospace welding defects [1], [19]–[21], pipe welding [22], 

laser welding [23], cracks and wrinkle formation [24]–[28], wafer defects [29], [30], 

concrete structures or building cracks [31], [32], etc. In the existing literature, not many 

pieces of research have been devoted to detect the defects for the aerospace composite 

components.   

The aerospace composite component is an essential part of the military or civilian 

aircraft. In fact, 50 percent of the materials are used as composite materials in aerospace 

and aviation industry. Therefore, this research primarily concentrates on the composite 

components of aerospace and aviation industry. We propose a novel AOI method, and an 

efficient defect detection technique based on deep CNN and classical machine learning 

model to inspect the aerospace composite components automatically using composite 

images. The overall framework of the proposed model can be noticed in Figure 1. First, the 

setup of acquiring the sample images of composite components is depicted where the 

uncured composite materials are laid up over cylindrical tool inside the autoclave. In the 

top of autoclave, there are two viewports and top of that two 3D DIC cameras are set to 
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capture the sample images. Second, the acquired aerospace component images are passed 

to deep CNN based hybrid model to extract the features and classify the defects including 

classical ML models. Once the training of the model is completed, the well-trained model 

can detect the defects automatically. To the best of our knowledge, our proposed method 

that combines the features of deep learning and classical machine learning model has not 

yet been explored for aerospace composite components.    

The organization of the dissertation proposal is outlined here. Research objectives 

and contributions are presented in Chapter 2. In Chapter 3, background of this research is 

described where defect inspection methods are categorized, deep CNN-based defect 

detection methods are described, and open challenges are identified in subsections. Next, 

methodology is presented where methodology of acquiring images of aerospace composite 

components, classical ML models, deep CNN-based models, proposed hybrid models, and 

imbalanced dataset modeling are demonstrated in Chapter 4. Experimental setup and 

results of this dissertation is provided in Chapter 5. Lastly, conclusion and future works are 

presented in Chapter 6. 

 

Figure 1: Overall framework of the proposed model 
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CHAPTER 2: RESEARCH OBJECTIVES AND CONTRIBUTIONS 

In this chapter, the research objectives and contributions are described. The main 

objective of the dissertation is to investigate the literature on defect inspection methods and 

propose modern automatic optical inspection methods for aerospace components. This 

dissertation primarily concentrates on deep CNN-based automated optical inspection 

methods. Major research objectives are as follows: 

(i) Acquire sample images of aerospace composite components for automatic optical 

inspection. 

(ii) Identify the aerospace composite component defects using classical machine 

learning models, namely, support vector machine and random forest model. 

(iii) Develop classification models using improved deep CNN-based models such as 

ResNet50 and MobileNetV2 models. 

(iv) Propose deep CNN-based hybrid approaches that combine the features of deep 

learning and classical machine learning models for aerospace components. 

(v) Investigate the scenario when defective and non-defective samples are scarce and 

imbalanced. 

Key research contributions are as follows: 

(i) This dissertation investigates existing work on defect inspection methods. In 

addition, it explores the literature of deep CNN-based defect detection 

techniques. 
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(ii) Acquisition of defective and non-defective samples of aerospace composite 

components. 

(iii) Hybrid novel approaches are proposed for composite materials image dataset to 

classify the defects. 

(iv) The defect detection experiments are examined using five-fold cross validation. 

(v) The results are tested considering a two set of datasets for all the models. 

(vi) This work also examines the scarce and imbalanced dataset of aerospace 

composite components. 
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CHAPTER 3: BACKGROUND 

In this chapter, defect inspection methods are categorized and discussed, along with 

traditional and modern automatic optical inspection (AOI) methods. Then, the deep CNN-

based defect techniques are described, followed by the open challenges of AOI systems 

presented in the subsequent section. 

3.1. Defect Inspection Methods Classification 

The past literature covering defect inspection methods can be broadly divided into 

three parts: (i) manual inspection, (ii) traditional computer vision, and (iii) modern computer 

vision. To be more general, it can be divided into human and machine inspection. For each 

defect inspection method, the type of product defects identified, and benefits and drawbacks 

of the inspection methods are presented in Table 1. Furthermore, traditional AOI, modern 

AOI, and structure of the AOI are also discussed in the following subsections.

3.1.1. Traditional Automatic Optical Inspection Methods 

Traditional AOI technique includes four steps, namely, (a) data acquisition, (b) pre-

processing, (c) feature extraction, and (d) defect detection. The first step, data acquisition, is 

needed to collect the data for the model. It requires lighting and camera for gleaning the data 

from the production line, if available datasets are not used for the modeling. Secondly, 

preprocessing step removes the unnecessary parts of the dataset, and the process uses 

methods such as noise reduction and filtering. For feature extraction and defect detection, 

there are several methods that can be applied for the automated defect detection. These 
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methods can be classified into four groups: (1) statistical methods, (2) spectral methods, (3) 

model-based methods, and (4) learning-based methods [33]. The goal of the statistical 

methods is to find regions with distinct spatial distribution on the input image. To extract 

defect features, statistical models based on spatial distribution employ the first order (one 

pixel), second order (two pixels) statistics and higher order with multiple pixels.  Some 

statistical methods used are co-occurrence matrix [2], autocorrelation [3], histogram 

properties [4], and edge detection [5]. Spectral approaches transform the signals from the 

spatial domain to the frequency domain to identify the defect through wavelet transform [6], 

Fourier transform [7], and Gabor filters [8]. The objective of the model-based approach is to 

capture the basic characteristics and detect defects by making an image model. Some 

standard model-based methods for defect identification are autoregressive models [9] and 

the Markov random field (MRF) models [10]. Learning based approaches first train the 

model to detect defects and then determine the defects using pattern recognition algorithms, 

namely, support vector machines (SVMs) [11], k-nearest neighbors (kNNs) [12] and 

artificial neural networks (ANNs) [13]. 
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Table 1: Benefits And Drawbacks Of Defect Inspection Methods 

Defect 
Inspection 
Methods 

Defects Benefits 
 

Drawbacks 

Manual 
Inspection 

Cracks and wrinkle 
formation, die casting, 
scratches, floaters, open 
circuits, welding defects, 
steel surface defects, etc. 

Diverse set of 
defects can be 
identified. 

Tedious, time 
consuming, 
inconsistent, 
subjective. 
 
Labor intensive, which 
leads to more mistakes 
and requires huge 
human efforts, thus 
also costly. 
 

Traditional 
AOI 

Steel surface defects, 
fabric defects, material 
surfaces, architectural 
glass materials, etc. 

Lessens the labor 
cost and human 
errors and reduces 
the time. 

Poor feature 
extraction, high time 
complexity. Requires 
skilled labor for the 
feature selections and 
extractions. 
 
Requires more 
processing time and is 
less reliable and 
robust. 
 

Modern AOI Aerospace welding 
defects, steel, machined, 
and composite material 
defects; mobile screen 
defects, wafer defects, 
small and large foreign 
matters, cracks, wrinkle 
formation, scratches, 
abrasions, oil stains, dent, 
chips, light and severe 
strains, etc. 

Offers high 
detection 
accuracy, real-
time, high speed, 
more robust. 
Reduces labor 
costs significantly 
and can extract 
the features by 
themselves. 

Requires large dataset, 
high-speed processor, 
GPU, and TPU. 

 

The above-mentioned approaches were researched extensively in literature. To 

consider a method or combination of these methods to apply on AOI problems depends on 



 

9 
 

expert views, success results and the dataset availability. For instance, spectral or learning-

based methods can be applied to obtain a defect in a patterned surface. To determine 

deformation on the steel surfaces, statistical or model-based methods can be used. However, 

these methods are generally employed in a two-stage manner, explicitly, feature extraction 

and defect detection, and implemented together in a hybrid style model. 

For example, [14] considered a fabric defect detection problem and employed AOI 

methods to extract features using wavelet transform. Then, in the next stage, it classifies the 

defects using neural network and co-occurrence matrix. In another work, [15] discussed a 

weld defect detection problem and solved again using the hybrid style model. First, the 

features of X-ray images were extracted using multiple thresholds, and then the SVM 

algorithm was employed to classify the defective and non-defective features. Further, Hough 

transform was also applied for removing the noisy pixels in the defective region and later, 

the defect was isolated. In another research, principal component analysis (PCA) and ANNs 

were applied to detect and classify the real time arc welding defects [16]. Using ANN to train 

the plasma spectrum dataset is reported to have been difficult because of huge number of 

spectral lines. Thus, PCA was employed first to remove the redundant information and 

reduce the dimensionality, and then processed data was used to train the ANN model to detect 

and classify the defects. 

To extract features in the traditional AOI methods, a prime role is assigned to human 

experts who design specific rule and adjust several parameters. Thus, the success behind 

these methods is highly dependent on experts [34]. Moreover, these methods can perform 

well under certain conditions, but are sensitive to changes in real world conditions. These 

drawbacks can be easily overcome by using deep learning. The recent advancements in deep 
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learning can extract the high-level features from given inputs and can classify the defects 

without any involvement of human expertise to design features sets manually [35]. 

Furthermore, these models are highly robust to variations, adaptable, and can also allow 

detection of several types of defects in various applications. 

3.1.2. Modern Automatic Optical Inspection Methods 

Deep learning-based methods for automatic optical inspection problems are widely 

accepted in the research community. Deep learning networks can be primarily divided into 

two parts: dense networks, if the model is based on fully connected feed forward network, 

such as deep neural network (DNN), and (2) sparse networks, if the model is sparsely 

connected, such as deep convolutional neural network (DCNN). Moreover, dense or sparse 

networks of deep learning methods are mainly classified into three paradigms: supervised 

learning, semi-supervised learning, and unsupervised learning. Supervised based learning 

has been the most widely used model, with convolutional neural networks for defect 

classification and segmentation being employed on numerous occasions. Given a large 

training dataset, the supervised based models can attain substantial defect detection accuracy. 

For example, [36] addressed a surface quality inspection problem of LED chips using 

computer vision techniques. This work proposed parallel DCNN model for labelled LED 

chip defects to classify the defects with considerable detection accuracy. In another work, a 

commutator surface defect detection problem was considered with several defects such as 

abrade, dark-spot, scratch, and others [37]. To solve the problem, a separable residual CNN-

based model has been developed to recognize the defects in a faster way with shallow layers. 

The solution also reduced the number of parameters of the model due to smaller model size. 
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The proposed model achieved reasonable accuracy, around 93%. In another research, [24] 

collected a large dataset of mobile phone glass cover with 16,800 images with labels of dent, 

scratch, chips, and other defects. The work employed a multi-DCNN to solve the cover glass 

defect detection problem and attempted to allow manufacturers to set up a fully automated 

inspection system operated at a high detection accuracy (99%). Nevertheless, collecting a 

large training dataset and labeling the data requires huge manpower and makes the model 

expensive. The scarcity of large-labeled datasets can be mitigated by semi-supervised and 

unsupervised learning models. 

Semi-supervised methods can obtain similar or even better results than supervised 

methods requiring fewer labeled training datasets. In the following four reported research 

works employing semi-supervised machine vision techniques, the detection accuracy varies 

from 92% to 99%. In [38], authors considered the automated optical inspection problem with 

the objective to detect the anomaly. To solve this problem, semi-supervised anomaly 

detection using dual prototypes autoencoder model was proposed. The model is trained with 

Aluminum Profile Surface Defect (APSD) dataset and obtained reasonable accuracy. In 

addition, the results are compared with state-of-the-art algorithms considering four different 

publicly available datasets, namely, Magnetic-Tile (MT) defect dataset, Road Surface Defect 

(RSD) dataset, Carpet Surface Defect (CSD) dataset, and APSD dataset. In another study of 

automated surface inspection problem [18], a generic semi-supervised model is developed 

considering two public datasets (DAGM and NEU) and an industrial dataset (CCL). The 

proposed model outperforms the several benchmark algorithms with 95% accuracy. 

Two weak-supervision computer vision detection methods were developed with 

considerable accuracy in [25], where a synthesis algorithm was proposed to simulate a large 
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dataset of mobile phone screen defects such as light strains, severe strains, scratches, and 

floaters, so that the challenges of insufficient amount of training dataset can be overcome. 

Then the model was trained, fine-tuned, and used for defect recognition. In another research 

[39], automated surface inspection problem was studied, and a model was developed with a 

new loss function and trained with a small number of defect dataset comprising around 25 

defect samples. The approach can identify the anomaly regions at image levels and can 

address imbalanced data at the pixel level using collaboration learning strategy by utilizing 

the loss function. The reported detection accuracy of both models with small real-world 

datasets is 95% and 99%, respectively. Nevertheless, semi-supervised models still need label 

training samples. 

Unsupervised learning is currently one of the most attractive research directions in 

the machine-learning domain. Unsupervised based models work on unlabeled training 

samples, and thus do not require manual labeling, which reduces labor cost. The literature 

suggests that the widely recognized models of unsupervised learning for automatic optical 

inspection are based on deep autoencoders (AE) and generative adversarial network (GAN). 

The AE model is a distinctive unsupervised model for high dimensional data comprised of 

two neural networks namely, encoder and decoder. The encoder extracts the latent features 

from the input images, while the decoder reconstructs the input image with some loss. GAN 

is another typical unsupervised learning model consisting of a generative and a 

discriminative stage. The following paragraphs present a series of research models from the 

available literature, which are based on AE and GAN approaches. 

First, three literature models are explained using both dense and sparse networks, 

both networks employing autoencoder models. In [40], process pattern recognition problem 
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was discussed and a deep autoencoder feature learning approach based on stack de-noising 

AE models (SDAE) was developed for manufacturing processes to learn important features 

from the process signals. Moreover, the robustness of the model was checked using a large, 

simulated dataset and Tennessee Eastman process. To extend the work, a multivariate 

manufacturing process using DNNs was examined to detect other types of patterns such as 

cycle, trend, etc. In another work [41], wafer defect detection problem was investigated and 

an improved SDAE-based feature learning approach to recognize the defects was proposed. 

The detection accuracy of this improved model was reportedly enhanced to 97%. All 

previous reported research mentioned so far in this literature review were using normal and 

abnormal samples to train the model, either with supervised or unsupervised learning. But 

research work [42] studied the automatic optical inspection problem concentrating on solder 

images of integrated circuits (IC) manufacturing that used only normal samples where one-

class based feature learning method was developed to recognize the defects using deep 

autoencoder. The results of the experiments showed that both sensitivity and specificity were 

reasonable, around 85% and 7%, respectively. Another one-class-based research was 

conducted on surface inspection problem focusing on decorated plastic parts to detect the 

fault with improved area under receiver operator characteristic curve (AUROC) reported 

around 98% using small datasets [43]. 

After the widely gained success of AE models, there were several variants of AE 

models proposed for defect detection problem. One such example is the simple AE model 

which resulted in an overfit for complex problem models, but the variational autoencoder 

(VAE) models turned out to perform well on the same complex problems. For example, 

machine vision inspection system for anomaly detection was examined aiming to identify 
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the abnormality of Electric Cathode Metal Coating (KTL Coating) [44]. To solve this 

problem, VAE model was trained with KTL coating datasets at pixel-level and the results of 

the model showed more robustness than those obtained using simple methods. This type of 

VAE model can be also used for generating the datasets to work with segmentation-based 

models for defect detection. 

Besides AE based models, GAN based models, such as pixelGAN and cycleGAN, 

are also currently popular in unsupervised learning. For example, [45] studied the adversarial 

defect detection problem with the objective of isolating the defects. The research proposed a 

pixelGAN based model concentrating on semiconductor manufacturing process data to 

expedite the process. The results outperformed the baseline model such as CenterNet on a 

real industry dataset. In another research, machine surfaces and medical acne patches 

inspection problem were examined to detect the surface defects [46]. This work developed a 

two-phase deep learning model to isolate the faults at pixel level without human annotation. 

In the first phase, it synthesized the defects and annotated fault pixels in the input image 

using cycleGAN model. Then, the resultant dataset was used to train the model using U-Net 

semantic network. The results showed that it can be applied to distinct set of surface 

inspection problems with considerable detection accuracy, in the range of 95%. 

The main drawback of unsupervised models is that it is not as accurate or reliable as 

supervised learning. However, it significantly reduces the effort for labeling the image and 

manual annotation at pixel-level in the image dataset, since it does not require a large number 

of defective samples with the semantic network. In some cases, unsupervised anomaly 

detection models can be trained with only one-class of dataset, thus, only small size of 

defective dataset can be required during the testing of the model. 
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3.1.3. Architecture of Automatic Optical Inspection Methods 

Figure 2  describes a generic automated visual inspection system for the external 

surface defect detection problem. The batches of products move on a conveyor belt with 

suitable lighting system. In addition, the architecture includes industrial camera sets with 

proper angles to capture the image data of the product and store on the image captured card, 

so that it can be transferred on the industrial computer.  

 

Figure 2: Generic architecture of an automated optical system 

The choice of camera depends on the specific application and the requirements for 

resolution, speed, and accuracy. Factors such as lighting conditions, object size, and 
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processing requirements also need to be considered when selecting a camera for a particular 

application. There are several types of cameras that are commonly used in computer vision 

systems for conveyor applications. These include: (1) area scan camera – it captures an image 

of a 2D area and is typically used for applications where a relatively high resolution is 

required; (2) line scan camera – it captures an image of a single line at a time and is 

commonly used in applications where high-speed inspection is required; (3) 3D camera – it 

captures depth information, allowing for the creation of 3D images and used in applications 

where the shape and size of objects are important; (4) smart camera – this camera has built-

in processing capabilities and can be used for applications where real-time processing is 

required. Then, direct communication interfaces between a camera and a computer network 

interface card (NIC) are commonly used in machine vision applications. These interfaces 

allow for real-time streaming of image data from the camera to the computer for processing. 

The most common direct communication interfaces are GigE Vision and USB3 Vision. GigE 

Vision uses Ethernet technology to transmit image data over a standard network connection, 

while USB3 Vision uses USB 3.0 technology to transmit data over a USB connection. In 

addition, an image data buffer, a temporary storage space, is also used to ensure that real-

time streaming of image data is reliable and efficient. 

Next, the visual system processing continues with the modern machine vision model 

that is stored on the computer system, and which processes the captured image to make the 

decision whether the product is defective or defect-free. If the product is defective, then the 

system sends a signal to the sensor to sideline the product from conveyor belt. Otherwise, it 

moves the product forward. For internal defect detection, the set up would be different for 

scanning the product and capturing the X-ray image of the product for decision making. 



 

17 
 

3.2. Deep CNN-Based Defect Detection 

Since the early 2010s, solving computer and machine vision problems using CNN 

techniques has been gaining momentum. Several computer vision problems are image 

classification, image segmentation, object detection, feature extraction, and object tracking. 

However, instead of only classifying the image as normal or defective, the topic of interest 

here is to localize the defect. Thus, image segmentation and object detection techniques are 

considered to solve computer vision problems. In this section, the basic structure of CNN is 

discussed, along with the emergence of CNN models in the past decade. Next, supervised 

and unsupervised learning of deep CNN-based models are explained with diverse set of 

computer vision techniques. Then, object detection and pixel level segmentation techniques 

are specifically reviewed since these techniques cover the state-of-the-art methodologies for 

automatic optical inspection. In addition, computer vision applications using deep CNN-

based models are also surveyed. 

3.2.1. Basic Structure of CNN 

The CNN architecture has three key components, namely, convolutional layer, 

pooling layer, and full connected layer that can be observed in Figure 3. Convolutional layers 

are the essential parts of CNN networks. The function of this layer is to extract high-level 

features from the input image. Convolutional layers also comprise distinct set of filters that 

produce a set of feature maps after convolving the kernel over the input image. Convolutional 

networks stack up the convolutional and pooling layers, with and fully connected layer to 

complete the construction of the model. Finally, the last layer is output layer that classifies 

the image or pixel in the classification section. 
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Figure 3: Basic structure of CNN network  

3.2.2. The Emergence of CNN 

Since 1998, LeCun [47] introduced a CNN architecture based on gradient learning 

which was implemented on hand digit recognition. Since CNN is a sparsely connected 

network, it has a couple of benefits such as parameter sharing, and less trainable parameters 

than traditional fully connected feed forward networks. It primarily includes few basic 

concepts: shared weights, local acceptance, and pooling layers. Particularly, the shared 

parameters of CNN reduce the degree of freedom parameters without degrading the solutions 

quality. It also allows CNN to be implemented by normal gradient decent approach. Thus, 

the CNN-based model emerges as one of the key algorithms to solve any computer vision 

problems, and it also has become one of the most active research domains in the machine 

vision community. 

LeNet-5, described in [47] was the first CNN architecture with five convolution 

layers to recognize the handwritten digits. AlexNet, described in [48] is another CNN 
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architecture with a few more convolutional layers, which gained higher accuracy in 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Later, GoogleNet [49], 

VGGNet [50], and ResNet [51] models obtained better accuracy in the ImageNet challenge 

with thousands of classes and millions of training samples, including millions of parameters. 

Initially, the researchers were adding more layers and achieving higher accuracy. However, 

ResNet found that adding more convolutional layers can increase the complexity of the 

model, while not always achieving higher accuracy. Thus, ResNet introduced the residual 

concept and found better results. Table 2 shows the Top 1 accuracy, model parameters, and 

error rate of the CNN model changes in the ImageNet challenge from year 2010 to 2021. 

Over the years, the percentage of Top 1 accuracy and model parameters in millions of CNN 

architectures increased tremendously in the ImageNet Challenge, which can be noticed in 

Figure 4 and Figure 5, respectively. On the other hand, the percentage of error rate of the 

model decreased significantly, result illustrated in Figure 6. Besides supervised CNN models, 

convolutional networks also worked with AE and GAN models, namely, convolutional 

autoencoder (CAE) and deep convolutional GAN (DCGAN), respectively. These algorithms 

are widely accepted in solving unsupervised tasks in computer vision. CAE was first 

introduced by [52] to extract the high-level features and for dimensionality reduction. 

DCGAN was initially proposed by [53] to generate new data with the same distribution of 

training dataset at image level.
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Table 2: The Emergence Of CNN Models Using Imagenet Database 

Year Model 

 
Top 1-

Accuracy 
(%) 

 
Parameters 
(in Million) 

 
Error Rate 

(%) Network 

2010 ILSVRC'10 [54] 52.9 - 28.2 shallow 
2011 ILSVRC'11 [55] 54.3 - 25.8 shallow 

2012 AlexNet [48] 63.3 60 16.4 deep 
2013 ZFNet [56] 64.0 - 11.7 deep 
2014 VGG19 [50] 74.5 144 7.3 deeper 
2014 GoogleNet [49] 74.8 11.2 6.7 deeper 
2015 ResNet [51] 81.2 25 3.57 deeper 
2016 GBDNet [57] 66.3 - 2.81 deeper 
2017 SENet [58] 80.9 1.23 2.25 deeper 
2018 MobileNet-V2 [59] 74.7 3.4 - deeper 
2019 FixResNeXt-101 [60] 86.4 829 - deeper 
2020 EfficeintNet-L2 [61] 88.4 480 - deeper 
2021 ViT-G/14 [62] 90.5 1843 - deeper 

 

3.2.3. Supervised CNN 

Supervised CNN is one of the most widely used models for defect detection 

problems. In the past decade, CNN techniques have shown the most promising results for 

several tasks. In literature, supervised CNN techniques are primarily used for two tasks: 

defect classification and defect segmentation.  

 
Figure 4: Top 1 accuracy of various CNN models in ImageNet challenge over the years 
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Defect classification is a classification technique that works at image level and seeks 

to recognize the type of object in the image. Defect segmentation is a segmentation 

technique, which works at pixel level and seeks to find the object type in each pixel of the 

input image. Both the techniques can be applied on the defect detection problem, and the 

model can be trained either from the scratch or using pre-trained models. Ref. [63] proposed 

a CNN-based model with Naïve Bayes data fusion technique aiming to classify cracks in 

components’ surfaces of nuclear power plants, where regular inspections are required for 

safety.  

For the surface defect detection problem, [64] developed a deep learning approach 

with a segmentation network. In the first stage, a segmentation CNN model was trained, and 

in the next stage, the features extracted from the previous stage were used to train a 

classification CNN-based model. The final detection task was implemented as a 

classification task to identify whether an image is normal or abnormal. Another research [65] 

studied the underwater pipeline damage detection problem using pre-trained MobileNet 

model for defect classification task. Ref. [66] studied a Mura defect classification problem 

for a thin film transistor liquid crystal display. To ensure the quality of the displays, the 

research work developed a new method that blended a CNN feature extractor with a 

Figure 5: Number of parameters of various CNN models in ImageNet challenge over the years 
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sequential extreme learning classifier. In another study, X-ray images of castings were 

considered to identify the defects by employing CNN-based spatial attention bilinear 

network [67].  

End-to-end deep learning approach can be used for both defect classification and 

defect segmentation. This approach is exemplified in [68] for a steel surface defect detection 

problem. To identify the exact class and precise location, a standard CNN model combined 

with multilevel feature fusion network was proposed to accomplish robust classification 

ability. 

Similarly, [34] used a pre-trained CNN-based model for both classification and 

segmentation task to extract the features from the patches for automated surface inspection. 

Additionally, an image segmentation model is trained in [69] by using the segmentation 

network along with random forest techniques. 

In 2015, one popular model for semantic segmentation, fully convolutional network 

(FCN), was proposed with effective inference and learning [70]. Along these lines, [71] 

developed an FCN architecture to generate the defect segmentation map in one step, 

identifying the localization of the defects precisely. In the same year, [72] proposed U-Net, 

which is a CNN-based network, for biomedical image segmentation with different network 

Figure 6: Error rate of various CNN based model in ImageNet challenge over the years 
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and training strategy relying on vigorous data augmentation techniques. Later, several 

researchers used this technique in their studies for diverse set of applications and obtained 

efficient results. In [73], an automated fiber placement defect detection was proposed with 

end-to-end fashion formulated as a defect segmentation problem. Initially, the artificial 

training data was generated using a probabilistic model and then, a CNN network motivated 

by U-Net architecture was trained to identify the defects at pixel level. In another research 

[74], a novel end-to-end trainable segmentation-based CNN model was developed for crack 

detection problem using multi-scale feature learning and results were compared with the 

benchmark U-Net model. For polycrystalline solar cell defect inspection problem, [75] 

proposed an improved U-Net architecture considering multi-attention networks to classify 

and segment the complex defects using real photovoltaic images.  

In another U-Net based architecture, [76] developed a model, named as MCuePush 

U-net, comprising of primarily three components: (1) MCue that creates three channel inputs, 

(2) U-net that learns the informative regions, and (3) Push network that identifies the specific 

region with bounding boxes. A hybrid approach of regional proposal networks (RPN) to 

identify defect regions, and modified U-Net architectures to segment the defects at pixel 

level, were employed for the silicon wafer defect segmentation problem [77]. In most of the 

research works surveyed, it has been shown that U-Net performs better than FCN for 

segmentation networks, which is portrayed in Table 3. Furthermore, Table 3 also presents 

the advantages and disadvantages of CNN-based classifiers and semantic networks for defect 

classification and defect segmentation, respectively. 
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3.2.4. Unsupervised CNN 

The growing demand of unsupervised CNN techniques for defect detection problems 

is unparalleled. Unsupervised CNN models have the potential to overcome the challenges of 

supervised models such as labeling images and annotating pixels and are also capable of 

isolating the defects with reasonable accuracy, without having the limitations of supervised 

CNN model. The models can work for image labeling as well as pixel level. In addition, they 

can classify the defective image and can localize the defective area. Unsupervised CNN can 

be applied in several machine vision applications such as internal defect detection (non-

destructive testing, radiography images, etc.) and external defect detection (steel surface, 

mobile phone screen, etc.). The literature mainly categories unsupervised CNN technique for 

defect detection in three types: (1) anomaly detection, (2) GAN-based model, and (3) hybrid 

models. 

Anomaly detection is one of the most common techniques in unsupervised CNN-

based models to detect abnormalities. In the specific domain literature, anomaly detection 

often uses the CAE model and variants of AE model. As an example, [78] studied the 

machine vision inspection of surface defects problem considering only defect-free samples 

for model training. To localize the defective area fast and with accuracy, the research 

proposed a multi-scale fully convolutional autoencoder (FCAE). 
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Table 3: Advantages And Disadvantages Of CNN-Based Classifiers And Segmentation 
Networks For Defect Detection 

Category Method  
Advantage Disadvantage 

Defect 
Classification 
(CNN-based) 
 

CNN + 
logistic/classifier/ 
attention [53] [54] 
[55] [56] [57]   

Require only image-
based labeling, high 
speed in training and 
testing. 

Require large training 
samples (defective and 
defect-free samples); 
no defect 
segmentation. 

Defect 
Segmentation 
(Semantic 
Networks) 

FCN; U-net 
[58] [59] [60] [61] 
[62] [63] [64] [65] 
[66] [67] [68] 

Fast training and 
evaluation; identify 
and isolate the 
defective area. 

Requisite of pixel-
level human 
annotation; tiresome 
work, labor-intensive. 

Another CAE based model for anomaly detection was developed to identify the 

abnormality in concrete structures [31]. The study solved the civil infrastructure inspection 

problem, requiring no labeled images for training, thus it highlighted processing time savings 

for data labeling. In [79], authors presented a winner-take-all AE method to learn the shift-

invariant sparse representations including lifetime and spatial sparsity in each feature map. 

For semi-supervised and unsupervised anomaly detection, [80] proposed a generalization of 

deep support vector description (D-SVDD) model. For several years, AE and variants of AE 

based model were predominant, yet GANs eventually gained the lead in machine vision 

domain. 

The second category of unsupervised CNN models for defect detection is the GAN-

based method. The variants of GAN are further classified as GAN synthesis, GAN scoring, 

and AnoGAN (anomaly detection with GAN). For GAN synthesis, [81] proposed a defect 

exaggeration model, where GAN is combined with CNN network to generate flawless image 

and identify tiny surface defects. To improve the defect recognition process, [82] developed 

a surface defect-generation adversarial network (SDGAN) and applied it on defect-free 
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images to enlarge the defective dataset. For GAN scoring, [83] trained a GAN-based model 

using score function to make the anomaly detection more efficient on high-dimensional 

dataset. In another research for high-dimensional spaces, [84] proposed a novel method for 

anomaly detection considering GAN networks to search a good representation of the sample 

in the generator. Research on AnoGAN is advanced in [85], where a fast AnoGAN method 

is developed to identify defective images and segment the anomalous area. 

 

Table 4: Advantages And Disadvantages Of Anomaly Detection, GAN-Based, And 
Hybrid Approach For Defect Classification And Defect Detection 

Category Method  
Advantage Disadvantage 

Anomaly 
Detection 
(CAE-based) 
 

CAE 
reconstruction; 
FCAE; D-SVDD 
[78][31][79][80] 

Require only defect-free 
samples to train the 
model; no need of pixel-
level annotation. 
 

Defect localization is 
hard; detection of tiny 
defects is difficult. 

GAN-based 
 

GAN synthesis; 
GAN scoring; 
AnoGAN 
[81][82][83][84]
[85]   

Defect synthesis to train 
the model; no annotation 
is needed at pixel-level; 
AnoGAN requires only 
defect-free images. 
 

Training and validation 
are slow; require 
human screening in 
defect synthesis; 
imprecise defect 
segmentation. 

Hybrid 
Models 

Bilinear model; 
CycleGAN; U-
net; [86][46] 

CNN-based; require 
only image labelling; no 
need of human 
annotated pixels; real-
time defect inspection; 
defect localization. 

Requires a substantial 
amount of dataset; 
blurry defective area; 
slow training. 

 

The third category of unsupervised CNN models for defect detection is the hybrid 

approach. A generic defect detection problem was explored to classify surface defects by 

extracting features locally and globally using bilinear based model constructed as two 

symmetric sub-networks based on visual geometry, labeled Double-VGG16 [86]. However, 
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the proposed model has some limitations, especially on tasks such as localization of defects 

in complex textures. Ref. [46]   developed a novel hybrid approach using CycleGAN and U-

Net semantic networks with the objective to detect the pixel-wise defect. More detailed 

information, including the advantages and disadvantages of anomaly detection, GAN-based, 

and hybrid approach for defect classification and defect segmentation are presented in Table 

4 presented in this section. 

3.2.5. Object Detection 

In this section, one of the most recent computer vision methods for automatic optical 

inspection is discussed. In recent years, there has been a significant increase in scholarly 

research on visual defect detection problems using object detection techniques, namely, 

YOLO and RCNN based models.  

In [87], steel strip production can result in surface defects due to mechanical forces 

and environmental factors. Identifying these defects is crucial for producing high-quality 

products, as their presence can cause significant economic losses for the high-tech industry. 

To address the limitations of current algorithms, researchers developed an end-to-end defect 

detection model based on YOLO-V3, utilizing an anchor-free feature selection mechanism 

and specially designed dense convolution blocks to improve feature reuse, feature 

propagation, and network characterization. Experimental results showed that the proposed 

model outperformed other comparison models, achieving 71.3% mAP on the GC10-DET 

dataset and 72.2% mAP on the NEUDET dataset. In [88], the aerospace industry involves 

assembling many fastening elements, such as bolts, washers, and nuts, which are currently 

identified manually by humans. However, human error can have a significant impact on 

efficiency and safety. To address this, a deep learning and image processing approach using 
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the YOLO-v5 algorithm was proposed to classify these components based on their shape, 

along with an image processing method to estimate their spatial dimensions, including thread 

pitch. Despite the challenges, the proposed system achieved promising results. Concrete is a 

common building material, but strong wind erosion in Northwest China causes damage to its 

surface, affecting both the appearance and safety of buildings [89]. To identify erosion areas 

in concrete, a deep learning dataset was established through erosion tests and an improved 

YOLO-v3 algorithm model was proposed. The model demonstrated more accurate 

recognition of erosion damage to concrete, achieving accuracy, precision, and map of 

96.32%, 95.68%, and 75.68%, respectively.  

Ref. [90] introduced a deep learning-based automatic defect detection system called 

YOLO-attention, which was specifically designed for wire and arc additive manufacturing 

(WAAM) processes. YOLO-attention incorporates improvements in three object detection 

models and achieves both speed and accuracy in defect detection. The evaluation on the 

WAAM defect dataset showed that the model achieved a mean average precision of 94.5 and 

a frame rate of at least 42 frames per second, demonstrating its feasibility in practical 

industrial applications. A computer vision pipeline was developed to rapidly analyze 

electroluminescence (EL) images of solar photovoltaic (PV) modules and identify defects 

using machine learning models such as Random Forest, ResNet models, and YOLO [91]. 

The developed models were tested on a dedicated testing set, resulting in macro F1 scores of 

0.83 (ResNet18) and 0.78 (YOLO), and were used to analyze 18,954 EL images of a PV 

power plant damaged in a vegetation fire, finding increased frequency of certain defects on 

the edges of the solar module closest to the ground after fire. 
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In [92], Wheel hub defects have complex types, different location and size, making 

it difficult to establish an accurate detection model. To address this, a wheel nuclear hub 

defect detection method based on the DS-Cascade RCNN was proposed that uses spatial 

attention mechanism, deformable convolution, and pruning algorithm to optimize the model 

and compress the model space without losing accuracy. Experimental results show that the 

proposed method can effectively detect six kinds of wheel hub defects, and the mean Average 

Precision (mAP) is 95.49%. In [93] The safety of pipeline transportation relies on Non-

Destructive Testing (NDT) to detect weld joint defects. However, traditional manual 

inspection of X-ray images suffers from accuracy and efficiency issues. To address this, a 

model integrating Feature Pyramid Network FPN, and a new visual attention mechanism 

SPAM was proposed, along with a data augmentation method based on geometry 

transformation. Experimental results show that the proposed model outperforms Faster-

RCNN in detecting defects, with a 4.0% increase in mAP value. Damage to metro tunnel 

surfaces caused by environmental changes, train-induced vibration, and human interference 

can lead to accidents if not adequately and efficiently maintained [94].  

The inspection of these surfaces is challenging due to harsh conditions, such as low 

light and limited inspection time. To address this, an automatic Metro Tunnel Surface 

Inspection System (MTSIS) has been developed, consisting of hardware and software 

components, including a high-speed image capture system, image pre-processing methods 

(contrast enhancement and stitching), and a defect detection method based on a multi-layer 

feature fusion network. Practical experimental results demonstrate the effectiveness of the 

proposed MTSIS in detecting defects on metro tunnel surfaces. 
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3.2.6. Pixel Level Segmentation 

This section reviews the latest developed computer vision techniques for automatic 

optical inspection. Scholarly contributions for the pixel level segmentation have been 

significantly growing in the last few years. The models developed in the articles referenced 

in the previous sections are mostly evaluated through accuracy metrics. The newly developed 

pixel level segmentation models are highly encouraged to be compared with the mean 

intersection over union (MIoU) or Dice coefficient, instead of accuracy metrics. The 

performance comparisons of recently developed pixel level segmentation models for AOI 

are presented in Table 5 and include MeanIoU and Dice Coefficient evaluations. The 

reviewed articles are mainly categorized as supervised and unsupervised deep CNN based 

segmentation models. In addition, a few papers focus on small or micro defects datasets. 

Using RSDD dataset, [95] and [96] presented segmentation-based model. Ref. [95] 

developed a pixel level segmentation network including deep feature fusion, multi-level 

feature aggregation module, and multi-branch decoder. Ref. [96] proposed an NDD-Net 

model to create an end-to-end defect segmentation scheme comprising of attention fusion 

block to obtain discriminative features and improve the performances. The performance 

achieved by these two models show a MIoU of 0.85 for [95] and a Dice Coefficient of 0.835 

for the model presented in [96], respectively. Furthermore, [97] introduced the UCF EL 

defect dataset and proposed a semantic segmentation model to classify the five defects with 

MIoU of 0.573 and pixel-level accuracy of 95.4%.  
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Table 5: Performance Comparisons Of State-Of-The-Art Pixel Level Segmentation 
Model For Automatic Optical Inspection 

Model Dataset Accuracy 
(%) 

 
MIoU 

Dice 
Coefficient 

Pixel level segmentation 
on RSDD [95] 

RSDD - 0.850 - 

NDD-Net [96] RSDD 0.997 - 0.835 
Semantic Segmentation 

of EL Images [97] 
UCF EL 

Defect Dataset 
95.4 0.573 - 

U-Net GMP + SCLDice 
[98] 

Kolektor - 0.56 - 

Regression based pixel 
segmentation [99] 

DAGM - 0.845 - 

TAS2-Net [100] DAGM - 0.869 - 
Automatic deep 

segmentation [101] 
GDXray 0.998 - 0.854 

Improved super-pixel 
segmentation model 

[102] 

Machine 
surfaces 

91.11 - - 

CycleGAN [46] Machined 
surfaces 

95 0.71 - 

Pixel-wise semi-
supervised model [103] 

FID 91.85 0.825 
 

- 

 

In [98], authors presented a U-Net GMP method comprising of SCLDice using 

Kolektor dataset with MIoU of 0.56. Ref. [99] developed a regression-based pixel 

segmentation model using DAGM dataset to localize the defects with MIoU of 0.845. In 

another work, [100] proposed a TAS2-Net model for small surface defects with same dataset 

but slightly better MIoU of 0.869. To address the class imbalanced or micro defects issue, an 

automatic deep segmentation model is proposed [101] with an attention-guided segmentation 

network for pixel level welding defects with decent Dice Coefficient of 0.854. To classify 

the machined surface defects at pixel level, [102] developed an improved super-pixel 

segmentation model. In contrast, [41] proposed the unsupervised segmentation CycleGAN 

model to segment the machined surface defects with MIoU of 0.71. Ref. [103] authors 
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developed pixel-wise semi-supervised segmentation model with multi-task mean teacher 

using fabric image dataset. The MIoU performance metric reported is 0.825. Future research 

in this area should be coordinated to compress models in such a way so that to yield a more 

lightweight model while ensuring high detection accuracy. 

3.2.7. Applications of Deep CNN-Based Defect Detection 

Computer vision applications have been widely adopted in quality inspection 

problems and mostly solved using deep CNN-based model. They can be mainly categorized 

into internal surface inspection and external surface inspection, as portrayed in Table 6. 

Internal defect detection is mostly used in aerospace welding, pipe welding, laser welding, 

and other similar welding operations. Welding is needed in various manufacturing industries 

to join two distinct parts into one component, many of these processes being used in 

aerospace industry. In certain unanticipated cases, defects might occur in aerospace-welded 

components that can increase the risk of accidents. To ensure the quality and safety for 

aerospace industry components, several researchers solved this problem using deep CNN-

based techniques, such as X-ray images of aerospace welds [1],[19],[20]. 

 In addition, [21] considered X-ray images of aerospace composite materials to 

recognize the defects using transfer learning model. Covering different industries, [22] 

studied the petroleum pipelines welding defect detection problem using conditional GAN 

and transfer learning with augmenting the X-ray images, while [104] presented the Keyhole 

Tungsten Inert Gas (TIG) welding type inspection using ResNet models to identify the 

different states of welding. To inspect the laser welding defects of safety vents on power 

battery, [23] used a pre-trained SqueezeNet model to identify the abnormalities in the images. 
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The SqueezeNet model is a CNN architecture that was reported to attain a high accuracy on 

ImageNet challenge, even though it uses a small model and low number of parameters. 

External surface defect detection is primarily classified into textured and patterned 

surfaces. First, textured surface defect detection methods are applicable in several domains. 

This literature review divides textured surface applications into three parts such as 3C 

products, construction, and miscellaneous. The 3C products include mobile phone-type 

devices, LCD displays, and printed circuit boards (PCB) components. To improve the quality 

of 3C products, surface defect detection of mobile phone screens is one of the essential tasks. 

As an example, [26] studied machine vision problem of mobile phone screens using a novel 

deep learning algorithm to extract the features and classify the defects. In addition, a weak-

supervised defect detection method was proposed for mobile phone screen defects such as 

scratches, floaters and strains [25]. Ref. [24] addressed the smart factory display 

manufacturing for mobile screens and developed a multi-deep learning neural network to 

identify the defects. 

 

Table 6: Categorization of Defect Detection Application 
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With the goal to enhance the quality of the LCD display of 3C products, [27] 

addressed the homogeneously structured LCD display defect detection problem using 

autoencoder based anomaly detection technique. While the developed model includes a small 

size dataset, the experimental results are significant (100%). In another study covering small 

industrial image dataset of LCD, [28] developed a deep CNN-based method for defect 

detection. To ensure the quality of 3C products, one of the key issues is to improve the 

external surface defect detection of PCB. Within the defect detection domain, [113] 

addressed an automatic inspection system for PCB board using effective self-adaption 

methods to identify the PCB defects with significant detection rate. In another study, also 

covering PCB defects, [114] proposed a deep learning method using faster region-based 

CNN (R-CNN) and feature pyramid network to recognize the PCB surface defects with mean 

average precision (mAP) of 95%. The mAP is calculated as the average AP values of the 

number of defects in a candidate area. 

Defect detection of construction materials in the civil infrastructure domain is another 

vital application of machine vision. Construction materials and their typical defects include 

glass panels that exhibit scratches and concrete structures that exhibit cracks, among others. 

Glass pieces are the key components of building materials. For quality assurance of glass 

products, [108] studied the automated scratch detection of transparent glass components. In 

order to identify the scratches on the surface, this study developed a deep learning approach 

using mask and region-based CNN (Mask R-CNN) with a significant reported accuracy of 

94%. Another important computer vision application in the construction materials domain is 

the study of concrete structures defects such as building cracks. The data of building surfaces 

can come from structures such as bridges, houses, roads, and dams. In [32], the building 
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cracks defect detection using FCN, R-CNN, and richer fully convolutional networks (RFCN) 

were compared and evaluated for picture performance detection and comprehensive 

assessment, with RFCN found to exhibit the best outcomes. Ref. [31] attempted to tackle the 

anomaly detection problem of concrete structures using CAE with defect-free images. Other 

machine vision applications for textured surface defect detection are reported for machined 

surfaces [46], [109], die casting [110], steel surfaces [17], [18], aluminum profiles [38], 

polycrystalline alloys [111], bottles [112], wood [27], and wafer surface [29], [30], [41]. 

The last defect detection application category identified in the survey is the patterned 

surface defect detection. This is another widely researched area within the larger external 

surface domain, with the main application being fabric defect detection. Fabric inspection 

system plays a key role for quality assurance in textile manufacturing. There is an ever-

growing demand in the textile factory to substitute the human-intensive quality inspection 

performed with naked eyes by an automated inspection system. This task compelled 

researchers and practitioners to develop deep CNN-based approaches to isolate fabric defects 

[105]–[107]. For all machine vision applications in this area, the results of detection accuracy 

vary from 88% to 99%. 

 

3.3. Open Challenges 

For the last few decades, many researchers and practitioners have studied the defect 

detection problem for quality control and assurance. As such, the demand of automated 

inspection systems for quality control in the manufacturing industry grows by the day. Over 

the years, researchers proposed a diverse set of deep learning techniques to isolate the defects. 

However, there are still numerous challenges left to tackle in this domain. This section 
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presents the identified open challenges which are categorized as follows: (1) challenges in 

algorithms, (2) challenges in applications, and (3) challenges in data processing on high 

performance computing systems. 

3.3.1. Challenges in Algorithms 

This section covers the many challenges explained at the algorithmic level, such as 

defect inspection methods, supervised CNN-based methods, unsupervised CNN-based 

methods, etc. Defect inspection methods include manual inspection, traditional AOI, and 

modern AOI. Each inspection method brings forth various challenges. Manual inspection 

has specific well-known drawbacks. First, it requires large number of human experts for the 

inspection, which significantly increases the labor cost. Being labor-intensive work, manual 

inspection leads to many mistakes. Also, manual inspection is time-consuming, inconsistent, 

and subjective. To overcome these disadvantages, traditional AOI methods have been 

developed where image processing techniques and shallow ML algorithms were used to 

reduce the labor cost, human errors, and inspection time. However, many challenges still 

exist when employing the above-named methods. For example, traditional computer vision 

techniques have poor feature extraction and huge time complexity. Thus, the shallow ML 

techniques require human experts to find the specific features to feed the model.  

Though some of the traditional machine vision methods achieve detection accuracy 

for one defect pattern as high as 99%, they still do not work as expected with multiple 

patterns. In contrast, modern AOI methods have been consistently used by researchers and 

manufacturing industries for addressing defect detection problems. These techniques are 

known to attain high detection accuracy, increased real-time model robustness, reduced labor 
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costs, and good performance for high-level feature extractions. Still, these traditional 

machine vision methods were identified to have challenges such as the need for substantial 

amount of data to train the model, performance challenges for hyper-parameters tuning, and 

limitations on the high-speed processor, GPU, and TPU for execution of complex models. 

Modern computer vision techniques for defect detection are deep CNN-based 

models. For supervised deep CNN models, a large, labeled image dataset is required to train 

the model to attain considerable detection accuracy, since the detection accuracy of the model 

highly depends on the quality of the dataset. Thus, acquiring and labeling datasets are 

essential, but it still carries a series of challenges. First, acquiring a large dataset is one of the 

major challenges for researchers and practitioners. Capturing the images in the industry could 

run into limitations such as non-uniform illumination, motion blur, and camera noise. The 

quality of the images also depends on the manufacturer’s standards. Then, the challenges 

also depend on the image dataset acquired in different applications. As an example, obtaining 

images by X-ray can run into issues such as noise and defects in the images are very subtle, 

so background differentiation makes it difficult to process the images.  

For steel surfaces, usually the occurring of defects has a very low probability as well 

as they are visually indistinctive. Therefore, the defective samples are limited in number, 

which makes it hard to represent the distribution of dataset, which in turn brings even more 

challenges. Generally, scarce training samples can and many times will lead to a poor 

generalization ability of the model. One of the major challenges with deep learning models 

is the problem of generalization. While deep learning models are known to perform well on 

training data, they may not generalize well to new, unseen data. This is because deep learning 

models often have a large number of parameters that can be tuned to fit the training data very 
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closely, sometimes resulting in overfitting. Overfitting occurs when the model fits the noise 

and idiosyncrasies of the training data rather than the underlying patterns and relationships. 

Another issue related to generalization is the problem of dataset bias. If the training data is 

not representative of the target population or contains systematic biases, the model may not 

be able to generalize well to new data. To address these issues, various techniques have been 

developed, such as regularization, early stopping, data augmentation, and transfer learning. 

These techniques aim to improve the generalization performance of deep learning models by 

reducing overfitting and increasing the robustness of the model to new, unseen data. 

Secondly, labelling images is another difficult task to complete and as an undesired 

consequence it increases the labor cost. In addition, it can only classify images without being 

able to locate the defective area. To alleviate this issue, several scholars developed CNN-

based semantic networks to account for defect localization, such as FCN and U-Net 

networks. While addressing the defect localization, these methods also have challenges. One 

first challenge comes from the labor-intensive process to perform pixel-wise human 

annotation, which again increases the labor cost. A second labor- and time- intensive task is 

to annotate the data at pixel-level. To overcome these challenges, computer vision 

researchers proposed unsupervised deep CNN-based models that do not require any human 

labeled or annotated data and used them to identify the image and/or localize the defective 

area. Unsupervised anomaly detection techniques and the GAN-based models have the 

advantage not only to require normal samples to train the model, but also there is no need of 

pixel-level annotation. Even with these advantages, there are challenges still yet to be 

addressed, such as improvements in the accuracy of defect localization and in the reliability 

of unsupervised models, which are lower than that of supervised models. 
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Other challenges related to algorithms are the complicated process of selection of 

specific algorithms for certain defect detection problems. The size of training samples 

influences many aspects of the deep CNN models during learning process, such as the 

detection accuracy to be achieved, training time of the model, number of features, 

distribution of the dataset, and the computing system required for the model. Besides 

algorithm selection, tuning the hyper-parameters is another key challenge for deep CNN-

based defect detection algorithms. Some of the hyper-parameters’ tasks include determining 

the number of network layers, finding the proper number of filters, and setting the filter size 

for each layer, selecting the stride size and the pooling type, and choosing the number of 

neurons and activation functions for each neuron. To achieve reliable results for large 

models, the deep CNN-based models challenge list is completed by another series of tasks 

that need to be addressed, namely selecting an optimizer for the model from stochastic 

gradient descent (SGD), performing the adaptive momentum estimation (Adam), setting the 

adaptive gradient learning algorithm (Adagrad), and training a significantly large number of 

parameters. These challenges require an efficient hardware infrastructure to execute the 

complex model. 

The challenge with the explainability of CNN network decisions is that they operate 

as black boxes, meaning that it can be difficult to understand how they arrive at their 

conclusions. CNNs learn to recognize patterns in data through layers of abstraction, and the 

final decision is often made based on a combination of these patterns. However, it can be 

challenging to determine which patterns are being used in the decision-making process and 

why they were given importance. This lack of transparency is particularly problematic when 

it comes to safety critical applications such as medical devices, aircraft systems, autonomous 
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vehicles, etc., where it is crucial to understand how a decision was made. Without a clear 

explanation, it may be challenging to trust the results of a CNN network, and it could lead to 

serious consequences if incorrect decisions are made. Several techniques have been 

developed to improve the explainability of CNN network decisions, such as visualization of 

feature maps and saliency maps, or the use of attention mechanisms to focus on specific 

regions of an image. However, further research is needed to fully address this challenge and 

make CNNs more transparent and interpretable. 

3.3.2. Challenges in Applications 

This section discusses the key applications’ challenges, such as those encountered in 

databases for automated optical inspection. The process of acquiring a database is an 

essential step for all deep CNN-based models. But, as in any other application, databases 

come with a series of challenges such as data privacy, data cleanness, data labeling and 

annotation, and data sharing. Data privacy is one of the major challenges for machine vision-

based defect detection methods. Regulations in force in several industries, such as aerospace 

manufacturing domain, ask that the dataset is kept private and not uploaded in the public 

domain due to security reasons. Cleaning the dataset is very much a requirement before 

feeding it into a model. Particularly, cleaning the noises in the dataset improves the quality 

of the data and makes it easier to explore and understand the model. Also, before training the 

model, anomalous data needs to be removed, the images need to be resized, and image 

resolution needs to be fixed.  

Data labelling and annotation is another essential step in preparing the dataset for the 

model and it requires significant human efforts and expertise. Lastly, but not the least 
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important, researchers and practitioners do not share data easily, which makes it difficult for 

other interested parties to collect the dataset and train their models. In certain manufacturing 

industries, it is relatively easy to gather non-defective samples in the early phase of 

production but collecting enough defective samples for the robust model is hard, since 

occurrence of defective samples is rare compared to non-defective ones. Automated machine 

vision-based non-destructive testing (NDT) methods usually face two challenges: low 

availability of defective images and lack of precise annotation of defective samples. 

Insufficient abnormal images create an imbalanced dataset and result in inaccurate 

representation of the distribution of all defective samples, which makes the training process 

difficult. Furthermore, the low number of defective samples, with low contrast in many cases, 

causes ambiguity in both defective samples and normal samples. 

3.3.3. Challenges in High Performance Computing 

To solve the complex defect detection problems using deep CNN-based models, high 

performance computing (HPC) is essential. Most of the deep CNN models researchers use 

high-speed processors, substantial amount of graphic processing unit (GPU), and tensor 

processing unit (TPU) via cloud computing. Cloud computing facilitates HPC by providing 

huge computational capabilities to individual researchers and organizations who might have 

insufficient hardware infrastructure in-house to train complex models. Amazon web services 

(AWS) provides researchers and practitioners with the power to create HPC clusters on 

demand, train and test ML models, gain valuable insights on complex models, and improve 

their productivity. But since nothing is free, these services come with external constraints 

and limitations such as cost, security, data transfer, performance, to name a few. Cost-
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management to build and use cloud HPC systems is a major concern for most organizations. 

Data security on clouds is another major concern for deep learning researchers and 

practitioners. In addition, to run models on the cloud, proprietary data must be moved into 

the cloud, which is many times a no-solution challenge for many organizations. Lastly, 

performance in the cloud is another major concern since most of the deep learning scholars 

expect high performance form HPC systems, but the performance may be reduced due to 

inter-connect latencies and outside network limited capabilities for data transfer. 

Furthermore, federated learning has emerged as a promising approach for defect 

detection in manufacturing, as it allows multiple parties to collaborate and jointly train a 

machine learning model without sharing their private data. However, there are several 

challenges that need to be addressed when applying federated learning to defect detection, 

including data heterogeneity, communication overhead, privacy concerns, and quality 

control. While federated learning holds great promise for defect detection in manufacturing, 

these challenges need to be carefully addressed to ensure the performance, privacy, and 

reliability of the system [115]. 
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CHAPTER 4: METHODOLOGY 

In this chapter, the acquisition of aerospace composite components image dataset 

is explained. In addition, the classical ML models and deep CNN based models are 

described for the collected dataset. In last, the proposed hybrid models including deep 

learning and classical ML models are presented.  

4.1. Acquisition of Aerospace Composite Material Image Dataset 

 
The aim of this research is to classify the defective aerospace components 

automatically, thus in accordance with the objective of this work is to acquire the ACMID 

images to train the proposed deep CNN based hybrid model. Prepreg composites are being 

rapidly used not only in aerospace but also in automobile and civil applications. It decreases 

the risk of poor impregnation in deformation mechanisms and manufacturing processes 

and is usually cured in the autoclave under high pressure and temperature conditions. 

However, the kinematics of aerospace composite layer interfaces significantly impact the 

manufacturing process. And the formation of defects, namely, delamination and wrinkles 

are frequently encountered in aerospace manufacturing. Particularly, the wrinkles are 

occurred due to inter-ply restricted motion and shear deformation [116]. The equipment 

(Figure 7) located in the Embry-Riddle’s Composites Laboratory is used to acquire the 

images of aerospace composite components. In Figure 7(a), one can note that autoclave is 

set up to cure the composite plates. To acquire the images for the deep learning model, 

there are two viewports and for each viewport a 3D DIC camera is placed on the top of the 



 

44 
 

autoclave that can be seen in Figure 7(b).  Furthermore, actual composite layup over 

cylindrical tool with vacuum source and vacuum probe can be noted in Figure 8. 

 

 

 

(a) (b) 

Figure 7: Equipment used for acquiring the images of aerospace components. (a) 
Autoclave with 3D DIC and (b) autoclave viewports and DIC cameras 

 

 

 
Figure 8: Layup over cylindrical tool 
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This research focuses on the supervised learning model, freezing most of the 

learned weights of the parameters and considering less parameters as trainable of the deep 

CNN based model since the dataset size is not large. The proposed model can work with 

decent amount of dataset size around 800 images, including 331 of defective images and 

460 of non-defective images. The samples of the defective and non-defective images can 

be seen in Figure 9 and Figure 10. In Figure 9 (a) and (b), the defective areas are highlighted 

with rectangular boundary. Similarly, the third sample of the defective images is 

highlighted in a square boundary, but the tiny region is enlarged at the top of the image that 

is illustrated in Figure 9 (c). A greater number of samples are shown in Figure 10 (a) images 

with defects and in Figure 10 (b) images without defects. 

 

 

Figure 9: Samples images of aerospace composite components with defects 

    

 

 

 

 

  

(a)  (b)  (c) 
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4.2. Classical ML Models  

Classical machine learning models are gradually evolving where the models learn 

to solve a problem by given samples with desired outputs for each instance. In this work, 

the defect detection problem is considered as a supervised classification task aiming to 

classify the defective and non-defective images. Several established methods for 

supervised classification learning are Logistic Regression, Support Vector Machine 

(SVM), Artificial Neural Network, Decision Tree, Random Forest (RF), etc. However, 

SVM and RF are well-recognized ML models to identify the defects [11], [19]. In addition, 

the ACMID dataset has never been used before for any classical machine learning models 

or deep learning models. Thus, the generated aerospace component images need to be used 

for well-established classical ML models before the proposed model. And their results are 

also expected to be compared with advanced deep learning models as well as proposed 

hybrid models. 

  

 

  

  

 

  

(a)  (b) 

Figure 10: (a) Images with defects; (b) Images without defects 
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4.2.1. SVM  

SVM [117] is one of the classical ML models that examine the dataset for 

classification as well as regression analysis. Moreover, SVM can perform linear and non-

linear classification with the help of kernel trick. SVM is effectively used and widely 

accepted in various domains such as text and defect detection, text, and hypertext 

categorization, recognizing hand-written characters, biological and other sciences. For this 

research, SVM is applied for defect detection problem using ACMID dataset and the model 

is trained with distinct kernels, kernel coefficients, regularization parameters, etc. 

Furthermore, the grid search cross validation is also used to determine the best hyper 

parameters for this SVM model.    

4.2.2. RF 

RF [118] is one of the most important classical ML models and its essential unit is 

decision tree including various good features, namely, fast prediction, less computational 

complexity. To build each tree, samples are drawn from the training examples randomly. 

In addition, the model works on feature randomness to construct a tree; thus, forest of trees 

can be uncorrelated, and the outcome can be superior to any single decision tree. To 

enhance the randomness in the model, a subset of features is split at each node of the tree 

[119]. Although, the single decision tree can render a high variance and leads to overfitting 

of the model, RF is endowed with two layers of randomization to reduce the variance issue 

significantly.           

Though the classical ML models are reliable and efficient for traditional AOI 

problems, it requires human experts to design a specific rule and adjust several parameters 
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to extract the features. In addition, these models can work in certain condition, but it is 

highly sensitive to changes in a real-world scenario, thus the success of these methods 

highly relies on experts [34]. These shortcomings can be easily overcome by deep learning 

methods. The advancement of DL methods can extract high-level features from given 

samples and recognize the defects without manually designing the features [35].  

4.3. Deep CNN-Based Models  

In the past decade, computer vision has been transformed by the emergence of deep 

learning algorithms. The advancement of hardware (CPU, GPU, TPU) enables powerful 

and large-scale computations and makes it possible to train complex models. Deep CNN 

based models are primarily designed for the image dataset thus it highly fits for ACMID 

dataset to address the defect detection problem. However, these deep learning models 

require large amounts of image samples to train the models otherwise it often raises the 

overfitting issue. Particularly, acquiring the huge number of aerospace composite images 

is highly unlikely in aerospace manufacturing since it is expensive and time consuming. In 

addition, obtaining defective images in the initial phase of the project is a more difficult 

task. Nevertheless, transfer learning addresses such issues thus this research employs the 

pretrained DCNN models that are already trained on ImageNet dataset for different 

classification tasks. These pretrained weights of parameters are transferred for the target 

task. However, there are 1000 classes in the ImageNet dataset, therefore, the last layer of 

the pretrained model is dropped and two new layers are added in the last. Finally, the deep 

CNN based models, namely, ResNet50 [51] and MobileNetV2 [59] are trained with 
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updated architecture using ACMID dataset to extract the features at high level and identify 

the defects in the end.  

4.3.1. Improved Resnet50 Model 

ResNet50 architecture [51] is widely used in the computer vision community since 

this model is considered as a benchmark model. In this research, ResNet architecture with 

50 layers is considered as it is, except the last layer of the original architecture is dropped 

and two new layers are included that can be noticed in Figure 11. Therefore, the total 

number of layers in this updated architecture is 51 and the second last layer is a fully 

connected layer with 32 neurons which is presented in Figure 11. And the last layer has 

only one neuron since this defect detection problem addresses a binary classification 

problem to classify the image as defective or non-defective.  

This ResNet model can be trained in several ways: (i) consider only the last layer 

as trainable but in this case the model regularly underfits since the model has very few 

parameters to learn; (ii) train the model where all the layers considered as trainable, 

however, in this situation, the model often overfits as lack of samples; (iii) fine-tuned 

model that opts a few layers as trainable and others as non-trainable and it also tackles the 

underfitting and overfitting issue. Therefore, a fine-tuned model and model with all layers 

is employed to identify the defects for the aerospace component defect detection problem.  

 

 
 

Figure 11: Improved ResNet50 architecture for the defect detection problem 



 

50 
 

Although the fine-tuned ResNet model is just right model, it requires a lot of 

computational power because of a huge number of parameters. Thus, this research needs a 

light-weight model such as MobileNetV2, so that it can also work with less computational 

resources.  

4.3.2. Improved MobilenetV2 Model 

Similarly, the updated ResNet architecture, the MobileNetV2 architecture [59] is 

also modified dropping the last layer and adding two new layers at the end, as shown in 

Figure 12. Although, MobileNetV2 model has 53 layers, it has significantly less parameters 

than ResNet model and is a light-weight model that can be used even in mobile devices.  

 

 

 

Figure 12: Improved MobileNetV2 architecture for the defect detection problem. 
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Nevertheless, the DCNN models are effective models and provide decent results, it 

requires further investigation to improve the results in terms of accuracy, precision, recall, 

and F1 score. Thus, this work proposes a hybrid model comprising the characteristics of 

DCNN and classical ML models. 

4.4. Hybrid Model  

Since the research community relies more on ML models and considers DCNN 

models as black box that extracts features efficiently, therefore, the present work develops 

a hybrid model that integrates the qualities of both classical ML model and DCNN models. 

Therefore, first, Resnet50 with classical ML models are applied on the given ACMID 

dataset and then, MobileNetV2 models are considered with SVM and RF models.  

4.4.1. Improved Resnet50 with Classical ML Models 

In Figure 13, it can be noted that first, input images are passing through the updated 

ResNet architecture similar in Figure 11, to train the model; second, once the fine-tuned 

ResNet model is trained with the aerospace component images, the last layer is dropped, 

and it extracts the features using fully connected layer, second last layer with 32 neurons. 

Then, the extracted features hand it over to classical ML models. In this case, SVM and 

RF are employed individually to train the model again with the extracted features and 

classify the defective and non-defective images in the end, as illustrated in Figure 13 and 

14. Finally, it determines the performances of the model in terms of accuracy, precision, 

recall and F1 score to justify the model capability.  
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Figure 13: Proposed hybrid approach including improved ResNet50 and SVM for an AOI 
problem. 

 
 
 
 
 
 
 
 
 
 
 

4.4.2. Improved MobilenetV2 with Classical ML Models 

In a similar manner, the proposed architecture of improved ResNet50 with classical 

ML models for AOI problem in Figure 13 and 14, the enhanced MobileNetV2 with SVM 

and RF models are proposed to identify the defects automatically. In this case, instead of 

ResNet architecture, the hybrid model replaces with MobileNetV2 architecture to extract 

the features and the remaining part is analogous. Proposed model of MobileNetV2 with 

SVM and RF are displayed in Figure 15 and Figure 16, respectively.  

In Table 7, all the models including classical ML models, deep CNN-based models 

and proposed hybrid models for aerospace composite components are summarized. 

 

 

Figure 14: Proposed hybrid approach including improved ResNet50 and RF for an AOI 
problem. 
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Figure 15: Proposed hybrid approach including improved MobileNetV2 and SVM for an AOI 
problem. 

Figure 16: Proposed hybrid approach including improved MobileNetV2 and RF for an AOI 
problem. 
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Table 7: All 14 models including classical ML models, deep CNN-based models, and 
hybrid models. 

Model Trainable 
Layers 

 

Classical 
ML Models 

- Support Vector Machine (SVM) Random Forest (RF) 

Deep CNN 
Models 

2 ResNet50 MobileNetV2 

ALL ResNet50 MobileNetV2 

Hybrid 
Models 

2 ResNet50 + SVM ResNet50 + RF MobileNetV2 + SVM MobileNetV2 + RF 

ALL ResNet50 + SVM ResNet50 + RF MobileNetV2 + SVM MobileNetV2 + RF 

 

4.5. Imbalanced Dataset Modeling 

CNN models have been widely accepted by the computer vision community in 

several fields. To achieve considerable accuracy of the model, a large-labeled dataset is 

required to train it for the classification task. However, for the defect classification in 

automatic optical inspection system, acquiring a large-labeled image dataset is difficult to 

accomplish. Thus, most of the researchers focused on the data augmentation technique to 

expand the number of images with the help of shifting, rotating, shearing, and other 

processes. With this technique, a large training dataset can be achieved from the small 

number of images. However, in the manufacturing domain, it is hard to collect the same 

number of defective and defect-free samples in the early phase of production, which leads 

to an imbalanced dataset. Insufficient abnormal images create an imbalanced dataset and 

result in inaccurate representation of the distribution of all defective samples, which makes 

the training process difficult. Furthermore, the low number of defective samples, with low 

contrast in many cases, causes ambiguity in both defective samples and normal samples. 

To address this issue, first, imbalanced ACMID dataset is created from the actual ACMID 
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dataset where 75 percent of the images are normal samples, and the remaining 25 percent 

of the images are defective samples. To overcome the imbalanced and scarce dataset of 

defect classification problems, under sampling, over-sampling, and data augmentation 

techniques can be used to analyze the results. However, in this case, the actual ACMID 

dataset size is scarce so opting under sampling technique is not suitable. Therefore, this 

work considers oversampling technique and data augmentation technique using GAN 

(Generative Adversarial Network) model for imbalanced and scarce samples. 

4.5.1. Oversampling  

Oversampling is a technique used in machine learning to address the issue of 

imbalanced datasets. An imbalanced dataset refers to a situation where the classes or 

categories in the dataset are not represented equally, with one or more classes being 

significantly underrepresented compared to others. In such cases, a common problem is 

that machine learning models can be biased towards the majority class, leading to poor 

performance in predicting the minority class. Oversampling aims to alleviate this issue by 

increasing the number of instances in the minority class to balance the dataset. There are 

several methods for oversampling including random sampling, synthetic minority over-

sampling technique (SMOTE), adaptive synthetic sampling (ADASYN), etc. In this 

dissertation work, random sampling is opted. 

Random oversampling randomly replicates instances from the minority class until 

it reaches a desired balance with the majority class. The oversampled dataset will have 

more instances of the minority class, making it more balanced. This technique aims to 

balance the dataset by artificially increasing the representation of the minority class. By 
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doing so, they help machine learning models learn from a more representative training set, 

improving their ability to predict the minority class accurately. It is important to note that 

oversampling should be used with caution, as it can introduce some challenges, such as 

overfitting. 

4.5.2. Data Augmentation using Enhanced DCGAN Model 

 

 

 

 

 

 

A Deep Convolutional Generative Adversarial Network (DCGAN) [53] is a class 

of machine learning models consisting of two neural networks: a generator and a 

discriminator. Initially, GANs [120] were introduced by Ian Goodfellow and his colleagues 

in 2014 and have gained significant attention due to their ability to generate realistic 

synthetic data. A generic generative adversarial network for ACMID dataset is illustrated 

in Figure 17. 

The generator network in an enhanced DCGAN takes Gaussian noise as input and 

learns to generate synthetic data samples, such as images. It typically starts by producing 

random and low-quality outputs. Over time, through training, the generator learns to 

Figure 17: A generative adversarial network for ACMID Dataset. 
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generate data that becomes increasingly similar to the real data it was trained on. The 

enhanced DCGAN's generator network begins with Gaussian noise. It then undergoes 

projection and reshaping operations, specifying the desired dimensions in terms of height, 

width, and channels. The generator is trained using four convolutional blocks to produce 

synthetic samples of ACMID, as illustrated in Figure 18. 

 

 

 

 

 

 

The discriminator network, on the other hand, acts as a binary classifier that learns 

to distinguish between the real data and the synthetic data produced by the generator. It 

receives real and synthetic data samples as input and learns to predict whether each sample 

is real or fake. The enhanced DCGAN utilizes a discriminator network that operates on 

generated images. It applies convolutional operations on four blocks, flattens the output of 

the fourth convolutional block, and ends with a binary classifier, as depicted in Figure 19. 

During training, the generator and discriminator play a two-player minimax game, 

competing against each other. The generator's objective is to produce synthetic data that 

the discriminator classifies as real, while the discriminator aims to correctly classify the 

Figure 18: Enhanced DCGAN generator block for ACMID Dataset. 
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real and synthetic data. As training progresses, the generator improves its ability to generate 

more realistic data, while the discriminator becomes better at distinguishing between real 

and synthetic data. 

 

 

 

 

 

 

The training process involves iteratively updating the weights of both networks 

based on their performance. The networks are trained using backpropagation and gradient 

descent techniques, where the generator tries to minimize the discriminator's ability to 

differentiate real and synthetic data, and the discriminator tries to maximize its accuracy in 

classifying the samples. The ultimate goal of an improved DCGAN is for the generator to 

produce synthetic data that is indistinguishable from real data, fooling the discriminator. 

Enhanced DCGAN generates realistic images, as illustrated in Figure 20. 

 

 

 

Figure 19: Enhanced DCGAN discriminator block for ACMID Dataset. 
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All the above classical ML models, deep CNN based models and hybrid models 

will be employed on the generated samples of ACMID dataset using improved DCGAN 

model to classify the defects. 

  

  

 

  

  

 

  

(a)  (b) 

Figure 20: Generated samples of enhanced DCGAN model - (a) with defects and (b) 
without defects 
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CHAPTER 5: EXPERIMENTAL SETUP AND RESULTS 

In this section, the experimental setup for AOI methods using aerospace component 

images is described. In addition, experimental results are analyzed, and research 

implications are discussed. 

5.1. Datasets 

In this sub section, the datasets used in this dissertation is categorized into five parts 

such as ACMID dataset, ACMID imbalanced dataset, ACMID oversampled dataset, 

augmented ACMID dataset using GAN model, and SSD dataset.  

5.1.1. ACMID Dataset 

The dataset is collected from aerospace composite material lab for automated 

optical inspection. ACMID dataset comprises of 791 composite component images 

including 372 defective images and 419 non-defective images. The samples of ACMID 

dataset are shown in Figure 10. The experiments are extensively conducted on ACMID full 

dataset and ACMID half dataset using 791 images and 391 images, respectively, as shown 

in Table 8. However, the resolution of the image is 2736 x 2192 which is quite high, 

therefore this work converts images into 224 x 224 resolution for all the models. In 

addition, the defective and non-defective samples are collected from Composite Research 

Lab, and all the images are normalized before giving as input to the model. The Composites 

Laboratory is equipped to enable fundamental and applied research and development in 

emerging composite technologies and is located within Embry-Riddle’s Research Park. 
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Obtaining the ACMID dataset was supported in part by the National Science Foundation 

(NSF) under Grant 2001038. 

5.1.2. ACMID Imbalanced Dataset 

In the manufacturing industry, obtaining an equal number of defective and defect-

free samples during the initial stages of production is challenging, resulting in imbalanced 

datasets. This lack of sufficient abnormal images at the beginning creates an imbalanced 

dataset, which inaccurately represents the distribution of all defective samples and 

complicates the training process. To tackle this issue, an imbalanced ACMID dataset is 

generated from the original ACMID dataset, with 75 percent of the images being normal 

samples and the remaining 25 percent being defective samples. The experiments are carried 

out extensively on an imbalanced ACMID dataset, which consists of 50 images 

representing defective samples and 419 images representing non-defective samples. The 

stats of imbalanced ACMID dataset can be noted in Table 8.  

5.1.3. ACMID Oversampling Dataset 

To tackle the difficulties presented by the imbalanced dataset, one approach is to 

utilize oversampling techniques. Specifically, random oversampling is a technique that 

duplicates instances from the minority class randomly until it achieves a desired 

equilibrium with the majority class. Consequently, the oversampled dataset contains a 

greater number of instances from the minority class, effectively creating a more balanced 

representation. The objective of this technique is to address the dataset's imbalance by 

artificially augmenting the representation of the minority class. This enables machine 

learning models to learn from a more representative training set, enhancing their capacity 
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to accurately predict the minority class. Following the implementation of random 

oversampling, the size of the defective samples increases to 400, while the non-defective 

samples remain at 419, as indicated in Table 8. 

5.1.4. Augmented ACMID Dataset using Enhanced DCGAN Model 

In order to address the challenges posed by the imbalanced and limited dataset, one 

strategy is to employ data augmentation techniques. An augmented ACMID dataset refers 

to a modified version of an original ACMID full dataset where additional synthetic or 

artificially generated images are included. These synthetic images are created by applying 

enhanced DCGAN model to the original images. A total of four thousand synthetic images 

are generated in which defective samples are two thousand and same amount is generated 

for non-defective samples. In addition, oversampling technique is used to increase the size 

of real images from 791 to 4,000, two thousand for each class. Thus, the total dataset size 

is eight thousand comprising of four thousand for defective and four thousand for non-

defective, as shown in Table 8. Augmentation technique is employed here to increase the 

size, diversity, and variability of the dataset, which can improve the performance and 

robustness of machine learning models. 

The purpose of using an augmented image dataset is to expose machine learning 

models to a wider range of variations and scenarios during training. This helps the models 

to become more robust and generalize better to unseen data. Augmented datasets also 

address issues such as class imbalance by creating additional samples for underrepresented 

classes.  
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Table 8: ACMID dataset 

ACMID Dataset Samples Dataset 

Size Defective Non-defective 

Full 372 419 791 

Half 191 200 391 

Imbalanced 50 419 469 

Oversampling 400 419 819 

Augmented using enhanced 
DCGAN model 

4,000 4,000 8,000 

 

5.1.5. SSD Dataset  
 

To demonstrate the efficacy of the proposed approach in identifying defects, this 

work utilizes a Steel Surface Defect (SSD) database originally collected by Song and Yan 

[121] for detecting defects in hot-rolled steel strips at Northeastern University (NEU). The 

database comprises six distinct categories of defects, namely crazing, inclusion, patches, 

pitted-surface, rolled-in scale, and scratches. In total, the database contains 1800 grayscale 

images, with each defect category consisting of 300 samples, as shown in Table 9. Figure 

21 displays sample images of these six typical surface defects, each with an original 

resolution of 200 × 200. This dataset offers a greater variety and more samples compared 

to the actual ACMID dataset, providing a suitable means to evaluate the robustness of the 

proposed approaches.  
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Crazing Inclusion Patches Pitted 
surface 

Rolled in 
scale 

Scratches  

Figure 21: Samples of six kinds of typical steel surface defects on NEU surface defect 
database. It shows one example image from each of 300 samples of a class 

 

Table 9: SSD dataset 

Class Sample size of each class 

Crazing  300 

Inclusion 300 

Patches 300 

Pitted surface 300 

Rolled in scale 300 

Scratches 300 

 

 
 
5.2. Performance Measures 

For the defect classification problem, this work evaluates the validation accuracy, 

precision, recall, and F1 scores for the all the models such as classical ML models, deep 

CNN based models and proposed hybrid models. For the defect classification task, cross 

validation technique is used with five folds. In addition, the average validation accuracy, 

precision, recall, and F1 scores are computed across different folds. For accuracy, the 

standard deviation is also calculated. These metrics are defined below. 
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Accuracy = (TP + TN) / (TP + FP + TN + FN) 

Precision = TP / (TP + FP) 

Recall = TP / (TP + FN) 

F1 score = 2 * Precision * Recall / (Precision + Recall)  

TP = True Positive; TN = True Negative; FP = False Positive; FN = False Negative. 

5.3. Implementation Details  

A total of 14 models including classical ML models, deep CNN-based models, and 

proposed hybrid models are trained on distinct datasets with different scenarios. First, SVM 

and RF of classical ML models are trained and parameters of both the models are tuned 

using grid search technique. Furthermore, enhanced ResNet50 and MobileNetV2 

architectures of deep CNN-based models are trained considering last two layers and all 

layers as trainable layers. Model parameters are initialized with learned parameter values 

on ImageNet dataset. These models are tested on full, half, imbalanced, oversampling and 

augmented ACMID dataset, and SSD dataset. Both the ResNet50 and MobileNetV2 

architectures are used same as published except the last layer is replaced with two new 

layers. The second last layer is experimented with a distinct set of neurons and finally it is 

tuned with a specific number of neurons. Since this is a binary classification problem, the 

last layer is assigned with one unit. Proposed hybrid models are trained in a similar way to 

classical ML models and deep CNN models are trained except the architecture is different. 

In addition, all the models are implemented using Google Colab Pro+ including 51 GB of 

RAM, NVIDIA P100 or T4 25 GB of GPU, and 250 GB of disk memory. 
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5.4. Results 

To examine the effectiveness of the proposed research, defect classification models 

are extensively tested using classical ML models, deep CNN-based models, and hybrid 

models with different datasets and distinct dataset sizes. In the classical ML models, 

Support Vector Machine and Random Forest model results are compared considering all 

set of datasets for each model. In addition, a 5-fold cross validation scheme is used for both 

the models. Then, the generated results for each model are compared with cross validation 

mean of accuracy, precision, recall, and F1 score. Similarly, the results of deep CNN-based 

models such as enhanced ResNet50 and MobileNetV2 architecture are analyzed. After 

assessing classical ML models and deep CNN-based models, this research evaluates the 

proposed hybrid approach combining enhanced ResNet50 with SVM and RF models, and 

enhanced MobileNetV2 with SVM and RF models for aerospace components. At the end 

of the modeling and analysis process, the experiment results of all 14 models considering 

70 distinct combinations with ACMID dataset and 14 different combinations with SSD 

dataset are obtained and compared. 

5.4.1. Comparison with Classical ML Models using Distinct Datasets 

In this section focusing on classical ML models, the results are obtained for Support 

Vector Machine (SVM) and Random Forest models using six different datasets: 791 

(ACMID full dataset), 391 (ACMID half dataset), 469 (ACMID imbalanced), 819 

(ACMID oversampled), 8000 (augmented ACMID), and 1800 (SSD dataset). Both models 

are evaluated using a 5-fold cross validation scheme. The results, including cross validation 

accuracy, precision, recall, and F1 score, are compared and presented in Table 10-14. 

Among the models, Random Forest with the full dataset achieves the highest validation 
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accuracy, as shown in Table 10. Moreover, the precision and F1 score of the Random Forest 

model outperforms those of the SVM model, while the recall values are similar for both 

models. To assess the models' performance with a limited dataset, the experiments are 

conducted using half of the ACMID dataset size. Once again, the Random Forest model 

yields better results compared to the SVM model, but it does not surpass the performance 

achieved with the full dataset, as indicated in Table 10. The parameter values are fine-tuned 

for each model through multiple experiments with different combinations. 

Table 10: Defect classification results of classical ML models using ACMID Dataset, the 
best results are highlighted in red color. 

MODEL CLASSICAL ML MODEL  

 SVM RF 

Dataset Size Full Half Full Half 

CV 5 5 5 5 

VAL_ACC  
(MEAN ± STD) 

97.85 ± 0.50 96.92 ± 1.03 98.23 ± 0.61 97.69 ± 2.05 

PRECISION 
(MEAN) 

0.969 0.963 0.978 0.981 

RECALL 
(MEAN) 

0.990 0.981 0.988 0.976 

F1 SCORE 
(MEAN) 

0.979 0.971 0.983 0.978 

 

Table 11 presents the outcomes of classical ML models applied to the ACMID 

imbalanced dataset, consisting of 419 non-defective samples and 50 defective samples. The 

results reveal that the validation accuracy of the ACMID full dataset surpasses that of the 

ACMID imbalanced dataset. Furthermore, even though the ACMID half dataset contains 
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a smaller number of samples, it performs better than the imbalanced dataset because the 

half dataset is more balanced in terms of class distribution.  

Table 11: Defect classification results of classical ML models using Imbalanced ACMID 
Dataset, the best results are highlighted in red color. 

MODEL CLASSICAL ML MODEL   

 SVM RF   

Dataset Size 469 469 

CV 5 5 

VAL_ACC  
(MEAN ± STD) 

91.89 ± 0.85 97.23 ± 1.50 

PRECISION 
(MEAN) 

0.8977 0.9449 

RECALL 
(MEAN) 

0.6376 0.9052 

F1 SCORE 
(MEAN) 

0.6903 0.9238 

 

Table 12 displays the outcomes of classical ML models applied to the ACMID 

oversampled dataset, which consists of 419 non-defective samples and 400 defective 

samples. It is evident that the validation accuracy of the Random Forest (RF) model using 

the ACMID oversampled dataset outperforms that of the ACMID full, half, and imbalanced 

datasets. However, the SVM model yields poor results when utilizing the ACMID 

oversampled dataset compared to the ACMID full and half datasets. Despite the balanced 

number of samples for each class, the distribution of defective samples in the oversampled 

dataset is less diverse than that of non-defective samples, since the defective sample size 

has been increased through random over-sampling.   
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Table 12: Defect classification results of classical ML models using Over Sampled 
ACMID Dataset, the best results are highlighted in red color. 

MODEL CLASSICAL ML MODEL   

 SVM RF   

Dataset Size 819 819 

CV 5 5 

VAL_ACC  
(MEAN ± STD) 

92.06 99.14 

PRECISION 
(MEAN) 

0.9214 0.9914 

RECALL 
(MEAN) 

0.9201 0.9916 

F1 SCORE 
(MEAN) 

0.9204 0.9914 

 

Table 13 showcases the outcomes of classical ML models applied to the augmented 

ACMID dataset generated using an enhanced DCGAN model. The dataset consists of 

4,000 non-defective samples and 4,000 defective samples. It is evident that the validation 

accuracy of the Random Forest (RF) model using the augmented ACMID dataset 

outperforms that of the ACMID full, half, imbalanced, and oversampled datasets. 

Similarly, the results of the SVM model also surpass those of the ACMID full, half, 

imbalanced, and oversampled datasets. Furthermore, there is an improvement in precision, 

recall, and F1 score for both models. This improvement can be attributed to the increased 

diversity in the distribution of defective and non-defective samples and dataset size 

compared to previous cases.   
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Table 13: Defect classification results of classical ML models with Augmented ACMID 
Dataset using enhanced DCGAN model, the best results are highlighted in red color. 

MODEL CLASSICAL ML MODEL   

 SVM RF   

Dataset Size 8,000 8,000 

CV 5 5 

VAL_ACC  
(MEAN ± STD) 

98.94 99.37 

PRECISION 
(MEAN) 

0.9896 0.9936 

RECALL 
(MEAN) 

0.9882 0.9936 

F1 SCORE 
(MEAN) 

0.9889 0.9936 

 

Table 14 displays the outcomes of classical ML models applied to the SSD dataset, 

consisting of 1,800 samples distributed across six classes. One can note that the Random 

Forest (RF) model outperforms the SVM model in terms of validation accuracy, precision, 

recall, and F1 score when using the SSD dataset. It is worth noting that the SSD dataset 

exhibits greater diversity, variation, and an increased number of real samples compared to 

the ACMID dataset. As a result, there is a significant drop in validation accuracy, precision, 

recall, and F1 score. However, these results can be improved by employing more powerful 

models such as deep learning models. 
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Table 14: Defect classification results of classical ML models using SSD Dataset, the 
best results are highlighted in red color. 

MODEL CLASSICAL ML MODEL   

 SVM RF    

Dataset Size 1800 1800 

CV 5 5 

VAL_ACC  
(MEAN) 

80.66 82.16 

PRECISION 
(MEAN) 

0.8351 0.8220 

RECALL 
(MEAN) 

0.8061 0.8220 

F1 SCORE 
(MEAN) 

0.8065 0.8220 

 

5.4.2. Comparison with Deep CNN Based Models using Distinct Datasets 

Further, the results of deep CNN-based models such as enhanced ResNet50 and 

MobileNetV2 architectures are compared using all sets of the dataset. First two models of 

the deep learning models are employed as a fine-tuned model where few layers are trained 

layers and other layers are non-trainable. In this case, the last two layers of ResNet50 and 

MobilenNetV2 models are trainable. Furthermore, these models are also examined with all 

layers as trainable layers. Cross validation scheme is 5-fold for each model. In the end, a 

total of four models are tested considering different datasets and distinct dataset sizes. The 

resulting outcomes are presented in Table 15-19. 

The outcomes of deep CNN-based models applied to the ACMID full and half 

datasets, containing 791 samples and 391 samples respectively, are presented in Table 15. 

Notably, the enhanced fine-tuned MobileNetV2 model achieves the highest validation 

accuracy among the models when using the full dataset, and it also exhibits the lowest 
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standard deviation. Additionally, this model outperforms the others in terms of precision, 

recall, and F1 score. To evaluate the models' performance with a limited dataset, 

experiments are conducted using half of the ACMID dataset size. Once again, the fine-

tuned MobileNetV2 model produces superior results compared to the ResNet50 model. 

However, it does not surpass the performance achieved with the full dataset, as indicated 

in Table 15. 

 
Table 15: Defect classification results of deep CNN based models using ACMID half and 

full dataset, the best results are highlighted in red color. 

MODEL DL MODEL 

 ResNet50   MobileNetV2 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size Full Half Full Half Full Half Full Half 

CV 5 5 5 5 5 5 5 5 

VAL_ACC  
(MEAN ± STD) 

98.48 
± 1.02 

96.67 
± 1.03 

98.48 
± 1.24   

96.67 
± 1.72 

98.86 
± 0.92 

97.95 
± 1.52 

98.35 
± 0.94 

97.44 
± 1.40 

PRECISION 
(MEAN) 

0.985 0.966 0.9848 0.967 0.988 0.979 0.984 0.974 

RECALL 
(MEAN) 

0.984 0.967 0.9847 0.967 0.988 0.979 0.983 0.974 

F1 SCORE 
(MEAN) 

0.984 0.966 0.9847 0.967 0.988 0.979 0.983 0.974 

 

Table 16 showcases the outcomes of deep CNN-based models applied to the 

ACMID imbalanced dataset, which consists of 419 non-defective samples and 50 defective 

samples. The results demonstrate that the validation accuracy of the ACMID full dataset 

surpasses that of the ACMID imbalanced dataset. Furthermore, although the ACMID half 

dataset has a smaller sample size, its results are either superior or comparable to those of 
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the imbalanced dataset due to the improved balance in class distribution. It is worth noting 

that the fine-tuned ResNet50 model with two trainable layers performs better than the fine-

tuned MobileNetV2 model in this case. However, the results obtained by MobileNetV2 

outperform ResNet50 when all layers are trainable.    

Table 16: Defect classification results of deep CNN based models using Imbalanced 
ACMID Dataset, the best results are highlighted in red color. 

MODEL DL MODEL 

 ResNet50   MobileNetV2 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size 469 469 469 469 

CV 5 5 5 5 

VAL_ACC  
(MEAN ± STD) 

97.65 ± 1.70 97.23 ± 2.57 97.02 ± 2.64 97.44 ± 2.19 

PRECISION 
(MEAN) 

0.9591 0.9425 0.9474 0.9433 

RECALL 
(MEAN) 

0.9227 0.9194 0.8961 0.9270 

F1 SCORE 
(MEAN) 

0.9391 0.9296 0.91734 0.9346 

 

Table 17 presents the outcomes of deep CNN-based models applied to the ACMID 

oversampled dataset, which includes 419 non-defective samples and 400 defective 

samples. It is clear that the improved MobileNetV2 model, with all layers trainable, 

achieves higher validation accuracy when using the ACMID oversampled dataset 

compared to the ACMID full, half, and imbalanced datasets. However, the fine-tuned 

ResNet50 model performs poorly when applied to the ACMID oversampled dataset, in 

contrast to its performance with the ACMID full and half datasets. Despite having a 
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balanced number of samples for each class, the oversampled dataset exhibits a less diverse 

distribution of defective samples in comparison to non-defective samples. 

Table 17: Defect classification results of deep CNN based models using Over Sampled 
ACMID Dataset, the best results are highlighted in red color. 

MODEL DL MODEL 

 ResNet50   MobileNetV2 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size 819 819 819 819 

CV 5 5 5 5 

VAL_ACC  
(MEAN ± STD) 

77.53 ± 3.47 99.02 ± 0.62 94.02 ± 1.40 99.14 ± 0.48 

PRECISION 
(MEAN) 

0.7753 0.9902 0.9428 0.9912 

RECALL 
(MEAN) 

0.7707 0.9904 0.9389 0.9917 

F1 SCORE 
(MEAN) 

0.7700 0.9902 0.9397 0.9914 

 

Table 18 presents the results of deep CNN-based models applied to the augmented 

ACMID dataset, which was created using an enhanced DCGAN model. The dataset 

consists of 4,000 non-defective samples and 4,000 defective samples. It is clear that the 

enhanced MobileNetV2 model, with all layers trainable, achieves a higher validation 

accuracy when using the augmented ACMID dataset compared to the ACMID full, half, 

imbalanced, and oversampled datasets. Similarly, the enhanced ResNet50 model, with all 

layers trainable, also outperforms the ACMID full, half, imbalanced, and oversampled 

datasets. Moreover, there is an improvement in precision, recall, and F1 score for both 

models. This improvement can be attributed to the increased diversity in the distribution of 



 

75 
 

defective and non-defective samples, as well as the larger dataset size, compared to the 

previous cases. 

Table 18: Defect classification results of deep CNN based models with Augmented 
ACMID Dataset using GAN, the best results are highlighted in red color. 

MODEL DL MODEL 

 ResNet50   MobileNetV2 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size 8k 8k 8k 8k 

CV 5 5 5 5 

VAL_ACC  
(MEAN ± STD) 

95.27 ± 4.51 99.48 ± 0.33 98.52 ± 1.12 99.70 ± 0.26 

PRECISION 
(MEAN) 

0.9545 0.9950 0.9820 0.9970 

RECALL 
(MEAN) 

0.9539 0.9946 0.9897 0.9970 

F1 SCORE 
(MEAN) 

0.9526 0.9948 0.9858 0.9970 

 

Table 19 showcases the results of deep CNN-based models applied to the SSD 

dataset, which consists of 1,800 samples distributed across six classes. Notably, the 

MobileNetV2 model with all layers trainable outperforms the ResNet50 model in terms of 

validation accuracy, precision, recall, and F1 score when using the SSD dataset. It is 

important to highlight that the SSD dataset offers a greater level of diversity, variation, and 

a larger number of real samples compared to the ACMID dataset. While there was a 

significant decrease in validation accuracy, precision, recall, and F1 score observed when 

using classical ML models in Table 14, these results are significantly improved by 

leveraging more powerful models such as deep CNN-based models. 
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Table 19: Defect classification results of deep CNN based models using SSD Dataset, the 
best results are highlighted in red color. 

MODEL DL MODEL 

 ResNet50   MobileNetV2 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size 1800 1800 1800 1800 

CV 5 5 5 5 

VAL_ACC  
(MEAN) 

97.27 99.77 97.27 99.88 

PRECISION 
(MEAN) 

0.9927 0.9977 0.9927 0.9990 

RECALL 
(MEAN) 

0.9927 0.9977 0.9927 0.9986 

F1 SCORE 
(MEAN) 

0.9927 0.9977 0.9927 0.9988 

 

5.4.3. Comparison with Hybrid Models using Distinct Datasets 

In this section, the results are obtained and compared using proposed hybrid models 

on different datasets and dataset sizes.  

5.4.3.1. Improved ResNet50 Model with Classical ML Models using Distinct Datasets 

Following the assessment of classical ML models and deep CNN-based models, 

this study proceeds to evaluate a hybrid approach that combines the improved ResNet50 

architecture with SVM and RF models for aerospace components. Different combinations 

are examined for proposed hybrid model of ResNet50 and SVM/RF, considering different 

trainable layers, datasets, and dataset sizes.   

Table 20 presents the results of the proposed hybrid models, ResNet50 + SVM/RF, 

applied to the ACMID full and half datasets, consisting of 791 samples and 391 samples 
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respectively. It is worth noting that the validation accuracy of ResNet50 combined with RF 

is generally superior to that of ResNet50 combined with SVM, except when all layers are 

trainable with the full dataset. Furthermore, the best results obtained with ResNet50 + SVM 

are comparable to those achieved with ResNet50 + RF. 

To assess the models' performance with a limited dataset, experiments are 

conducted using half of the ACMID dataset size. Once again, the ResNet50 + RF model 

outperforms the ResNet50 + SVM model. However, it does not surpass the performance 

achieved with the full dataset. 

  
Table 20: Defect classification results of deep CNN based hybrid models (ResNet50 + 

SVM/RF); the best results are highlighted in red color. 

MODEL HYBRID MODEL 

 ResNet50 + SVM ResNet50 + RF 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size Full Half Full Half Full Half Full Half 

CV 5 5 5 5 5 5 5 5 

VAL_ACC  
(MEAN ± STD) 

97.97 
± 0.73 

97.18 
± 0.51 

98.86  
± 0.61 

97.44 
± 1.40 

98.72  
± 0.80 

97.69 
± 0.95 

98.10  
± 0.69 

97.95 
± 0.62 

PRECISION 
(MEAN) 

0.963 0.949 0.988 0.954 0.986 0.971 0.978 0.976 

RECALL 
(MEAN) 

1.0 1.0 0.990 1.0 0.990 0.985 0.985 0.985 

F1 SCORE 
(MEAN) 

0.981 0.974 0.989 0.976 0.988 0.978 0.982 0.980 

 

The outcomes of the proposed hybrid models, ResNet50 + SVM/RF, applied to the 

ACMID imbalanced dataset, containing 419 non-defective samples and 50 defective 



 

78 
 

samples, are presented in Table 21. The results indicate that the validation accuracy of the 

ACMID full and half datasets exceeds that of the ACMID imbalanced dataset. However, 

it is noteworthy that the enhanced fine-tuned ResNet50 model with RF outperforms the 

other three models, as shown in Table 21. 

Table 21: Defect classification results of deep CNN based hybrid models (ResNet50 + 
SVM/RF) using Imbalanced ACMID Dataset, the best results are highlighted in red color. 

MODEL HYBRID MODEL 

 ResNet50 + SVM ResNet50 + RF 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size 469 469 469 469 

CV 5 5 5 5 

VAL_ACC  
(MEAN ± STD) 

89.33 ± 0.004 89.33 ± 0.004 97.44 ± 0.015 97.23 ± 0.020 

PRECISION 
(MEAN) 

0.893 0.893 0.981 0.983 

RECALL 
(MEAN) 

1.0 1.0 0.990 0.985 

F1 SCORE 
(MEAN) 

0.943 0.943 0.985 0.984 

 

The outcomes of the proposed hybrid models, ResNet50 + SVM/RF, applied to the 

ACMID oversampled dataset, consisting of 419 non-defective samples and 400 defective 

samples, are presented in Table 22. It is clear that the validation accuracy of the improved 

ResNet50 + SVM and RF models, with all layers trainable, using the ACMID oversampled 

dataset outperforms that of the ACMID full, half, and imbalanced datasets. However, the 

fine-tuned ResNet50 model with SVM and RF produces poor results when applied to the 

ACMID oversampled dataset in comparison to the ACMID full and half datasets. Despite 
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having a balanced number of samples for each class, the distribution of defective samples 

in the oversampled dataset is less diverse than that of non-defective samples. Furthermore, 

if the deep learning model fails to extract effective features with a less powerful model in 

the hybrid model, it becomes challenging for classical ML models to achieve satisfactory 

results after training on the extracted features. 

Table 22: Defect classification results of deep CNN based hybrid models (ResNet50 + 
SVM/RF) using Over Sampled ACMID Dataset, the best results are highlighted in red 

color. 

MODEL HYBRID MODEL 

 ResNet50 + SVM ResNet50 + RF 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size 819 819 819 819 

CV 5 5 5 5 

VAL_ACC  
(MEAN ± STD) 

83.76 ± 0.026 99.26 ± 0.002 91.82 ± 0.025 99.26 ± 0.004 

PRECISION 
(MEAN) 

0.8910 1.0 0.9263 0.9952 

RECALL 
(MEAN) 

0.7782 0.9856 0.9142 0.9904 

F1 SCORE 
(MEAN) 

0.8300 0.9927 0.9191 0.9928 

 

The outcomes of the proposed hybrid models, ResNet50 + SVM/RF, applied to the 

augmented ACMID dataset generated by an enhanced DCGAN model, are presented in 

Table 23. The dataset consists of 4,000 non-defective samples and 4,000 defective samples. 

It is evident that the validation accuracy of the proposed ResNet50 + RF model, with all 

layers trainable, using the augmented ACMID dataset outperforms the other three proposed 

models in Table 23. Furthermore, the best result obtained using the augmented ACMID 
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dataset surpasses that of the ACMID full and half datasets and is comparable to the results 

achieved with the ACMID oversampled dataset. 

Table 23: Defect classification results of deep CNN based hybrid models (ResNet50 + 
SVM/RF) with Augmented ACMID Dataset using GAN, the best results are highlighted 

in red color. 

MODEL HYBRID MODEL 

 ResNet50 + SVM ResNet50 + RF 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size 8,000 8,000 8,000 8,000 

CV 5 5 5 5 

VAL_ACC  
(MEAN ± STD) 

94.33 ± 4.95 98.98  ± 0.84 98.52 ± 1.12 99.12 ± 0.69 

PRECISION 
(MEAN) 

0.9790 0.9876 0.9820 0.9883 

RECALL 
(MEAN) 

0.9081 0.9926 0.9897 0.9946 

F1 SCORE 
(MEAN) 

0.9409 0.9901 0.9858 0.9914 

 

The outcomes of the proposed hybrid models, ResNet50 + SVM/RF, applied to the 

SSD dataset, consisting of 1,800 samples distributed across six classes, are presented in 

Table 24. It can be observed that the proposed fine-tuned ResNet50 and SVM/RF model 

outperforms the ResNet50 and SVM/RF models with all layers in terms of validation 

accuracy, precision, recall, and F1 score when using the SSD dataset. The results achieved 

by the fine-tuned ResNet50 and RF model are the best so far in terms of validation accuracy 

and other performance metrics. It is also noteworthy that the SSD dataset exhibits greater 

diversity, variation, and a larger number of real samples compared to the ACMID dataset. 

Although there was a significant decline in validation accuracy, precision, recall, and F1 
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score when using classical ML models, as shown in Table 14, these results are significantly 

improved by employing more powerful models such as deep learning models. Furthermore, 

the ResNet50 + RF model with all layers also produces satisfactory results.  

Table 24: Defect classification results of deep CNN based hybrid models (ResNet50 + 
SVM/RF) using SSD Dataset, the best results are highlighted in red color. 

MODEL HYBRID MODEL 

 ResNet50 + SVM ResNet50 + RF 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size 1800 1800 1800 1800 

CV 5 5 5 5 

VAL_ACC  
(MEAN) 

99.77 98.50 99.83 99.66 

PRECISION 
(MEAN) 

0.9977 98.57 0.9983 99.66 

RECALL 
(MEAN) 

0.9977 98.50 0.9983 99.66 

F1 SCORE 
(MEAN) 

0.9977 98.49 0.9983 99.66 

 

5.4.3.2. Improved MobileNetV2 Model with Classical ML Models using Distinct 
Datasets 

After evaluating classical ML models, deep CNN-based models, and ResNet50 + 

SVM/RF, this study proceeds to assess a proposed lightweight hybrid approach that 

combines the improved MobileNetV2 architecture with SVM and RF models for aerospace 

components. Different combinations are examined for proposed hybrid model of 

MobileNetV2 and SVM/RF, considering different trainable layers, datasets, and dataset 

sizes. 
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The outcomes of the proposed hybrid models, MobileNetV2 + SVM/RF, applied to the 

ACMID full and half datasets, consisting of 791 samples and 391 samples respectively, are 

presented in Table 25. Significantly, the validation accuracy of the fine-tuned 

MobileNetV2 with RF model surpasses the other three hybrid approaches, as shown in 

Table 25, when applied to the ACMID full and half datasets. To evaluate the models' 

performance with a limited dataset, the results obtained by MobileNetV2 + SVM/RF on 

the ACMID half dataset are comparable, but they do not surpass the performance achieved 

with the full dataset. 

Table 25: Defect classification results of deep CNN based hybrid models (MobileNetV2 
+ SVM/RF), the best results are highlighted in red color. 

MODEL HYBRID MODEL 

 MobileNetV2 + SVM MobileNetV2 + RF 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size Full Half Full Half Full Half Full Half 

CV 5 5 5 5 5 5 5 5 

VAL_ACC  
(MEAN ± STD) 

98.86  
± 0.46 

98.46 
± 1.25 

98.86  
± 0.47 

97.18 
± 0.96 

99.37 
 ± 0.01 

98.20  
± 0.62 

98.60  
± 0.47 

97.70 
± 0.94 

PRECISION 
(MEAN) 

0.981 0.981 0.990 0.949 0.992 0.985 0.990 0.971 

RECALL 
(MEAN) 

0.997 0.990 0.988 1.0 0.995 0.980 0.983 0.985 

F1 SCORE 
(MEAN) 

0.989 0.985 0.989 0.973 0.994 0.983 0.986 0.978 

 

Table 26 presents the results of the proposed hybrid models, MobileNetV2 + 

SVM/RF, applied to the ACMID imbalanced dataset, comprising 419 non-defective 

samples and 50 defective samples. The findings indicate that the validation accuracy of the 
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ACMID full and half datasets exceeds that of the ACMID imbalanced dataset. However, 

the enhanced MobileNetV2 with RF model, utilizing all layers, outperforms the other three 

models, as shown in Table 26.  

Table 26: Defect classification results of deep CNN based hybrid models (MobileNetV2 
+ SVM/RF) using Imbalanced ACMID Dataset, the best results are highlighted in red 

color. 

MODEL HYBRID MODEL 

 MobileNetV2 + SVM MobileNetV2 + RF 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size 469 469 469 469 

CV 5 5 5 5 

VAL_ACC  
(MEAN ± STD) 

89.33 ± 0.004 89.55 ± 0.004 97.44 ± 0.018 97.87 ± 0.006 

PRECISION 
(MEAN) 

0.893 0.895 0.985 0.983 

RECALL 
(MEAN) 

1.0 1.0 0.985 0.992 

F1 SCORE 
(MEAN) 

0.943 0.944 0.985 0.988 

 

The results of the proposed hybrid models, MobileNetV2 + SVM/RF, applied to 

the ACMID oversampled dataset, containing 419 non-defective samples and 400 defective 

samples, are presented in Table 27. It is clear that the validation accuracy of the enhanced 

MobileNetV2 + SVM and RF models, with all layers, outperforms the validation accuracy 

of the ACMID full, half, and imbalanced datasets.   
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Table 27: Defect classification results of deep CNN based hybrid models (MobileNetV2 
+ SVM/RF) using Over Sampled ACMID Dataset, the best results are highlighted in red 

color. 

MODEL HYBRID MODEL 

 MobileNetV2 + SVM MobileNetV2 + RF 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size 819 819 819 819 

CV 5 5 5 5 

VAL_ACC  
(MEAN ± STD) 

94.99 ± 0.010 99.63 ± 0.004 99.26 ±0.004 99.63 ± 0.004 

PRECISION 
(MEAN) 

0.9797 1.0 1.0 1.0 

RECALL 
(MEAN) 

0.9212 0.9928 0.9856 0.9928 

F1 SCORE 
(MEAN) 

0.9495 0.9963 0.9927 0.9963 

 

The results of the proposed hybrid models, MobileNetV2 + SVM/RF, applied to 

the augmented ACMID dataset generated using an enhanced DCGAN model, are presented 

in Table 28. The dataset consists of 4,000 non-defective samples and 4,000 defective 

samples. It is clear that the validation accuracy of the fine-tuned MobileNetV2 + RF model, 

using the augmented ACMID dataset, outperforms the other three proposed models in 

Table 28. Additionally, the best result achieved using the augmented ACMID dataset 

surpasses the results obtained from the ACMID full, half, imbalanced, and oversampled 

datasets.  
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Table 28: Defect classification results of deep CNN based hybrid models (MobileNetV2 
+ SVM/RF) with Augmented ACMID Dataset using GAN, the best results are 

highlighted in red color. 

MODEL HYBRID MODEL 

 MobileNetV2 + SVM MobileNetV2 + RF 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size 8,000 8,000 8,000 8,000 

CV 5 5 5 5 

VAL_ACC  
(MEAN ± STD) 

99.47 ± 0.45 99.29 ± 0.72 99.68 ± 0.47 99.47 ± 0.51 

PRECISION 
(MEAN) 

0.9903 0.9938 0.9963 0.9939 

RECALL 
(MEAN) 

0.9995 0.9924 0.9975 0.9958 

F1 SCORE 
(MEAN) 

0.9949 0.9931 0.9969 0.9948 

 

The outcomes of the proposed hybrid models, MobileNetV2 + SVM/RF, applied 

to the SSD dataset consisting of 1,800 samples across six classes, are presented in Table 

29. It is noteworthy that the hybrid models with MobileNetV2 and SVM/RF, utilizing all 

layers, outperform the fine-tuned MobileNetV2 and SVM/RF models in terms of validation 

accuracy, precision, recall, and F1 score when applied to the SSD dataset. The results 

obtained from the proposed MobileNetV2 and RF model with all layers are the best in 

terms of validation accuracy and other performance metrics. Additionally, it is important 

to mention that the SSD dataset exhibits greater diversity, variation, and a larger number 

of real samples compared to the ACMID dataset. While classical ML models in Table 14 

showed a significant decline in validation accuracy, precision, recall, and F1 score, these 
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results are substantially improved by employing more powerful models such as deep 

learning models.    

Table 29: Defect classification results of deep CNN based hybrid models (MobileNetV2 
+ SVM/RF) using SSD Dataset, the best results are highlighted in red color. 

MODEL HYBRID MODEL 

 MobileNetV2 + SVM MobileNetV2 + RF 

Trainable 
Layers 

2 ALL 2 ALL 

Dataset Size 1800 1800 1800 1800 

CV 5 5 5 5 

VAL_ACC  
(MEAN) 

95.33 99.94 97.61 99.94 

PRECISION 
(MEAN) 

0.9568 99.94 0.9763 99.94 

RECALL 
(MEAN) 

0.9533 99.94 0.9761 99.94 

F1 SCORE 
(MEAN) 

0.9534 99.94 0.9760 99.94 

 

5.5. Research Implications 

This study focuses on the inspection of aerospace components to identify defects. 

To identify and evaluate the possible defects, in practice, the aerospace components are 

examined manually by human experts. The inadequacy of this operation results from the 

fact that is tedious, subjective, labor-extensive, inconsistent, and potentially biased. To 

make the operation more effective and efficient, the modern AOI system is preferred to 

evaluate these aerospace composite components. Ideally, the modern AOI system is 

expected to deliver more consistent, accurate, and unbiased assessment results than manual 

inspections. In addition, to lessen the workload of human inspectors and lower the labor 

cost of the aerospace manufacturing industry, this dissertation work presents a deep 
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learning-based model for automated optical inspection for aerospace composite 

components. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

To lessen the workload of human inspectors in the aerospace manufacturing 

industry, this dissertation work presents a deep learning-based model for automated optical 

inspection for aerospace composite components. Initially, the aerospace composite 

material image dataset is acquired and classified into five sets of ACMID dataset including 

full, half, imbalanced, oversampled, data augmentation using DCGAN model. In addition 

to that SSD dataset is included which has more diversity and variation. Furthermore, the 

machine vision methods are tested on these two datasets with distinct dataset sizes on three 

levels including classical ML models, deep CNN-based models, and hybrid approaches.  

The hybrid method that combines the feature of deep learning and classical machine 

learning is proposed for aerospace composite components. The detection accuracy of 

hybrid method for automated optical inspection improves significantly compared to 

classical ML models and enhanced deep CNN-based models on ACMID dataset. Although 

the ACMID dataset contains a small number of images, it still produces encouraging 

results. This indicates that the proposed approach for AOI is suitable to identify the defects 

on ACMID dataset as well as on other images.  

To improve the diversity and variation of ACMID dataset, the number of samples 

of ACMID dataset are expanded using improved DCGAN model. In addition to that SSD 

dataset is considered to validate the model and compare with the results of ACMID dataset. 

Furthermore, supervised pixel segmentation techniques will be explored on the novel 
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ACMID dataset. And unsupervised pixel level defect detection can also be considered since 

manual labeling and annotation of the dataset is challenging and expensive. 
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