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Abstract

We study the possibility that massless particles, such as photons, are produced by a gravitational

wave. That such a process should occur is implied by tree-level, Feynman diagrams such as two

gravitons turning into two photons i.e. g + g → γ + γ. Here we calculate the rate at which a

gravitational wave creates a massless, scalar field. This is done by placing the scalar field in the

background of a plane gravitational wave and calculating the 4-current of the scalar field. Even in

the vacuum limit of the scalar field it has a non-zero vacuum expectation value (similar to what

occurs in the Higgs mechanism) and a non-zero current. We associate this with the production

of scalar field quanta by the gravitational field. This effect has potential consequences for the

attenuation of gravitational waves since the massless field is being produced at the expense of the

gravitational field. This is related to the time-dependent Schwinger effect, but with the electric

field replaced by the the gravitational wave background and the electron/positron field quanta

replaced by massless scalar “photons”. Since the produced scalar quanta are massless there is no

exponential suppression as occurs in the Schwinger effect due to the electron mass.
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I. INTRODUCTION

As early as 1855 Faraday recognized the possibility of a relationship between gravity and

electricity [1] through his observation “Such results, if possible, could only be exceedingly

small; but, if possible, i.e. if true, no terms could exaggerate the value of the relation

they would establish”. More recently the potential relationship between gravity and the

electromagnetic interactions has been examined for individual quanta in terms of gravi-

tons and photons [2–4] using Feynman diagrams or in terms of electromagnetic waves and

gravitational waves [5–7] (i.e. large collections of photons and gravitons). The perturba-

tive, Feynman diagrammatic calculations of [2–4] give transitions from gravitons to photons

which are consistent with Faraday’s expectation that this effect is “exceedingly small”. For

example in [2] it was found that the cross section for two gravitons going to two photons

(g + g → γ + γ) 1 is of the order σ ∼ 10−110cm2 for a wave whose frequency is set by the

electron rest mass ω ∼ me. For such a small cross section this process is not important even

for gravitons traveling cosmological distances. The frequencies involved in the detection

by LIGO of GW150914 [9] where much lower than ω ∼ me, which would make the cross

sections even smaller. The point of these estimates is that one gets a small, but non-zero

result for this process.. In this paper we want to examine the production of massless quanta

from a gravitational wave background. This can be viewed as a gravitational variant of the

Schwinger effect where a strong, static electric field can produce electron-positron pairs [10].

In the present case the background field is that of a gravitational wave instead of a static

electric field and the particles produced are massless scalar particles (which are stand-ins for

photons) instead of electrons-positrons. In the usual Schwinger effect the electron-positron

production rate per unit volume is given by

Γe+e− =
e2E2

0

4π3
exp

[−πm2
e

eE0

]

. (1)

This process is exponential suppressed by the last term in the expression above (E0 is the

magnitude of the electric field, me is the electron mass and e is the electron charge). In the

1 Since here we have in mind to calculate how a gravitational plane wave, which is composed of many

gravitons, is converted into a massless field, the gravitons would be taken as going in the forward direction

and the massless field created from the gravitational wave would also be going in the forward direction as

expected from energy-momentum conservation [8].
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case studied here – gravitational field creating massless quanta – there will be no exponential

suppression since the mass associated with the fields is zero.

A final important point about taking the scalar field to be massless is that it has been

shown [11] that a gravitational plane wave can not create a scalar field if the scalar field is

massive. The caveat given in [11] for when it might be possible to create a scalar field from

a gravitational plane wave is exactly when the scalar field is massless. This also fits in with

the particle view point of reference [8] where the decay of gravitons into other particles was

investigated, and from very simple kinematic arguments it was shown that graviton decay

was only possible when the graviton decayed into other massless particles.

The potential significance of the process where electromagnetic radiation is produced

from a gravitational wave background, is that this would lead to a weakening or attenuation

of the gravitational wave, since the creation of the electromagnetic radiation would come

at the expense of the gravitational wave. If the production of electromagnetic radiation

via gravitational waves is significant, one would need to take this into account when using

the detected amplitude of the gravitational wave to determine the characteristics of the

event, such as the distance to the source of the gravitational waves. For example, this

attenuation would mean that the source of the gravitational wave was closer than implied

by the measured amplitude. Another consequence of this process is that one might think

to look for the electromagnetic radiation which was produced by the gravitational wave. In

fact there is a claim [12] that the gravitational wave detection by LIGO, GW150914, [9]

was potentially accompanied by a γ-ray signal. Our calculations below will show that a

gravitational wave might produce electromagnetic radiation, but rather than being in the

γ-ray range, the electromagnetic radiation produced would have extremely long wavelengths

on the order of 100s of kilometers.

Previously the question of production of electromagnetic radiation from a gravitational

background was examined by two of the authors [6] using the formalism of the Unruh-DeWitt

detector. The resulting scalar field quanta production rate found in this way was small but

not as small as indicated by the Feynman diagram calculations [2–4] for individual quanta.

Based on the Unruh-Dewitt detector calculations of [6] it was possible that the production

of electromagnetic radiation via a gravitational wave background might have an attenuating

effect on the gravitational wave. This difference between the Feynman diagrammatic calcu-

lations of [2–4] and the Unruh-DeWitt detector calculations of [6] can be compared to the
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situation that occurs when calculating the decay rate, Γe+e−, for the Schwinger effect. The

expression for Γe+e− given in (1) is non-perturbative (this can be seen by the presence of

exp [− const.
E0

]) and cannot be obtained via the perturbative method of Feynman diagrams.

In Minkowski space-time the calculation of vacuum pair production via different meth-

ods gives identical results. For example, one can calculate the Schwinger effect via the

Trace-Log method originally used by Schwinger or via the “scattering/tunneling” of some

charged field by the potential due to the background, uniform electric field and the results

are the same (this comparison of different methods of calculating the Schwinger effect can

be found in [13, 14] as well as in [15]). However, in curved space-times, different methods

for calculating particle production can give different results for the production rate as dis-

cussed in several papers [16–18]. As pointed out in [16] the difficulty of studying particle

production in the presence of a non-asymptotically flat gravitational background, is that

the definition of the particle production rate can depend on the method of calculation (e.g.

using creation/annihilation operator versus using a definition of a vacuum state versus using

a Feynman Green function). In [16] the vacuum-to-vacuum amplitude was calculated in the

path integral approach for Friedmann-Robertson-Walker space-time. The amount by which

this amplitude differed from unity was used to obtain the particle production rate and it was

found to give a different particle production rate from the usual method of diagonalization of

the Hamiltonian. While this warning about different calculation methods yielding different

particle production rates may not necessarily apply to the gravitational wave backgrounds,

which are the focus of this paper 2, we nevertheless mention it to point out the subtle is-

sues which surround the definition of particles in curved space-times, and determining if a

given space-time will have particle production associated with it or not. Finally we note

that reference [18] gives arguments that for general time-dependent metrics the issue of the

definition of particles and whether or not particle production occurs is still an unresolved

problem.

In this paper, we obtain the particle production rate by calculating the conserved 4-

current of a massless, scalar field in a gravitational wave background and then comparing

this to the massless, scalar field in flat space-time. The difference between these two sit-

2 This difference in particle production rates, calculated via different methods, occurs in space-times where

it is not clear how to define asymptotic states. This is the case for the FRW space-time considered in [16]

but is not the case for the gravitational wave background.
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uations – scalar field in a gravitational wave background versus scalar field in Minkowski

space-time – we take as a measure of the rate of particle production. This 4-current method

for calculating the production rate and/or super radiance is similar to that used in ref-

erences [18–21]. The 4-current method employed here can also be compared to the work

of Gertsenshtein [5], who investigated the production of electromagnetic radiation when

a gravitational wave encountered a region of space-time with a uniform magnetic field. In

Gertsenshtein the interaction between the magnetic field and gravitational wave background

produced electromagnetic radiation. Here we replace the magnetic field by a massless scalar

field. Recently, Mösta et al. [22] carried out a study similar to that of Gertsenshtein, where

they studied the electromagnetic radiation produced by a gravitational waves coming from

a pair of inspiralling black holes embedded in a constant magnetic field.

In section II we study the solution of a massless scalar field in a gravitational wave

background and use this to calculate a particle production rate. In section III we use the

results of section II to give a rough estimate an attenuation length for the gravitational wave

due to the production of electromagnetic radiation from the gravitational wave.

II. SCALAR FIELD IN GRAVITATIONAL WAVE BACKGROUND

In this paper we use a massless scalar field as a stand-in for the more physically realistic

massless photon. The justification for this is that one can write a vector field as Aµ(xν) =

ǫµϕ(xν) where ǫµ is the polarization 4-vector and ϕ(xν) is a scalar function which obeys the

massless Klein-Gordon equation. The vector field Aµ certainly has more degrees of freedom,

because of ǫµ, as compared to a simple scalar field, but this would at most change the

production rate by some factor of order unity. At the level of individual quanta one can

point to the work of reference [3] where the cross sections for gravitons Compton scattering

from scalar and vector particles is given i.e. the processes S+ g → S+ g and γ+ g → γ+ g.

These Compton scattering diagrams can be rotated to give graviton production processes

i.e. g+ g → S+S and g+ g → γ+ γ. From [3] the diagrammatic evaluation of both these

two processes are non-zero, although they do differ by numerical factors of order unity due

to the different spins of the scalar versus vector particles.

With this justification we begin by placing a massless, scalar field in curved space-time

and writing down the Klein-Gordon equation coupled to the space-time described by the
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metric gµν ,

1
√

− |gµν |

(

∂µg
µν
√

− |gµν |∂ν
)

ϕ = 0. (2)

For our background we take a plane gravitational wave with the + polarization. The metric

for this can be written as [23],

ds2 = −dt2 + dz2 + f(u)2dx2 + g(u)2dy2 . (3)

The variables in the metric, u = z − t and v = z + t, are light cone coordinates and the

metric components f(u) and g(u) will be required to be oscillatory functions as expected

for a gravitational wave background. The determinant of the metric is |gµν | = det[gµν ] and
√

−|gµν | = fg. Substituting this in equation (2),

1

fg

(

−∂t(fg)∂t +
1

f 2
∂x(fg)∂x +

1

g2
∂y(fg)∂y + ∂z(fg)∂z

)

ϕ = 0. (4)

Since u is only a function of z and t the expression can be expanded,

(

−∂2
t −

1

fg
∂t(fg)∂t +

1

f 2
∂2
x +

1

g2
∂2
y + ∂2

z +
1

fg
∂z(fg)∂z

)

ϕ = 0. (5)

Applying the chain rule for the t and z derivatives, ∂t(fg) = −∂u(fg), ∂z(fg) = ∂u(fg),

(∂2
z − ∂2

t ) = 4∂u∂v, (∂t + ∂z) = 2∂v, (∂z − ∂t) = 2∂u, and multiplying by f 2g2,

(

4f 2g2∂u∂v + 2fg∂u(fg)∂v + g2∂2
x + f 2∂2

y

)

ϕ = 0. (6)

At this point we are still looking at the exact solution to the Klein-Gordon equation using the

metric of equation (3). To evaluate the solution for a weak gravitational wave the linearized

gravity approximation will be introduced in the terms of the metric, f (u) = 1+ ε (ku), and

g (u) = 1− ε (ku) and substituted into equation (6). Also note that the metric of equation

(3) describes a wave propagating in the z direction and the x and y spatial directions must

be physically indistinguishable. Based on the isotropy of space-time and assuming a non-

thermal vacuum [6, 8, 24], we take
(

∂2
y − ∂2

x

)

ϕ = 0 as a property of our scalar field solution.

Using this and collecting terms together equation (6) can be expressed as,

[

4
(

1− 2ε2 + ε4
)

∂u∂v − 4
(

1− ε2
)

ε (∂uε) ∂v +
(

1 + ε2
)

∂2
x +

(

1 + ε2
)

∂2
y

]

ϕ = 0. (7)
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We now assume that ε (ku) = h+e
iku i.e. oscillatory functions typical for gravitational waves

in linearized general relativity. In this expression h+ is the dimensionless amplitude of the

gravitational wave. Substituting into equation (7) we obtain,

(

4F∂u∂v − 4ikG ∂v +H
(

∂2
x + ∂2

y

))

ϕ = 0, (8)

where,

F (ku) ≡
(

1− 2h2
+e

2iku + h4
+e

4iku
)

,

G (ku) ≡
(

h2
+e

2iku − h4
+e

4iku
)

,

H (ku) ≡
(

1 + h2
+e

2iku
)

.

(9)

Equation (8) is separable taking ϕ = X (x) Y (y)U (u)V (v) and identifying the eigenvalue

equations for X(x) and Y (y) as,

∂2
xX = −k2

xX → X = eikxx,

∂2
yY = −k2

yY → Y = eikyy.
(10)

Note, that the x and y direction eigenfunctions are simply free waves as is to be expected

since the gravitational wave is in the u = z − t direction. Setting 2k2
xy ≡ k2

x + k2
y and using

(10) we find that (8) becomes

F
∂uU

U

∂vV

V
− ikG

∂vV

V
−H

k2
xy

2
= 0. (11)

Now since the light front coordinate v is orthogonal to u and since the gravitational wave

only depends on u one expects that the eigenfunction V (v) also is solved by a free, plane

wave, as was the case for X(x) and Y (y). This is indeed the case and we find

− i∂vV = kvV → V = eikvv. (12)

Substituting equation (12) into equation (11) yields,

ikvF
∂uU

U
+ kkvG−

k2
xy

2
H = 0. (13)

Defining the eigenvalue λ ≡ k2xy
2kv

(13) can be rearranged,

i
∂uU

U
= λ

H

F
− k

G

F
. (14)
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This equation can be integrated to give,

U = Ae
λ
k e

−λ

k(1−h2+e2iku) (1− h2
+e

2iku
)

1
2(

λ
k
−1)

e−iλu . (15)

A is a normalization constant which we will fix later. The first term (e
λ
k ) is needed to insure

that as h+ → 0 (i.e. the gravitational wave is turned off) that the eigenfunction for the u

direction becomes a free plane wave, e−iλu. Collecting together all the terms in x, y, v and

u directions gives the solution of the scalar field in the gravitational wave background,

ϕ = Ae
λ
k e

− λ

k(1−h2+e2iku) (1− h2
+e

2iku
)

1
2(

λ
k
−1)

e−iλueikvveikxxeikyy. (16)

This solution for the scalar field given in (16) is very similar to solution found in [15] for

the static electric field pair production evaluated in light front coordinates. Taking the limit

h+ → 0 of equation (16) returns the expected Minkowski vacuum solution for the scalar

field,

ϕ0 = Ae−iλueikvveikxxeikyy → Aei(kv+λ)tei(kv−λ)zeikxxeikyy. (17)

In the last expression we have reverted from light front to Cartesian coordinates. It is clear

that the scalar field in (17) is a free wave. By defining an energy k0 = kv +
k2xy
2kv

and a

momentum in the z-direction kz = kv − k2xy
2kv

and using the previously defined k2
x + k2

y = 2k2
xy

one can check that energy-momentum of the free solution in (17) satisfy the usual kinematic

relationship for a free particle in Minkowski space-time namely k2
0 = k2

x + k2
y + k2

z .

We now use the result for the scalar field given in (16) to calculate the associated 4-

current density which will then allow us to calculate the rate of pair production of the scalar

field from the gravitational wave background. The u component of the scalar field 4-current

is given in terms of ϕ as

ju = −i (ϕ∗∂uϕ− ϕ∂uϕ
∗) . (18)

Substituting ϕ from (16) into (18) we find that the time averaged u component of the

4-current is,

〈ju〉 = −2A2λ− A2

(

9

2

λ3

k2
− 12λ2

k
+

13

2
λ− k

)

h4
+. (19)
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The brackets represent the time averaging. In obtaining this expression we have taken

the light front coordinate averages for the cosines, 〈cos2 (2ku)〉 = 1
2
, 〈cos4 (2ku)〉 = 3

8
, and

〈cos (2ku)〉 = 〈cos (4ku)〉 = 0. Also we have dropped terms higher than h4
+.

We now examine various limits of Equation (19). First, in the limit when the gravitational

wave vanishes, h+ → 0, the current becomes ju → −2λA2 → −1/V where we have fixed

the normalization constant A = 1√
V

1√
2λ

by requiring that there be one particle per volume

V . Another option for A would be to use the condition that there be 2λ particles per

volume V which would give A = 1√
V
. Section 4.3 of [25] discusses the various normalization

conditions for scalar fields. Second, in the presence of both the scalar field (λ 6= 0) and

gravitational wave (h+ 6= 0) equation (19) indicates how the current is modified by the

potential represented by the gravitational background. For certain values of λ, k, and h+

the current in (19) gives a larger outgoing current than incoming. This can be likened to

the calculation of the Penrose super radiance process [21] where one “scatters” a real scalar

field from a rotating black hole and the outgoing scalar field may have more energy than

the incoming field. Finally, one can take the limit λ → 0, kv → 0 and kxy → 0 i.e. the

initial scalar field is taken to its vacuum state. In this way one obtains what is called the

Minkowski persistence amplitude [26]. Because of the definition λ ≡ k2xy
2kv

the limit λ → 0

also means kxy → 0. In this limit the scalar field and its 4-current (16) do not reduce to the

vacuum case (i.e. ϕ0 → 0 and ju → 0) but rather reduce to

ϕ → 1√
V

1√
2k

(

1− h2
+e

2iku
)− 1

2 and ju → 1

V
h4
+ . (20)

In (20) we have written out explicitly the normalization constant A = 1√
V

1√
2k
. As before

V is the volume in which the scalar field is placed. This normalization of ϕ (especially the

1√
2k

factor) is consistent with the normalization found in [20] via the Wronskian condition.

Note that ju in (20) is of order h4
+. There are h2

+e
±2iku terms in ju that arise when one

substitutes ϕ from (20) into (18). However these terms time average to zero. In (18) it is

only terms that involve products of things like h2
+e

2iku and h2
+e

−2iku, which give a non-zero

value after time averaging. This explains why one is justified in keeping the metric and ϕ

to order h2
+ while the current derived from ϕ is of order h4

+. If one could write out the

metric to order h4
+ then ϕ should have terms like h4

+e
4iku. However these terms, when run

through the definition of the current in (18), would time average to zero unless they were

9



products of terms like h4
+e

4iku and h4
+e

−4iku. These “direct” product terms would be of order

h8
+ and would contribute to the current ju, but the highest non-zero terms would still be

of order h4
+ since the h2

+ terms time average to zero. Terms from (18) which were “cross”

products of things like h4
+e

4iku and h2
+e

−2iku or h4
+e

4iku and 1 time average to zero. There

are other cases in general relativity where the metric is of lower order in h+ as compared

to the quantity calculated from the metric. One common example is the energy carried

by a linearized gravitational wave where the metric is kept to order h+ while the energy-

momentum calculated from this metric is to order h2
+ [27]. As a final comment on the order

of h+ we note that if one only kept terms of order h2
+ in the scalar field equation (7) then the

vacuum limit for the scalar field given in (20) would become ϕ ∝
(

1− 2h2
+e

2iku
)− 1

4 which to

order h2
+ has the same expansion as ϕ from (20) and yields the same ju as in (20) to order

h4
+

The result in (20) can be related to the Higgs mechanism [28] where a scalar field develops

a non-zero vacuum expectation value of ϕ =
√

m2

2λ
due to a potential with a quartic self

interaction term plus tachyonic mass term (i.e. −m2ϕ2 + λϕ4). The self interacting scalar

potential in the usual Higgs mechanism is time independent. In the present case the scalar

field develops a non-zero vacuum expectation value (the scalar field expressison in (20)) due

to the background gravitational wave potential. Because of the space and time dependent

nature of the background gravitational field the vacuum expectation value from (20) is

also space and time dependent – the e2iku term in the expression for ϕ. Since the vacuum

expectation value in this case is space and time dependent, one has a non-zero 4-current in

the u = z − t direction, ju = 1
2V

h4
+, as opposed to the usual Higgs mechanism case where

the constant vacuum expectation value of the scalar field gives a zero 4-current associated

with ϕ =
√

m2

2λ
. Another difference between the present example and the canonical Higgs

mechanism, is that in the present case the interaction that leads to the vacuum expectation

value of ϕ in (20) comes from the interaction between the scalar field and the gravitational

field. In the canonical Higgs mechanism the vacuum expectation value is due to the λφ4

self interaction of the scalar field. Thus the non-zero scalar vacuum expectation value of

the present case can be compared to the version of the Higgs mechanism that occurs in

superconductors, where it is the phonons of the background lattice that are responsible for

the interaction that binds electrons into Cooper pairs and which leads to superconductivity.

The important point about (20) is that ju 6= 0 even though we have taken the scalar

10



field to its Minkowski vacuum state. We interpret this non-zero ju as being connected to a

non-zero production rate of the scalar field by the gravitational wave background. (In the

next section we draw the exact connection between ju and the production rate). That one

should get a non-zero result for the process of gravitons converting to these scalar “photons”

is supported by the Feynman diagram amplitudes like g + g → γ + γ which are non-zero

[2–4].

The calculation of the production of the scalar field via the time varying gravitational

wave background of (3) can be compared to the similar calculation for de Sitter space-time

from reference [29]. There a massive scalar field was placed in the time-dependent de Sitter

space-time and the amplitude of the scalar field in the de Sitter background was used to

determine the scalar field production rate at the expense of the gravitational field. Unlike

the de Sitter space-time metric there is no horizon in the gravitational wave metric.

In the above discussion the ansatz function, f(u) , g(u) were not exact solutions to the

plane wave space-time of (3). We now briefly show that one obtains similar results for an

exact plane wave, oscillatory metric, showing that the results are not an artifact of the

approximate metric.

In order for f(u) and g(u) in (3) to be exact solutions to the Einstein field equations they

need to satisfy the condition f̈ /f + g̈/g = 0 [23]. A simple exact, plane wave, solution is

given by f = eikue−ku and g = eikueku. These ansatz functions have oscillatory wave parts

(eiku) but they also have exponentially growing or decaying amplitudes (e±ku). Near u = 0

one has oscillating, wave solutions due to the eiku parts of the ansatz function, but as u

moves away from u = 0 the e±ku terms act like growing/decaying amplitudes. Because of

this these solutions can only be of use for a restricted range of u near u = 0. Asymptotically,

as u → ∞, the functions f(u), g(u) are not physically acceptable. Substituting f = eikue−ku

and g = eikueku into equation (6),

(

4e4iku∂u∂v + 2e2iku∂u
(

e2iku
)

∂v + e2ikue2ku∂2
x + e2ikue−2ku∂2

y

)

ϕ = 0, (21)

and making the substitution ϕ = U(u)V (v)X(x)Y (y) = U(u)eikvveikxxeikyy,

(

i
∂uU

U
− k − e−2ikue2ku

k2
x

4kv
− e−2ikue−2ku

k2
y

4kv

)

= 0. (22)

In the limit when the gravitational wave is absent (i.e. k → 0) the solution to (22) is again

11



given by (17). When k 6= 0 the solution is (22),

U = Ae(
(1−i)
4k

λxe−2ikue2ku+
(1+i)
4k

λye−2ikue−2ku)e−iku, (23)

As before A is a constant and λx ≡ k2x
4kv

and λy ≡ k2y
4kv

. As before if we take the limit of the

massless scalar field to its vacuum state (i.e. taking the limit kx → 0 , ky → 0 , λx,y → 0

and kv → 0) one finds U(u) → 1√
V

1√
2k
e−iku so that as before ϕ does not go to zero but

rather ϕ → 1√
V

1√
2k
e−iku. In this limit we have again written out the normalization constant

as 1√
V

1√
2k
. As before we can calculate the current in the u direction in this limit and find

that,

ju = lim
(kx,ky)→0

−i (U∗∂uU − U∂uU
∗) =

1

V
. (24)

There is no explicit amplitude, h+, in this case since the changing amplitudes of the ansatz

functions, f(u), g(u), are given by e±ku.

There are other exact plane wave solutions one could examine. The simplest is f(u) =

g(u) = u [30] which represents a plane wave pulse rather than an oscillatory wave. Perform-

ing the above analysis with f(u) = g(u) = u leads to ju = 0 in the vacuum limit rather than

the non-zero result of (20) or (24). Thus the non-zero result for ju for the oscillatory ansatz

functions is non-trivial.

III. ESTIMATED ATTENUATION LENGTH

In this section we use the vacuum current ju of the last section to estimate the production

rate of massless quanta from the gravitational wave background. Other, recent works which

connect the particle production rate with currents in curved space-times, can be found in

[18–20]. In [19] the connection between the current and the production rate per unit volume

is given by
Γ

V
∆T ≈ |ju| , (25)

where ∆T is a characteristic time for the problem and V is the volume of the system as

before. Using |ju| = h4
+

V
from (20) and taking the characteristic time as ∆T ∼ 1

ω
, where ω is

the frequency of the gravitational wave, we arrive at the production rate

Γ = ωh4
+ . (26)
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We now use this production rate to estimate the effect this has on the decay of the

amplitude h+. We ignore the effect of the usual 1
r
fall off in h+ due to spherical nature of

the outgoing gravitational wave. If we take Ng as the number of gravitons, then the standard

result for the change of Ng due to Γ reads

dNg

dt
= −ΓNg → c

dNg

dz
= −ΓNg . (27)

In anticipation that we will be more interested in a decay length than a decay time we have

taken dt → dz/c. As a starting assumption we will take the number of gravitons as Ng ∝ h2
+,

which is motivated by a similar relationship in QED where the number of photons is related

to the square of the vector potential, Nγ ∝ AµA
µ. In this way, and using the decay rate

from (26), equation (27) becomes

d(h2
+)

dz
= −cωh4

+(h
2
+) →

dh+

dz
= −1

2
kh5

+ , (28)

where k = cω. Equation (28) has the solution

h+(z) = (2kz +K0)
−1/4 , (29)

where K0 =
(

h
(0)
+

)−4

and h
(0)
+ is the value of h+ at z = 0. What (29) shows is that for large

distances (i.e. large z) that h+ falls off like ∝ z−1/4 which is slower than the z−1 ∼ r−1 fall

off due to the spherical nature of the outgoing gravitational wave. Thus the main factor in

determining the fall off of h+ at large distances is just the usual 1
r
fall off. However near

the source of the gravitational wave, z = 0, the fall off in h+ due to the conversion of the

gravitational wave field into the massless field could be important. We can use (29) to make

an estimate of the attenuation length, Λ, of the gravitational wave due to the conversion

into electromagnetic radiation. If we define the decay length Λ as the distance over which

h+(z = Λ) = 1
2
h
(0)
+ we find that

Λ =
15

2k
(

h
(0)
+

)4 → 1.5× 107

2
(

h
(0)
+

)4 meters . (30)

In the last expression we have assumed a frequency of ω ∼ 300 Hz which yields k = ω
c
∼

10−6 m−1. This estimate of the frequency is a very simple and rough estimate based on

the upper range of the “chirp” for GW150914. In Table I we give different Λ’s for different

initial gravitational wave amplitudes h
(0)
+ .

13



h
(0)
+ Λ (m)

10−21 1089

10−15 1065

10−9 1041

10−5 1025

10−3 1017

TABLE I: Various values of the decay length Λ versus h
(0)
+ for ω ≈ 3× 102Hz and k ≈ 10−6 m−1.

We begin with h+ ≈ 10−21 which is roughly the measured strain reported for GW150914 [9].

The size of the observable Universe is approximately 1027 meters so from Table I we

see that the estimated decay length will be important only if h
(0)
+ is fairly large – of the

order 10−5 or larger. The take away message from Table I is that the conversion of the

gravitational background wave into the massless field is significant only close to the source

of the gravitational waves where h+ is large.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have looked at the possibility that a gravitational wave background

could create massless scalar particles/fields. The massless scalar field quanta where taken

as a simplified model of a photon. This is similar to the Schwinger effect but with the

static electric field replaced by a gravitational wave background and the electron/positron

replaced by massless scalar “photons”. Since the created field was massless, we did not

have the exponential suppression of the particle production rate which one finds in the

Schwinger effect. Because of this lack of exponential suppression one expects the conversion

of gravitaitonal wave into electromagnetic radiation to potentially play a more prominent,

physical role. In particular we suggested that the creation of photons at the expense of the

gravitational wave field would lead to an additional fall off of the dimensionless amplitude h+

with distance from the source, in addition to the usual 1
r
fall off. Based on the production

rate per unit volume given in (26) we made an estimate of the decay length for various

amplitudes h+, given in Table I. Unless h+ > 10−5 our estimate for the decay length, Λ, given

in Table I, was so large that one would not expect this process to weaken the gravitational
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wave even over cosmological distances. This was in agreement with the conclusions based

on Feynman diagram calculations [2]. But close enough to the source one will have h+ ≥
10−5 so in this near region one might expect the attenuation to be important. Since we

used a gravitational plane wave this ignored the 1
r
fall off for a more realistic spherical

wave. The overall conclusion, both from Table I and from (29), was that the production of

the massless field, ϕ, coming from the gravitational wave background and the subsequent

attenuation of the gravitational wave background would only be important near the source

of the gravitational wave.

One of the main results of this paper were the calculation of the scalar field (16) and

associated 4-current (19) in the case when the scalar field is placed in a gravitational wave

background. In the vacuum limit (i.e. kx → 0 , ky → 0 , λx,y → 0 and kv → 0) the scalar field

and 4-current took the non-zero limits ϕ → 1√
V

1√
2k

(

1− h2
+e

2iku
)− 1

2 and ju → 1
V
h4
+. This

can be likened to a time-dependent, Higgs-like mechanism where the scalar field develops

a non-zero vacuum expectation value. The difference from the usual Higgs mechanism is

that, here the effect is driven by the interaction of the scalar field with a gravitational

background instead of with a self interaction (i .e.λφ4). Also here the vacuum value of

the scalar field is space-time dependent. This Higgs-like mechanism via the gravitational

background can be compared to the symmetry breaking that occurs in superconductors,

where it is the background lattice and phonons which provide the mechanism leading to a

non-zero expectation value for Cooper pairs. This connection to the Higgs mechanism will

be discussed further in an upcoming paper [31].

Finally there are two predictions of physical phenomenon that would occur if the pro-

duction of photons from the gravitational wave background were significant. First, the

amplitude h+ measured by a detector on Earth would be smaller due to the fact that this

amplitude would decrease not only from the 1
r
fall off for an outward traveling wave, but

also the amplitude would decrease as r−1/4 due to the production of photons from the grav-

itational wave background. From the r−1/4 dependence of the particle production rate one

can see that this effect would only be important relatively close to the source. Second,

the gravitational wave would produce electromagnetic radiation/photons traveling in the

same direction as the initial gravitational wave. In fact it has already been suggested [12]

that a γ-ray signal which was detected in the same time frame as the gravitational wave

signal, might be related to the detected gravitational wave. If the production mechanism
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of electromagnetic radiation from the gravitational wave background proposed here occurs

and is significant, then we would predict that the gravitational wave signal should also be

accompanied by an electromagnetic signal. However, in our process this electromagnetic

signal should have roughly the same frequency as that of the gravitational wave. Thus we

would predict that the electromagnetic wave coming from the gravitational wave would have

extremely long wavelengths, on the order of 100s of kilometers i.e. the associated electro-

magnetic wave would have very large wavelengths. These wavelengths are of such a length

that they could easily have gone undetected up to now.
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