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ABSTRACT 

Additive manufacturing (AM) is a rapidly growing industry with numerous applications in the 

aerospace industry such as aircraft parts and emergency tools on the International Space Station. 

Defects in additively manufactured structures, however, can waste a lot of time and money. Being 

able to monitor the manufacturing process for defects is one of the first steps which can be taken 

to mitigate these losses. This study focuses on the use of thermography in conjunction with deep 

learning to identify flaws during 3D printing of composite structures made using Onyx, a mixture 

of chopped carbon fiber and nylon, composite prints. In addition, polymeric structures using 

polylactic acid (PLA) were analyzed using thermography and digital image correlation (DIC) to 

understand the interactions between the thermal variations and resulting deformation. 

The inclusion of a zero-bias deep neural network (ZBDNN) to classify given images can also 

show real-time monitoring of defects in composite prints as a realizable goal. The ZBDNN was 

trained to classify thermal images of undamaged prints based on which layer of the print they 

occurred on and to set aside any of these images containing defects. The addition of a non-bias 

layer in the deep neural network ensures the classifications of these images remain consistent and 

accurate, with a learning accuracy of over 90%. The algorithm was also used to analyze grayscale 

images from multiple angles of the prints and compared these images to thermal images as another 

means of detecting defects in each print. The use of these multiple data sources may be used as the 

basis for an early-warning detection system for real-time analysis. 
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1. Introduction 

In this chapter, the problem this research attempts to address is introduced alongside the 

importance and limitations of additively manufactured composites in the aerospace industry. 

Additionally, the motivation for the research and the objectives of this study are discussed. 

1.1 Additive Manufacturing of Composites 

Committee F42 of the American Society of Testing and Materials (ASTM) defines additive 

manufacturing (AM) as a “general term for those technologies that successively join material to 

create physical objects as specified by 3D model data” [1]. AM is finding increasing use in multiple 

industries with the aerospace industry being one of the major consumers of AM technology. An 

analysis from HUBS reveals the net worth of the AM industry is projected to double in 2026 from 

2023 as seen in Figure 1.1 [2].  

 

 

Figure 1.1 Projected market value of the additive manufacturing industry [2] 
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AM can be very appealing for many companies due to its prototyping ease and efficiency. Parts 

manufactured using AM technologies allow for multiple copies of a part to be produced at once to 

speed up testing times. These parts can also be made with geometries and tolerances that would be 

expensive, difficult, or impossible through traditional subtractive manufacturing (SM) means. AM 

parts also have very little waste material, with waste usually only every coming from printed 

supports to stabilize a part during printing.  

AM however has the downsides of being slower and more expensive than traditional SM 

methods. Due to the nature of how most AM methods function, the desired materials must be 

purchased in a spool or powdered format, which presents a higher upfront cost for materials. Due 

to how parts are assembled in AM processes, it can often take longer to produce a more generic 

part than a SM process would take to produce the exact same part. 

There are a wide variety of materials which are compatible with AM methods including 

plastics, metals, ceramics and composite materials. The most common materials used in AM are 

polylactic acid (PLA) plastic and acrylonitrile butadiene styrene (ABS) plastic since they are low-

cost, widely available, and easy to use. Other materials which are frequently used in AM include 

titanium, aluminum, Inconel, stainless steel, and carbon fiber. This research primarily focuses on 

PLA and Onyx. Onyx is a trademarked composite material developed by Markforged. It is a 

mixture of chopped carbon fiber and nylon matrix in the form a continuous fiber filament.  

There are multiple methods of developing parts using AM. One of the most common being 

fused deposition modelling (FDM). This method uses a spool of the desired material is fed through 

a heated nozzle and deposited onto a print bed, working one layer at a time. The printers used in 

this research utilized the FDM method of printing. Other common methods of printing include 

binder jetting, which distributes a powdered version of the desired material and applied a binder 
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to adhere the powder together one layer at a time, and powder bed diffusion, which uses a laser to 

melt the powdered material together layer by layer.  

1.2 Motivation for this Research 

Motivation for this research stems from frequent occurrence of defects during additive 

manufacturing. These defects can cost large amounts of time and money if they are not caught 

quickly. Common defects which can occur during FDM printing include voids, warping, poor 

adhesion, over-extrusion, and bed obstructions. Some of these defects are shown in Figure 1.2 

Processing induced defects during printing can lead to further defects when the structures are used, 

premature failure during use, or complete failure of the printing of the structure. This is particularly 

impactful on strcutures which cannot be manufactured through traditional subtractive 

manufacturing methods due to either their design or the choice of the material. 

 

 

Figure 1.2 Examples of defects captured during testing 

 

Developing a system for early detection of defects in prints is one the first step to reduce the 

occurancce of defects and improve the quality of printed parts. These defects stem from a number 

of potential sources. Improper print settings is a common cause for printing defects. These settings 
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include nozzle and bed temperatures, layer thickness, print rate, slicing direction, improper or lack 

of support structures, and many more. Other sources for defects include too much moisture in the 

printer or printing material, unclean or uneven print bed, defects or wearing of printer components, 

and improper ventilation in the printer. 

It is possible to measure parameters impacted by defect occurances, such as thermal expansion 

and cooling patterns, to determine the quality of the print. Digital Image Correlation (DIC) 

cameras, grayscale charged-couple device (CCD) camera, and thermal imaging cameras are 

common methods of insitu data collection of print characterisitics performed by prior research. 

Despite the use of methods seen in other publications, the methodology and analysis methods are 

unique to this research.  

A deep neural network (DNN) was incorporated to further analyze the data from the thermal 

and CCD cameras. DNNs are learning algorithms which can identify patterns from a training set 

of images nad use the data from the training images to classify new images based on how closely 

the new data matches the training data. The DNN used in this research would sort the images by 

which layer the image is of. If a defect was detected in a given image, it would be given its own 

classification. When plotting the results from the DNN analysis in a Voronoi diagram, the images 

would be clustered in groups by their class, with defects being placed near the cluster that most 

closely matches which layer the defect occurred on.  

1.3 Objectives 

This research employs combinations of thermography, DIC, and greyscale imaging to provide 

real-time analysis of the characteristics of additively manufactured parts using the FDM process. 

The measured characteristics are used to form correlations with the occurrence of defects in printed 

parts. Employing computational methods of analyzing the characteristics of printed parts can 

validate the correlations between print characteristics and defect occurrences. 
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The objectives of this research are: 

1. Develop in-situ monitoring methods for the FDM process of composite materials. 

2. Correlate measured process parameters with the occerance of defects. 

3. Utilize deep neural networks to classify image data based on layer and defect presence 

4. Combine multiple data sources into a single DNN analysis 
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2. Review of the Relevant Literature 

This chapter provides details regarding the background literature relevant to this research. 

Previous studies on the testing methods, equipment and materials relevant to current study are 

discussed. 

2.1 Additive Manufacturing 

There are different methods of additive manufacturing, but all methods involve some common 

steps for part creation. The process typically begins with the development of a computer-aided 

design (CAD) model of the desired part. The CAD part can be created using software such 

Solidworks or AutoCAD. The designed part can then be converted into a compatible file type, 

typically .STL, which is processed further using slicer programs, which establishes the printing 

parameters for a specific 3D printer model. This slicer program dictates the printing direction, any 

supports for the part during printing, layer thickness, etc. From there, the part can be printed then 

post-processed with methods such as sintering or acid baths to remove the supports. 

 The printing process used for this research was the fused deposition modelling (FDM) process, 

also called the Extrusion Free Forming (EFF) method. The FDM process is the most common 

method of AM due to being a rapid and inexpensive process which can produce parts of a wide 

range of sizes. This method consists of a coil of filament run through a heated printing nozzle 

which deposits the softened material onto a printing bed where it immediately begins hardening 

[3]. A breakdown of the common commercial AM processes is outlined in Figured 2.1. 
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Figure 2.1 Classifications of AM methods   

 

Additive manufacturing has found uses in multiple industries with engineering fields such as 

automobile and aerospace being among the top consumers of AM technology [4]. Parts produced 

using AM can benefit from a reduction in production time and cost along with lighter parts and 

fewer total parts by combining multiple parts into single complex shapes not normally possible 

with traditional SM methods [5]. Within the aerospace industry, NASA has been using additive 

manufacturing for the development of research equipment such as the heat exchangers on 

Perseverance rover [6], and for full-scale rocket components such as the nozzles manufactured 

using SLS shown in Figure 2.3 [7]. GE also uses AM technology to produce aircraft parts such as 

fuel nozzles and titanium fittings for the Boeing 787 [8]. 
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Figure 2.2 Breakdown of top consumers of AM technologies [4] 

 

 

Figure 2.3 Prototypes of NASA’s AM rocket nozzle [7] 

 

2.1.1 Defect Formation and Impacts 

Processing induced defects in AM structures can completely ruin a print before it even 

finishes printing. Defects can occur at any point in the 3D printing process due to any aspect of 

the printer, printing process, or part geometry. The printing speed, the part thickness, the line 
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spacing, overhangs, and even the size of a part can contribute to the formation of defects in a part 

[9]. Defects that can occur in AM parts include voids, dislocations, surface roughness, 

delamination, and residual stresses. The nature of these defects can result in parts which have 

fatigue life half as long as the same parts produced through traditional SM methods [10]. 

Karpenko et al. [11] discuss how residual stresses in AM structures affect fatigue crack 

growth. The team uses a numerical model, a continuum model, and a finite element model to 

analyze a titanium plate made with AM. The main cause of residual stresses in AM structures is 

because AM structures are made in layers which makes the structure anisotropic. These two areas 

are the main aspects of the calculations used here and assume the plate is under thermal-mechanical 

cyclic loading. The study shows that tensile stresses are likely to accelerate crack growth in AM 

structures and residual compressive stresses mitigate the growth of cracks. It was also found that 

higher temperatures increase the rate cracks grow at. The effects of the residual stresses were 

shown to be accurately predicted through finite element analysis (FEA) and manual calculations. 

Being able to properly predict how stresses form in the structure can help improve current printing 

methods to help mitigate the formation of residual stresses in AM structures.  

Fernandes et al. [12] discusses the mechanical properties of AM composites. The air voids can 

cause discontinuities which can hamper the performance of the composite. The team used 

continuous carbon fiber reinforced polymer (CFRP) composites printed using FDM for testing the 

tensile strength, shear strength, and dynamic strength of printed composites. The tests were also 

run using unidirectional samples with 0°, 45°, 90°, and concentric alignments. The dynamic testing 

was done with a test at static vibration at 1 Hz with a temperature sweep from 30℃ to 160℃, a 

test at a constant temperature of 30℃ with a frequency sweep from 1 Hz to 100 Hz, and a test 

sweeping both temperature and frequency.  
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The shear testing showed the samples had an average interlaminar shear strength of about 31 

MPa. The failure of the samples occurred due to delamination which is more likely to occur in AM 

composites due to being produced at a lower pressure than traditional composites. The tensile test 

showed the samples had an average shear strength of about 500 MPa with failure occurring in the 

fibers likely due to discontinuities during the printing process.  

2.2 AM Materials 

This section details the materials analyzed in this research. Polylactic acid was used as a base 

reference material while the composite material was the primary focus. 

2.2.1 Polylactic Acid 

Polylactic Acid (PLA) is one of the most widely used materials for AM parts, especially with 

FDM. It is a thermoplastic polyester with a chemical formula of (C3H4O2)n. PLA was used in this 

research as a control material to establish a baseline comparison for other materials. PLA is 

typically used for its low melting temperature (170-180°C), high print rate, ability to consistently 

create sharp corners and edges, and minimum required post-processing [13]. The material 

properties for PLA include a tensile strength, elastic modulus, shear modulus, yield strength and 

Young’s modulus of 59 MPa, 3500 MPa, 1287 MPa, 70 MPa, and 1280 MPa respectively [14]. 

2.2.2 Carbon Fiber Composites 

Composite materials consist of a bundle of fibers, typically glass, carbon, or natural materials, 

surrounded by a matrix material, typically a resin polymer. Composites are one of the newer 

materials to be used in AM which opens more options for replacing common materials used in the 

production of commercial products. A popular example of this being Boeing’s 787 Dreamliner 

which is 50% composites, shown in Figure 2.4, as opposed to the previous 777 which is only 12% 

composites [15]. The composite used in this research, called Onyx, is made up of carbon fibers in 
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a nylon matrix. The material properties for Onyx include a tensile modulus, tensile strain, and 

flexural modulus of 2.4 GPa, 25%, and 3.0 GPa respectively [16]. 

 

 

Figure 2.4 Mapping of materials used in the Boeing 787 [15] 

 

In all the tests of various layups performed by Fernandes et al., the concentric fiber alignment 

performed the best, which shows an interesting use case for AM composites given this alignment 

method would be difficult to produce with traditional composite manufacturing [12]. 

2.3 In-situ Methods 

This section covers the background on thermography and digital image correlation (DIC) and 

how they are used in analyzing parts produced with AM. 

2.3.1 Thermography 

Thermography is a non-contact method of non-destructive evaluation (NDE) which can be 

used to detect defects through the appearance of thermal patterns in the measured structure [17]. 

Thermal cameras used for thermography show the temperature differences between different 

sections of an observed part by measuring the infrared radiation emitted by the part. Thermography 
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can also be used for an initial observation to determine if more detailed analysis is required to 

determine the exact location and type of damage present in a part.  

Wilson et al. [18] compared the performance of thermal imaging cameras to that of direct 

contact sensors using a proportional–integral–derivative (PID) controller. The experiment was 

performed on a scaled version of an injection mold system with controllable temperature zones. 

Thermocouples were installed at each point and a thermal camera was pointed at the entire system. 

The thermocouples controller measured the temperature at the individual zones while the camera 

analyzed the entire structure, with a PID controller for both measurement systems. The experiment 

was run using a digital model for simulation and a physical experiment to verify the results for 

accuracy. The results of the physical experiment showed that the thermal camera system had nearly 

identical reading to that of the simulation predicted values with the same response time. The 

thermocouple was shown to be slightly less accurate than the camera system and was less sensitive 

to changes in temperature. 

Borish et al. [19] makes use of thermal cameras and other methods to determine thermal 

stresses which appear in a single layer of an AM structure. The combination of low creation time 

and high heat can result in flaws occurring in a layer of an AM structure. The team modified the 

printer they were using to allow support of a moving thermal camera to capture the layers as they 

were being printed. The testing was done on a spiralized cube and a podium stand which were to 

be printed using carbon fiber reinforced acrylonitrile.  

In the case of the cube, it was found that the material was too hot to be able to hold such a 

shape and resulted in failure mid-printing with each layer being performed in 10-12 seconds. With 

a longer print time, the cube was able to support its own weight as the layers were allowed to cool. 

The podium not only needed the extra time to cool, but also had excess material due to temperature 
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differences between the layer and the plastic being printed not allowing proper bonding. This 

experiment shows that temperature and time need to be adequately adjusted prior to printing to 

avoid structural failure and waste, however it is difficult to know how to adjust these factors ahead 

of time.   

2.3.2 Digital Image Correlation 

Digital Image Correlation (DIC) is an NDE technique which allows for the measurement of 

changes between 2D and 3D images to determine the deformation and strain occurring in a 

particular part or structure over time [20]. Typically, a natural or painted speckled pattern is used 

for the algorithm to track the changes. This process is visualized in Figure 2.4. This method can 

easily be performed in tandem with other analysis methods, such as thermography, to determine 

correlations between mechanical behavior and damage occurrences. 

 

 

Figure 2.5 Diagram of DIC analysis [20] 

 

Spencer et al. [21] used digital image correlation (DIC) to monitor residual thermal stresses in 

composites made using additive manufacturing. The DIC camera system was used to measure 

linear translation of natural speckles found in the printed surface over time. This experiment was 

applied to both a small-scale and large-scale (up to 100 layers) product. The measurements of the 

DIC camera were within 3.57% of the actual displacements of the speckle pattern. It was found 
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the maximum displacement occurred along the walls of the structure, with 4.20mm in the 

horizontal and 6.06mm in the vertical direction. The least displacement was measured at the center 

of the structure at 2.06mm and 1.24mm in the horizontal and vertical directions respectively. It 

was also found that more layers exaggerated the warpage in the part up until around 50 layers 

where displacement plateaued. 

2.4 Computational Methods 

This section covers how deep neural networks function and how they are used to validate the 

results of the in-situ testing methods.  

2.4.1 Deep Neural Network 

Deep neural networks (DNNs) are a type of machine learning based on how neurons in the 

brain send signals to one another [22]. They are comprised of an input layer, at least one hidden 

layer, and an output layer, where the output of one layer is the input of another layer, visualized in 

Figure 2.6 [23]. The neurons within a layer have thresholds which trigger the activation of data 

transference from that neuron to the neurons of the next layer. DNNs can significantly reduce the 

amount of time required to classify data, such as image classification. However, like all machine 

learning algorithms, training data is required for DNNs to function accurately. DNNs also typically 

incorporate biases to speed up the analysis, but this bias can result in misclassifications and missing 

data [24]. 
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Figure 2.6 Deep neural network layer diagram 

 

The Blackbox nature of typical DNNs means that these learning algorithms can develop biases 

during the training process. These biases can lead to the misidentification of defect occurrences in 

the processed training images that can carry over into non-training images. To correct the 

formation of bias in the training of the DNN, a zero-bias layer is inserted just before the output 

layer. This non-bias layer allows for not only correctly identifying if the image is abnormal or not, 

but also provides a “what if” classification that states where the image would have been classified 

if not identified as abnormal. It has also been shown that the inclusion of a zero-bias layer results 

in a more uniform distribution of classes which can lead to better identification of abnormalities 

in a dataset, with most errors occurring from overlapping data clusters [25][26].  

2.5 Summary 

The current research in the field of additive manufacturing shows that it has great potential for 

the future of aerospace production, however the defect occurrences must be mitigated for AM to 

see further improvement and development. Identifying how these defects occur in various printing 
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methods and materials is the first step to mitigate the formation of defects in the future. The use of 

thermography and DIC in previous research has shown promising results in the identification of 

defects and determining why the defects occur. Utilizing machine learning in the form of a DNN 

can help speed up and further confirm the results collected from the in-situ monitoring methods. 
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3. Experimental Methods 

3.1 In-situ Characterization Methodology 

The in-situ procedure for the monitoring of defects in additively manufactured composites is 

divided into 6 main steps: 

1. Creating a setup consisting of the PLA printer, thermal camera, and DIC 

camera. 

2. Capturing the changes in temperature and strain in the PLA over time. 

3. Developing relations between the strain and temperature data. 

4. Use knowledge obtained from PLA testing to develop an Onyx testing method. 

5. Capture images of the Onyx material with the thermal camera and CCD camera. 

6. Process temperature data collected from the Onyx testing. 

3.2 Materials, Equipment, and Software 

This section provides details on the materials and equipment used in this research. 

Experimental details and specifications are also provided in this section. Software associated with 

equipment is also described in this section.   

3.2.1 Marble PLA 

PLA was used for early data collection for two main reasons. The first being PLA is the most 

common material to use for additive manufacturing, so it is easy to 3D print to develop new 

procedures. The second reason being E-notepad produces a marble style PLA which is a primarily 

white color with black speckles randomly spread throughout the material. This random spread of 

speckles would be able to provide accurate readings for the DIC analysis without needing to 

develop a method of incorporating the pattern manually.  

 



 

 

18 

 

  

Figure 3.1 A spool of marble-style PLA 

 

3.2.2 Onyx 

The Onyx material produced by Markforged was selected as the composite material for 

analysis in this research. The MicaPlex next to Embry-Riddle’s Daytona campus was already in 

possession of the Mark Two printer produced by Markforged, so using the printer and associated 

materials would be the most convenient and cost-effective for analysis. The Onyx material consists 

of a nylon matrix infused with chopped carbon fiber pieces. Using a pre-made composite material 

would help with the cost-effectiveness and consistency of testing the composite. 

 

  

Figure 3.2 A spool of the Onyx material 
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3.2.3 Creality Ender 5 Plus 

The Ender 5 Plus is an open frame style FDM 3D printer which enables easy viewing for the 

thermal and DIC cameras and allows both cameras to be used simultaneously. The maximum print 

size the printer allows for is 350mm x 350mm x 400mm with a precision level of +/-0.1mm. The 

inclusion of the BL Touch, filament sensor, and dual z-axes ensures consistency between tests.  

The associated Creality slicer program was used to convert CAD data into G-code to guide the 

printer in the production of parts by controlling the layer thickness, nozzle and bed temperatures, 

printing speed, and pause timers.  

 

 

Figure 3.3 The Ender 5 Plus 3D printer 
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3.2.4 Markforged Mark Two 

The Mark Two is a closed-frame FDM printer that restricts camera access to the inside of the 

printer. The top and front panels of the printer do open, which allows for limited viewing of the 

print inside the printer. The maximum print size allowed by the printer is 320mm x 132mm x 

154mm with a precision of +/-0.01mm. The Mark Two self-monitors all its internal components 

for performance degradation ensuring consistency between tests. The Mark Two also has a dry 

storage container for a material spool to mitigate ambient moisture entering the material. 

The associated Eiger slicer program was used to import the CAD data and establish printing 

parameters. Being a proprietary program, the freedom to edit the G-code is limited, but open 

enough to allow for similar testing parameters to the PLA material. The main difference is the 

plate had to be reduced to a third of the size since the Eiger software does not allow for automatic 

pausing of a print mid-layer, so the part width was adjusted to match the point where the Ender 5 

Plus would normally pause. 

 

 

Figure 3.4 The Mark Two (right) beside the dry storage container (left) 
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3.2.5 DIC Camera and Software 

A 2D DIC camera from Correlated Solutions was used to measure the strain in the printed 

plates. The camera has an in-plane resolution of 0.00002*Field of View and a strain measurement 

range of 0.010% to 2000%. The VIC-Snap software included with the camera was used to record 

the monochromatic images and the VIC-2D software was used to run the analysis on the captured 

images. The 2D version was opted for as it required no calibration, and the produced images would 

be easily compared to the thermal images captured at a similar angle. A starting point and image 

had to be designated for the software to be able to analyze the strain changes over time. A 

corrective equation (discussed later) was used to account for the increase in plate height during 

printing. 

 

 

Figure 3.5 The DIC camera with attached lens 
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3.2.6 Thermal Camera and Software 

The FLIR A655sc thermal camera was used to capture thermal data of additively manufactured 

plates during printing in real time. This camera has a resolution of 640x480 with a measurable 

temperature range from -40°C to 650°C within +/-2% of the true temperature. The Research IR 

software by FLIR was used for capturing videos and converting them into MATLAB files for post-

processing.  

 

 

Figure 3.6 The FLIR A655sc 

 

3.2.7 CCD Cameras and Software 

The FLIR Blackfly S CCD camera was used to capture pictures of the printed Onyx plates at 

various angles. The additional angles are compared against the thermal images in the deep neural 

network algorithm. This camera has a resolution of 2048x1536 and uses c-mount lenses with fixed 

focal lengths of 16mm and 29.3mm. The SpinView software was used to capture images of the 

printed plates at the same rate as the thermal camera capture.  
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Figure 3.7 The FLIR Blackfly S 

 

3.3 Experiment Setups 

The nature of the two printers having different enclosures meant that different setups were 

required for each setup. Both setups are detailed in this section. The setup for the Ender 5 Plus was 

created to determine a correlation between the thermal and strain characteristics and how those 

characteristics relate to the formation of defects. Once this correlation was determined, the 

experimental setup for the Mark Two could be simplified to accommodate for the more restrictive 

enclosure. 

3.3.1 Setup for PLA Printing 

All the prints for the PLA plates were run with a layer thickness of 0.2mm, nozzle temperature 

of 195°C, bed temperature of 65°C, and print speed of 60mm/s. The setup included both the 

thermal camera and the DIC camera as the open enclosure of the printer allowed for multiple 

cameras to capture the print at once.  
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Figure 3.8 The experiment setup for the PLA material with labelled components 

 

A printing pause was applied in the G-code at every third of a layer which would halt the 

printing and move the printer head out from above the printed plate to allow for 15 seconds of 

capture from the thermal and DIC cameras before the printer head returned to the part to resume 

printing. This was done to observe as much of the cooling process which occurs in a part as it is 

printed as possible, and the printer head would obstruct the view of the plate while it is printing. 

 

 

Figure 3.9 The printing procedure for the PLA tests 
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Defects in the PLA prints were introduced in a couple ways. The first method was to place 

thin material, such as packing tape or paper, on the bed that would make it harder for the plate to 

adhere. They were also introduced by using a pair of tweezers to pick and pry at the plate at 

various times to simulate different types of defects. 

3.3.2 Setup for Onyx Printing 

All the prints for the Onyx plates were run with a layer thickness of 0.2mm, nozzle temperature 

of 275°C, and print orientation of 45°/-45°/45°/-45°/45°. Only a thermal camera was used for this 

setup as the closed enclosure would restrict the amount of available space to view the part as it is 

printing.  

 

 

Figure 3.10 a) The labeled experiment components b) CCD mounting c) copper layout 

 

A printing pause was applied at the end of each layer as pausing mid-layer was not an option 

within the Eiger program. To compromise, the plate size was reduced to be the size of one of the 

thirds from the PLA tests as to allow for the cameras to capture as much of the cooling process as 

possible. 
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Figure 3.11 Comparison of the PLA (left) and the Onyx (right) prints 

 

 Defects for the Onyx testing were created by introducing thin copper squares taped to the 

print bed with painter’s tape. The copper would serve two purposes. The first would be to create 

indents in the plate due to being a bed obstruction. The second would be to act as a heat sink to 

force uneven cooling in the part which could lead to further defects. Painters’ tape was used since 

painters’ tape can be used to help printed parts stick to the bed when poor adhesion is a concern. 

 

 

Figure 3.12 Copper squares on the print bed (left) and under the painters’ tape (right) 
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3.3.3 2D DIC Correction 

Whenever a new layer is added to the plates being printer, the additional layer changes the part 

in an axis not accounted for by a single camera. The print bed does shift in the opposite direction 

which can correct some of this displacement, but not all of it. This induces some error in the strain 

measurements. 

It is possible for the errors produced this way to be accounted for after receiving the 

measurements. Jani demonstrated in her analysis of strain in additively manufactured plates using 

2D DIC analysis that using a modified version of the pinhole equation can calculate the error in 

the strain measurements has a print changes layers, shown in equations 3.1 and 3.2 [27]. The strain 

error calculated using these equations can then be subtracted from the given strain by the software 

for the corresponding layer.  

 

∆𝜀𝑥𝑥 =
𝜕𝑈(∆𝑍)

𝜕𝑥𝑠
≈

(∆𝑍)

𝑍
     (3.1) 

∆𝜀𝑥𝑥 =
𝜕𝑈(∆𝑍)

𝜕𝑥𝑠
≈

(∆𝑍)

𝑍
     (3.2) 
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4. Deep Neural Network Modelling 

Deep neural networks (DNN) models can learn intricate patterns from many structured picture 

datasets and can generate precise predictions based on training data. They are comprised of an 

input layer, at least one hidden layer, and an output layer, where the output of one layer is the input 

of another layer. The neurons within a layer have thresholds that trigger the activation of data 

transference from that neuron to the neurons of the next layer. DNNs can significantly reduce the 

amount of time required to classify data, such as image classification. However, these traditional 

methods require considerable model training, using both non-defected and defective data sets. This 

process limits their capabilities to detect the non-trained image data set and unknown images are 

forcefully classified into one of the known classes.  

4.1 Zero-Bias Deep Neural Network  

In this study, a novel method for transforming a standard deep neural network model into an 

abnormality detection model was utilized by adding zero bias layers. This approach enabled 

detection of untrained faults while using only non-defective data sets for training. The last dense 

layer was modified into two distinct layers—one standard dense layer and the other zero-bias layer. 

It should be noted that the addition of the zero-bias layer also increases the learning time for the 

algorithm and takes longer for the learning accuracy to increase due to a larger separation of 

fingerprints and less sensitivity to changing the spacing between fingerprints [28][29].  

The zero-bias DNN model was initially trained using non-defective datasets and then the 

feature vector of known data sets from the zero-bias layer was extracted. The feature vectors of 

these known datasets are then utilized to calculate the centroid of each known class and a cutoff 

distance based on the Mahalanobis distance between the class-centered and furthermost feature 

vectors of each input data sample. If an input's Mahalanobis distance from the centroid of each 

class is more than the cutoff distance for all classes, it is considered as abnormal.  
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The ZBDNN used in this research was applied to AM by Deepak Kumar, a colleague of mine 

in the ERAU AE PhD program, who agreed to let me use and edit his code for the algorithm to fit 

the scope of this research. 

 

 

Figure 4.1 MATLAB code for generating the Voronoi diagrams 
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Figure 4.2 MATLAB code for feature vectors for determining classes 

 

4.2 Analysis using Deep Neural Network 

The ZBDNN was trained using thermal images of the Onyx material. The classifications were 

given based on which layer was shown in the image. If an image was flagged as abnormal, 

containing defects in this case, then it would set the image aside. The image would be labelled as 

a defect and given an identifier of what label it would have gotten if not flagged as abnormal. This 

will allow not only verification of the occurrence of defects in the Onyx plates, but also 

identification of when and where the defects occurred. Due to limited available computing power, 

the training is only run over 60 iterations.  

It is also possible to feed multiple images sources into a single analysis from the ZBDNN by 

treating the images of different sources as another set of classes. In this analysis, the thermal data 

was treated as classes 1-4 and the CCD data was treated as classes 5-8. It is important to note that 

the different inputs must be in the same format for the analysis to run as the matrix that reads color 
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values while be different sized depending on the format. This is why the thermal images were 

converted to grayscale prior to running the combined analysis. 

 

 

Figure 4.3 Flowchart detailing the DNN process 

 

 

Figure 4.4 Flowchart detailing the DNN training 
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5. In-situ Characterization Results 

This chapter details the results of the strain and temperature data collected from the tests of the 

PLA plates.  

5.1 PLA Results 

The data collected was post-processed through Excel and MATLAB. Naming of the sections 

follows the format of Section X-Y, where X corresponds to the layer and Y corresponds to the 

section of the layer. The strain data is discussed first, followed by the temperature data. The results 

of the strain and temperature are then compared to look for correlations between the two qualities. 

The data is then also compared to the occurrence of defects to determine correlations between the 

qualities and the formation of defects. All the plots and figures are from Section 2-2. 

 

    

Figure 5.1 Sample sections for the clean PLA print (left) and the defective PLA print (right) 
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5.1.1 DIC Results 

This section discusses the strain data in the PLA plates that was collected during the 

experiment. The clean prints are highlighted first, then the defective prints for comparison of the 

two test types.  

5.1.1.1 Clean Prints 

The strain in the xx-direction ranged from -0.00218 to 0.00830 while the strain in the yy-

direction ranged from -0.00226 to 0.00132. The strains tended toward the lower half of the 

spectrum, with most of the extreme ranges around the edges of the section. The strains along the 

xx-direction had a roughly uniform pattern following the direction of the fibers while the yy-

direction had a pattern perpendicular to the fibers. This uniformness indicates there are no defects 

imposing a change in the strain direction as the plate cools and shrinks. The strains are visualized 

in Figure 5.2. 

 

     

Figure 5.2 Strains in the xx-direction (left) and yy-direction (right) for the clean PLA prints 
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5.1.1.2 Defective Prints 

The strain in the xx-direction ranged from -0.0075 to 0.00158 while the strain in the yy-

direction ranged from -0.00354 to 0.00144. The strains tended towards the upper half of the 

spectrum, with the extreme ranges scattered throughout the plate. The strains along the yy-

direction followed a similar pattern as the clean prints, however the strains along the xx-direction 

had a pattern towards the bottom left of the section. This pattern is indicative of defect occurrences 

either at the bottom of the section, or in the neighboring sections and impacting the observed 

section. These strains are visualized in Figure 5.3. 

 

   

Figure 5.3 Strains in the xx-direction (left) and yy-direction (right) for the defect PLA prints 

 

5.1.2 Thermal Results 

This section discusses the thermal data in the PLA plates that was collected during the 

experiment. The clean prints are highlighted first, then the defective prints for comparison of the 

two test types. The strain tests indicate a defect in the plate, but the exact location cannot be 

determined with the strain test alone. The thermal tests can identify the exact location of the defect. 
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5.1.2.1 Clean Prints 

The thermal mapping of the clean plate shows the most recently printed part of the plate as the 

hottest, being the right edge of section in this case, and the portion that’s been left sitting the 

longest being the coldest, being the outer walls of the plate in this case. As there are no instances 

of defects in this print, there are no seemingly random occurrences of portions with a different 

temperature than the surrounding area. The thermal mapping is pictured in Figure 5.4. 

 

 

Figure 5.4 Thermal map of the clean PLA with the newly printed section boxed in 

 

5.1.2.2 Defective Prints 

The thermal mapping of the defective plate shows a similar pattern to the clean plate in the 

freshly printed section, except that the hottest section is noticeably larger than that of the clean 

print, which can be seen in Figure 5.5. This indicates there is some sort of pressure pushing along 

that edge of the section. There is no clear instance of a portion of this section being noticeably 

hotter or colder than the surrounding area, which means there is damage in a neighboring section 
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causing the increased size of the hit section. Looking at section 1-3, there is a band of much colder 

material around the lower outer edge, indicating that this part of the plate had not adhered to the 

bed properly and has started warping. 

 

 

Figure 5.5 Thermal map of the defect PLA with the newly printed section boxed in 

 

5.2 Relations between Thermal and Strain and the Formation of Defects 

The average values of the temperature and the strains in the xx-direction and the yy-direction 

are plotted beside each other over time. The values of the clean print are in Figure 5.6 and the 

values of the defective prints are in Figure 5.7. The clean print has a temperature plot with clear 

steps whenever a new section of the plate is completed while the strain had small fluctuations 

while tending towards a decrease. The defective plate does not have as clear temperature steps and 

on average had lower temperatures than the clean print, while the strains also had a lower average 

value along with large fluctuations, but still tended towards decreasing over time. The plot in 

Figure 5.7 shows a very large spike in the middle of the second step. Based on these patterns, it 
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can be determined that a large increase or decrease in temperature or strain can determine the same 

change in the other quantity. It can also be said that the large spikes in the measured quantities can 

indicate the presence of defects along with an approximation of when the defect occurred in the 

plate. 

 

 

Figure 5.6 Plot of temperature and strains over time for the clean PLA print 

 

 

Figure 5.7 Plot of the temperatures and strain over time for the defect PLA print  
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5.3 Onyx Results 

The Onyx testing starts using the baseline relations between heat, strain, and defect 

occurrences. The Onyx material also is not available in a speckled pattern version and there is no 

safe way to introduce speckles to the material without risking damage to the printer, so the DIC 

measurements could not be performed. In place of the DIC test, the ZBDNN was used to analyze 

pictures of clean and defective images to identify damage in the samples. This was done using 

images captured from the thermal camera, a grayscale CCD camera, and a combination of both. 

Defects were created using thin copper squares inserted under the painter’s tape base the samples 

were printed on (pictured in Figure 5.8) or having the bed slightly lowered from the ideal location.  

 

    

Figure 5.8 Samples of the clean Onyx prints (left) and the defect Onyx prints (right) 
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5.3.1 Thermal Results 

This section discusses the results of the thermal data collected of the onyx samples for both the 

clean and the defective samples. The data discussed here was collected prior to the CCD images 

while the thermal data used in the combined test was collected with the CCD images. 

5.3.1.1 Clean Prints 

The Onyx composites were printed in an alternating 45°/-45° pattern which gave the thermal 

mappings of the layers distinctive patterns depending on which orientation they were printed in. 

The 45° layers, which are also the odd numbered layers, displayed a more rounded shape for each 

of the color gradients in the mapping, while the even-numbered -45° layers had a more flattened 

and elongated shape for the color gradients, as shown in Figure 5.9. In both cases, the cooling 

patterns were uniform, showing a gradual expansion of the gradients without any distortions to the 

shape indicating no defects present in the part. 

 

 

Figure 5.9 Thermal maps of the clean Onyx print at different layers 
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 Plotting the average temperature in the sample shows a similar cooling pattern pictured in 

Figure 5.6 for the PLA prints. However, the step in the third layer is elevated due to the automatic 

increased heating of the Mark Two printer nozzle that accounts for the temperature difference 

between layers. Given the steps for layer 2 and layer 3 are even, it can be safely determined that 

step 3 would have had a decrease like that from the PLA samples. 

 

  

Figure 5.10 Plot of average temperature of the clean Onyx plate over time 

 

5.3.1.2 Defective Prints 

The defective set of prints displayed similar color gradients to that of the clean samples, 

however, they had clear distortions of colder regions in the shape of the copper squares which the 

gradients wrapped around as seen in Figure 5.11. For better visualization, image subtraction was 

performed by subtracting the color map of a clean image from an image of a defect at the same 

time step. The defect regions stand out much clearer as yellow in Figure 5.12. 
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Figure 5.11 Thermal maps of the defect Onyx print at different layers 

 

 

Figure 5.12 Subtraction of the clean and defect Onyx print thermal maps 

 

The plot of the average temperature in Figure 5.13 displays a similar shape to clean print, 

however there are larger differences in temperature between each layer step. The average 

temperature overall was also cooler than the clean plot. 
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Figure 5.13 Plot of average temperature of the defect Onyx plate over time 
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6. Deep Neural Network Analysis 

The ZBDNN was trained using the same images discussed previously to verify the results of 

the data. The training was done without the use of defective images so the program could learn 

what each layer is supposed to look like and anything that looks different enough could be caught 

and uniquely classified. The training results are given in Figure 6.1 and 6.2, with 6.1 showing the 

overall accuracy of the image classification and data loss and 6.2 showing a breakdown of how 

many images of each class were correctly and incorrectly identified. For this data, the program 

was 96.3% accurate with 5 images from layer 4 incorrectly classified as layer 1. 

6.1 Thermal Results 

 

  

Figure 6.1 Accuracy and losses of the training data 

 



 

 

44 

 

 

Figure 6.2 Class prediction of the training data 

 

A Voronoi diagram was generated using the training data to better visualize the class data. This 

diagram breaks down a plane into smaller sections where similar data points are grouped into and 

separated from dissimilar data groupings. The data points in this experiment are the images and 

the sections are the layers of the plate. The diagram produced in Figure 6.3, while not perfect, 

displays that can be compared with a version that includes data points from defective images, 

shown in Figure 6.4, to determine if there is an issue with data analysis. Different sorting 

algorithms and distance metrics were observed and MATLAB’s “exact” algorithm with the 

Spearman distance metric appeared to give the best sorting of the data. 
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Figure 6.3 Voronoi diagram of ZBDNN results without images of defects 

 

  

Figure 6.4 Voronoi diagram of ZBDNN results with images of defects 
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The patterns in this data include classes 2 and 3 being closely related along with classes 1 

and 5 being closely related with some of class 1 spilling into class 5 with some of class 4. These 

patterns are seen in both Voronoi diagrams indicating that the analysis was accurate. It should 

also be noted that the data points visualized are clusters of smaller data points as shown in Figure 

6.5. The data can be further verified by plotting flag data of positive and negative flags, 

including both true and false versions of each flag shown in Figure 6.6.  

 

 

Figure 6.5 Zoom in of a “point” in class 1 

 



 

 

47 

 

 

Figure 6.6 True and false positive and negative flags of the thermal images 

 

6.2 CCD Results 

Similar analysis was performed using grayscale images of plates. The analysis of these images 

was higher than that of the thermal images at 100% accuracy, although taking twice the number 

of iterations before the network concluded that the accuracy could not be improved further. A new 

set of thermal data was also captured in tandem with the grayscale images. Only 4 layers were 

used for this testing to reduce computation time of the combined analysis. The results of this testing 

had more distinctly separated classes albeit with some bleed over between classes as depicted in 

Figure 6.9 and Figure 6.10. 
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Figure 6.7 Accuracy and loss of the CCD photos 

 

 

Figure 6.8 Class prediction of the CCD photos 
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Figure 6.9 Voronoi of CCD images without defects 

 

 

Figure 6.10 Voronoi of CCD images with defects 
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Figure 6.11 True and false positive and negative flags of the CCD images 

 

6.3 Multiple Source Analysis 

An analysis was also run combining the thermal data collected during the gray scale testing 

with the grayscale data. The thermal data encapsulates classes 1-4, and the grayscale data takes up 

classes 5-8. The thermal data was also converted into grayscale so that testing could be run as one 

of the matrices in the program had a value for color range, but grayscale images lacked this value. 

The testing would not run if only some of the data sets had ranges for this value but would if either 

all or none of the sets did. The accuracy of the combined testing was 98.6%, being slightly higher 

than the average between the two data sets, although taking more iterations either of the previous 

tests, before the network decided the accuracy couldn’t be further improved.   
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Figure 6.12 Accuracy and loss of the combined data 

 

 

Figure 6.13 Class prediction of the combined data 

 

The Voronoi of the combined data showed similar characteristics of both previous Voronoi 

diagrams, particularly with the layout of the defects. For the thermal data, most of the defects 

were detected around the 4th layer while the grayscale had most of the defects detected around 
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the 3rd layer. This indicates that even if one of the two methods is more accurate than the other, 

having both can be more beneficial when it comes to determining when defects are beginning to 

occur. For the thermal and grayscale, the even-numbered layers were closely related to each 

other and the odd-numbered layers shared this characteristic. 

 

 

Figure 6.14 Voronoi of the combined test data without defects 
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Figure 6.15 Voronoi of the combined test data with defects 

 

 

Figure 6.16 True and false positive and negative flags of the combined test data 
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Figure 6.17 Comparing the total image count vs number of defect images for both data sets 

  



 

 

55 

 

7. Discussion 

Using the PLA samples as a basis for developing correlations between strain and temperature 

and defect formations, any similarities found in the Onyx prints can be concluded to be the result 

of the FDM printing process. It was found that the strains in the defect samples tended to have 

wider ranges of strain values in both the xx and yy directions. It also had the largest fluctuations 

when the averages were plotted during the printing process. The thermal data collected showed the 

average temperature across the defective plates was lower than the clean samples by up to 5℃. 

There were also larger changes in temperature during different sections of printing which 

coincided with the appearance of strain spikes indicating a correlation between temperature and 

strain. These changes occurring only in the defect prints also show a correlation between these 

measured properties and the occurrences of defects. Testing of the Onyx samples displayed similar 

thermal patterns to the PLA samples indicating the patterns observed are primarily a result of the 

FDM printing method. 

Expanding the data analysis of the Onyx samples to a zero-bias deep neural network, more 

details about the defect formations can be determined. Utilizing the thermal data as training data, 

the algorithm was able to properly classify the images by layer and defect occurrence 96.83% of 

the time. Plotting the data on a Voronoi indicates that most of the defects detected occurred in 

layer 2 and 3. The algorithm also closely plotted the even numbered layers with each other and the 

odd numbered layers with each other, likely due to the alternating 45°/-45° pattern in the print. 

Applying the same algorithm to a series of grayscale images taken at the same time and interval 

as the thermal images showed a similar, but different outcome. The algorithm was able to correctly 

classify the grayscale images 100% of the time. When plotting the data on a Voronoi diagram, the 

layers were clearly spaced apart, though the even and odd numbered layers did tend towards one 
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another like in the thermal case. The defects, however, were found on every layer, though primarily 

identified in layers 3 and 4 of the sample. The algorithm was also run utilizing both thermal and 

grayscale datasets at the same time. The algorithm was able to correctly classify the images 98.34% 

of the time, with the misclassifications occurring exclusively within the thermal images. Plotting 

the results on a Voronoi diagram showed similar patterns to the two individual test runs. The two 

sets were spaced apart in the diagram making them easy to identify. The sets still exhibited the 

clustering of even and odd number layers in the same fashion as they did individually. The defects 

were also similarly displayed in the grayscale set as they were in the individual tests except with 

the defects primarily being detected in layer 3. The thermal set displayed some defects detected in 

all the layers but primarily layers 2 and 4.  

The results of the DNN tests indicate the most likely time occurrences for when the defects 

occur, which can be cross-referenced with the results of the in-situ tests to determine what is 

happening in the part at the time of defect formation. The DNN results also show that having 

multiple sources of data acquisition from multiple angles can help better the detection of defects 

in the algorithm. 
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8. Conclusions and Future Work 

In this research, defect formations in Onyx composite prints from FDM style additive 

manufacturing was observed during the printing process through in-situ methods. The thermal data 

collected displays notable differences in cooling patterns between clean and defective prints. The 

cooling patterns can be related to those found in PLA prints which further indicates strain 

formations in Onyx are also similar. The data collected from the in-situ observations can be further 

analyzed using a deep neural network to classify images based on the layer pictured in the image. 

The inclusion of a zero-bias layer can keep the image classification consistent and more accurate. 

The Voronoi diagrams generated from the DNN can help determine when defects start to occur 

within the print, even if they are not noticeable through standard visual observations. Combining 

observations from different types of cameras can also help further conclude the origin of a defect 

in a print. The conclusions of this thesis include: 

1. FDM style printing produces similar defect patterns between material types. 

2. Defects in the composite plates displayed overall lower temperatures and higher 

fluctuations in strain than non-defective prints, with average temperature 

variations as high as 5℃ and average strain variations as high as 3x10-4 between 

clean and defective prints. 

3. The novel zero-bias deep neural network can be used to accurately classify 

image sets based on print layer and defect occurrence. 

4. It is possible to use multiple image sources in a single DNN analysis to help 

pinpoint defect locations provided the images sets are in the same format. 

The objectives of this thesis, to develop in-situ monitoring methods for the FDM process of 

composite materials, correlate measured process parameters with defect occurrences, and utilize 
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the characterization data in computational approaches were all accomplished. It was also possible 

to get detailed analysis of defect occurances from the neural network. 

8.1 Future Work 

This research accomplished defect detection by combining multiple sources of input data into 

one deep neural network analysis using a novel zero-bias layer. This work can be used as a 

reference for future research into defect analysis in additive manufacturing. It may be possible to 

use the 2D analysis performed in this research as the basis for developing an analysis utilizing a 

3D view of a given print. Different materials printed using FDM can be observed and compared 

with this research to further observe material vs process effects on defect occurrences. Other 

printing processes, such as Selective Laser Sintering, that are analyzed could be compared to the 

results of this research to observe the effects different processes have on defect occurrences.  
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