
Journal of Digital Forensics, Journal of Digital Forensics,

Security and Law Security and Law

Volume 17 Article 6

March 2022

A Combined Approach For Private Indexing Mechanism A Combined Approach For Private Indexing Mechanism

Pranita Maruti Desai Ms.
University of Mumbai, pranita.m.desai@gmail.com

Vijay Maruti Shelake Mr.
University of Mumbai, vijay_sakec@yahoo.co.in

Follow this and additional works at: https://commons.erau.edu/jdfsl

 Part of the Computer Engineering Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Desai, Pranita Maruti Ms. and Shelake, Vijay Maruti Mr. (2022) "A Combined Approach For Private
Indexing Mechanism," Journal of Digital Forensics, Security and Law: Vol. 17 , Article 6.
DOI: https://doi.org/10.15394/jdfsl.2022.1790
Available at: https://commons.erau.edu/jdfsl/vol17/iss1/6

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol17
https://commons.erau.edu/jdfsl/vol17/iss1/6
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol17%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=commons.erau.edu%2Fjdfsl%2Fvol17%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol17%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2022.1790
https://commons.erau.edu/jdfsl/vol17/iss1/6?utm_source=commons.erau.edu%2Fjdfsl%2Fvol17%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

A COMBINED APPROACH FOR PRIVATE INDEXING

MECHANISM

Ms. Pranita Maruti Desai and Mr. Vijay Maruti Shelake

University of Mumbai

Yadavrao Tasgaonkar College of Engineering and Management

Dr. N.Y. Tasgaonkar Technical Education Complex, Chandai, Bhivpuri Road Station, Tal. Karjat

Raigad, Maharashtra - 410201, India

pranita.m.desai@gmail.com, vijay_sakec@yahoo.co.in

ABSTRACT

Private indexing is a set of approaches for analyzing research data that are similar or resemble similar ones.

This is used in the database to keep track of the keys and their values. The main subject of this research is

private indexing in record linkage to secure the data. Because unique personal identification numbers or

social security numbers are not accessible in most countries or databases, data linkage is limited to

attributes such as date of birth and names to distinguish between the number of records and the real-life

entities they represent. For security reasons, the encryption of these identifiers is required. Privacy-

preserving record linkage, frequently used to link private data within several databases from different

companies, prevents sensitive information from being exposed to other companies. This research used a

combined method to evaluate the data, using classic and new indexing methods. A combined approach is

more secure than typical standard indexing in terms of privacy. Multibit tree indexing, which groups

comparable data in many ways, creates a scalable tree-like structure that is both space and time flexible, as

it avoids the need for redundant block structures. Because the record pair numbers to compare are the

Cartesian product of both the file record numbers, the work required grows with the number of records to

compare in the files. The evaluation findings of this research showed that combined method is scalable in

terms of the number of databases to be linked, the database size, and the time required.

Keywords: Indexing, Deduplication, Record linkage, Data preprocessing, Fingerprint, Query

1. INTRODUCTION

With the advancement in technology, a large

amount of data is being collected by both private

and public-sector companies and individuals. Many

of these records are about people involved in

financial transactions, transactions related to

shopping, transactions with travel facilities, health

records, and electronic data. This also includes

records of census, tax, social security, blog entries,

tweets, emails, and SMS. Businesses and

governments use this information for their

advantage. The information gathered is saved in the

database as records. Each record has a key field that

allows it to be distinguished from others. This

record key is important in finding the data whose

key is already known to the user. Indexing is a

technique for quickly retrieving records from

database files that have some attributes on which it

has been performed. It is used in databases to keep

track of the number of records. For example, in the

health care industry, maintaining patient records up

to date. Frequently, data from diverse sources must

be combined and linked. When databases are linked

across businesses, data security, preserving privacy

and confidentiality is vital to protecting sensitive

data used for analysis.

If indexing were not used, every record in one

dataset would need to be compared to every other

record in another dataset. This results in a

substantially larger number of comparisons and

would rapidly lower system performance. Suppose

each record in one dataset must be compared to

each record in another dataset. In that case, the

number of record pair comparisons increases as the

number of records to be matched increases. For

example, the number of record comparisons with a

rising number of records is illustrated in Table 1. In

the second row, 1000 records from one dataset need

Table 1. Record comparison

Number of Records Number of Comparisons

1,000 1,000,000

10,000 100,000,000

1,000,000 1,000,000,000,000

to be compared with 1000 records from another

dataset. For any number of datasets, this strategy is

computationally inefficient, which will consume

extra time and space. It limits comparison pairings

to those that are most likely to match.

Indexing separates the data into subsets or blocks

based on the premise that no matches exist between

the blocks that are different. Areas like business

names, family names, and dates of birth are most

used to create blocks. Since blocks can lead to

typographical or spelling problems, they are

frequently standardized. Certain matches may occur

within the blocks. For example, records for a

woman who has changed her surname may not be

related or linked in a block based on the surname

because it changes after marriage. However, if the

date of birth is used, the records may be linked. As

a result, several indexing variables are frequently

used, increasing the likelihood that a linkage

missed by one run may be identified by a

subsequent indexing pass, reducing future errors.

The indexing method filters out similar or

approximately similar records from the number of

record comparisons. This is the most important step

in the privacy-preserving record linkage (PPRL),

which is a type of record linkage (A./M.

Mitzenmacher, Kirsch (2006)) process. After data

preprocessing and deduplication, which reduces

duplicates and errors in data, the proper indexing

method increases the chances of getting the more

accurate number of matching pairs used in the final

linkage process.

The following is the paper’s structure: the

background knowledge of the methodologies used

in this research is elaborated in Section 2. The

proposed research technique is described in Section

3, together with its system requirements and

architecture. The results of the experiments we

have described in Section 4. The conclusion and

future scope are addressed in Section 5.

2. RELATED WORK

By bringing potentially linkable record pairs

together, indexing or searching reduces the number

of comparative record pairs. A good indexing

variable attribute should have a high number of

attribute values that are fairly and evenly

distributed. Also, it should have a low probability

of reporting an error. Linkable record pairs can be

broken due to errors in the characteristics used for

indexing. Many phonetic codes have been

developed for text properties to prevent the effects

of spelling and aural problems when recording

names. New York State Identification and

Intelligence System (NYSIIS) and Soundex are two

common phonetic codes. These codes were used to

represent various types of names and English

pronunciations.

Before indexing, data preprocessing, identifier

selection, and data duplication are all essential

procedures. Real-world data from various data

holders will typically store the same information in

various ways. How one maintains a date of birth,

for example, will differ per country due to

differences in the placement and year separation of

days and months. Other issues emerge when

months are stored using their names or even

abbreviations rather than their numeric values in

the intended language. Only the final two digits

(Baxter R, GuL (2004)) are used when storing birth

years, eliminating the century. For this reason, data

preparation before linkage is an important aspect of

every record linkage application. This stage

includes data cleaning for inconsistencies, foreign

character sets, erroneous characters caused by

encoding issues, and normalizing variables.

Unaffectedly, the record linkage variables provided

in both datasets are limited to the same set of

identifiers.

Other things to consider are the number of values

that are missing in both selected datasets. If there

are few entries (Cohen WW, Richman J. (2002)),

the variable is not a good fit. The quantity of

information attained by including a variable to

identify an entity in the data is also important. For

example, an address is a better attribute to identify

various entities than a selected person’s gender.

Finally, the number of errors that can be expected,

such as address fields changing over time and

resulting in missing linkages, is critical.

Further, deduplication is the process of matching a

data file with itself or another file to detect

representations of duplicate data of the same thing

in a set of data. Multiple matches for a single

representation indicate data duplication. Because

duplicate data values add no information to the data

but increase the size of the available database, they

are frequently deleted before the data is gathered or

separated as part of the preprocessing. The major

goal of the privacy-preserving record linkage

(Holmes, D., McCabe, C. M. (2002)) process is to

link similar records. PPRL is a method of record

linkage that uses encrypted identifiers and may

become more popular in the future due to these new

protection standards for data. Indexing is a phase in

the process of record linkage that is important for

reducing the number of needless comparisons.

Standard, sorted neighborhood (Kristensen, T.

G./J. Nielsen/C. N. S. Pedersen (2010)), q-gram

based (Latanya Sweeney (2002)), canopy clustering

(Lifang Gu and Rohan Baxter (2006)), locality

sensitive hashing and multibit trees (M. Hernandez

and S. Stolfo (1998)) are some of the methods

available. Some are traditional, while others are

more recent procedures with improved features

over the previous ones. To create the appropriate

indexes for the comparison, we will be using both

old and recent methodologies with their security

features in this research. Our major goal is to

combine standard indexing, which uses Soundex

(Peter Christen (2012)) and multibit tree indexing,

which uses Cryptographic Long-term Key (CLK) to

encode the data.

For decades, many classic indexing strategies have

been used in deduplication and data matching. The

identifier for each record is simply entered into one

block, which makes this approach unique. Soundex,

phonix, double metaphone, phonex, NYSIIS, and

other methods generate indexing keys. Other

indexing methods split a single record into many

blocks. An indexing key value (IKV) is generated

for each record in the input database. This IKV

determines where a record is placed in the database.

All records with the same IKV are grouped into the

same block. For database matching, pairs of

candidate records are constructed from all the

records in both databases with the same IKV. If an

IKV occurs exclusively in records from one of the

databases, no record pairings will be created from

this block because the matching block in the other

database has no records. All similar pairs of record

identifiers inside a block are used to generate

candidate record pairs for deduplication. To prevent

superfluous pairs, each similar record pair only has

to be compared once because the comparison of

two records is symmetric. For example, as

illustrated in Table 2, with the three record

identifiers’ Rid1’, ’Rid2’, and ’Rid3’ in a block, the

resulting record pairs for deduplication would be

(Rid1, Rid3), (Rid2, Rid3), and (Rid1, Rid2) but

not (Rid3, Rid2) or (Rid3, Rid1), (Rid2, Rid1).

The Soundex algorithm is one of the most

extensively used and oldest methods of phonetic

encoding. It encodes name strings based on the

pronunciation of the American-English language by

preserving the first letter of the string and

transforming the other letters into integers

according to the transformation rule. All the zeroes

that correspond to the letter’s “w”, “y”, “h” and

vowels are removed from the encoded string

because they are all repeats of the same number.

For example, a converted encoding of “t0440555”

is translated to “t45” and a transformed encoding of

“k770399051” is changed to “k7391”. Moreover, if

the first digit of the encoding is less than three

digits, the code is extended with 0’s to a total

length of 3 digits, resulting in “t45” becoming

“t450”. In contrast, codes with more than three

digits are truncated to 3 digits alone, resulting in

“k7391” becoming “k739”. For example, we have

shown in Table 2 the indexing key values of these

records, like Robert becomes R163 and Ashcroft

becomes A261.

Multibit trees work with bit vectors, as suggested

by Kristensen for cheminformatics and adapted by

Schnell for PPRL. This is used to quickly search

large databases of molecular fingerprints. In a bit

vector of length l, a molecular fingerprint describes

structural information about molecules. To locate

Table 2. Lastname values with their Soundex encodes

RecId Lastname IKVs

Rid1 Robert R163

Rid2 Ashcraft A261

Rid3 Rubin R150

Rid4 Ashcroft A261

Rid5 Rupert R163

A261 R150 R163

Rid2 Rid3 Rid1

Rid4 Rid5

these pairs, molecular fingerprints are used to look

for structurally related compounds.

Assume one needs to look up a query (Pyle D

(1999)) in a database of molecular fingerprints, Yi.

To put it another way, the goal is to locate all

fingerprints in the database that are similar to X

above particular threshold t. Multibit trees locate all

fingerprints, Yi where (X, Yi) ≥ t, or filter out any

fingerprints lower or equal to t.

Multibit trees follow a three-step process: The

fingerprint database is partitioned into groups of

fingerprints for future use in the first step. In the

second step, an actual tree is formed within each

created group. The trees built earlier are searched

for fingerprints in the third step. All the

fingerprints, Yi, are divided into bins of identical

size during the partition process. The bit numbers

set to 1 in Y determine the size of a fingerprint,

which is indicated by |Y|. Because
min(|Y |,|X|)

max(|Y |,|X|
 is an

upper bound on 𝑆𝑗(X, Yi), all bins satisfying t|Y| ≥

|X| or |Y| ≤ t|X| can be disregarded in the searching

step.

In the next tree building step, fingerprints of similar

size are actually stored in a binary tree structure

(Schnell, R./C. Borgs (2017)) with one single tree

for each bin. The method starts by assigning all of

the fingerprints from the bin to the tree’s root node.

The algorithm then recursively allocates all the

fingerprints, Yi, with 0 at a fixed bit location to the

subtree on the left side and all other fingerprints

with a 1 at the bit position to the subtree on the

right side at each parent node. At each parent node,

the deciding bit position is determined so that the

tree remains as balanced as possible. At each node,

there are also two lists of match bits. List O

contains all positions of bit with constant value 0 in

all remaining fingerprints below that node, and list

I contains all positions of bit with constant value 1.

The recursion ends when the number of fingerprints

at a node falls below a previously determined

threshold.

The search procedure for query fingerprint A is

divided into three sections. All bins that met the

conditions indicated in the partition step were

discarded in the first phase of searching. In the

second phase of the search, each remaining tree is

subjected to a depth first search. For each of the

tree nodes currently explored, the recorded lists of

O’s and I allow the computation of an upper bound

of the Jaccard Similarity for all fingerprints below

the currently visited node. During the search, the

algorithm determines the bit position numbers

assigned to 1 in X as well as the number of bit

positions set to 0.

The Cryptographic Long-term Key (CLK), an

extension of the bloom filter, is used in the multibit

tree approach. This is a type of composite bloom

filter (S. Joshua Swamidass and Pierre Baldi

(2007)), which is the result of an OR operation on

each identifier attribute’s bloom filter. In Figure 1,

we have shown the CLKs construction with 0 and 1

values, which gives the Dice coefficient (Tobias

Bachteler, Rainer Schnell and J ̈org Reiher (2011)),

which is the sum of the unique bi-grams in both

sets divided by the doubled intersect of the two sets

of bi-grams. To approximate the dice coefficient

using CLKs, each unique element in a collection of

q-grams sets the k number of different bit positions

in the CLK to a value of 1. A hash function value is

one of the k mappings of an element to a selected

bit location.

Figure 1 depicts how a CLK is built from two

separate names using a hash function with k=1 and

l=18 bits for each bi-gram. For visualization

purposes, the bit locations are set to 1 and in the

same sequence as the bigrams. However, this may

vary depending on the string. We have two strings,

FREDDIE and FREDDEE, that differ by one

character, resulting in an edit distance of one. The

clear-text bi-grams’ dice coefficient would be:

D =
2.4

6+6
 = 0.667

Figure 1. CLK construction (C. Borgs (2019))

The basic method for implementing any CLK-

based encoding usually follows the pattern outlined

in the following subsections:

1. Input strings are standardized depending on the

sort of data they contain.

2. Blank space is sometimes added to standardized

strings at the end and beginning as padding,

which gives the string’s last and first character

additional weight. The resulting string is then

broken into q-grams by dividing it into subsets

of length q, where q is one of the user defined

parameters.

3. In the CLK, each element formed in step (2)

corresponds to numerous k bit places. The

technique determines these bit places, which is

dependent on the implementation details.

Currently, using random hashing to hash

components into the CLK is strongly suggested

overusing double hashing, which is considered

outdated.

4. The resulting bit positions of value 1 in the

initially empty CLK with all bit positions set to

0 are dependent on the parameter choices.

For each element formed in step (2), steps (3) and

(4) are repeated. A standard CLK is a bit vector that

contains only the elements of a single identity.

Some parameters must be selected to construct a

multibit tree, such as the length of the CLK within

which values of 0 and 1 are alternately inserted, the

minimal threshold which is Tanimoto coefficient

and the number of functions which is k. There are

three phases of indexing with Q-gram fingerprints

using multibit trees:

1. Both the file records are converted into Q-gram

fingerprints.

2. Larger file fingerprints are stored in a multibit

tree.

3. A smaller file is compared to each fingerprint’s

multibit tree.

3. PROPOSED WORK

When the number of parties grows, it becomes

computationally expensive to generate candidate

record sets for myriads of databases. In such cases,

methods for reducing the space of comparison are

required. In the record linkage process, these

strategies are known as indexing methods. Such

algorithms identify reduced sets of candidate

records for comparison and categorization by

retaining true matching records in sets of candidate

records while deleting as many genuine non-

matching record sets as possible.

As the number of parties increases, more complex

indexing systems are required. More comparisons

are required regardless of whether there are large

block numbers with small record numbers or small

block numbers with large numbers of records. This

challenge demonstrates the number of candidate

record sets generated for various parties using

various block sizes and datasets.

The generated candidate number record sets grow

in large volumes with the increasing number of

https://duepublico2.uni-due.de/servlets/solr/mods_nameIdentifier?q=mods.nameIdentifier:gnd%5C:1192385772&owner=createdby:guest

parties involved in a multiparty protocol. The

number of candidates generated record sets

becomes so large that it is practically impossible to

handle, even with very small-sized blocks. One of

the primary issues is the lack of control over block

sizes in currently available indexing systems. The

comparison procedure becomes significantly more

arduous and time-consuming when a large number

of blocks are generated in various sizes. We created

a method that constructs blocks of entries in a

balanced tree data structure using an indexing

technique and phonetic encoding to address this

issue. Each party will have a tree data structure

with leaf nodes holding blocks of records. The tree

is constructed securely, with no information about

each party’s records being shared.

We have developed a technique that uses both

classic indexing and more contemporary tree-based

indexing to incorporate the benefits of both

processes while also overcoming the shortcomings

that can emerge when using them alone. This

research employed a combination of strategies that

decreased both space and time. The normal

indexing method takes more time to create blocks

than the multibit tree. The multibit tree produces

good results, it still produces a lot of false-positive

pairs, which we can eliminate with this combined

technique.

Figure 2. Indexing step in comparing two databases

By using more than one database for indexing and

with the help of an efficient method, we created a

collection of pairs and sent them to be compared

further. Figure 2 depicts two database parties

preprocessing their data at their respective sites.

Both sides provide their preprocessed data to be

indexed, where pair blocks are formed and

matched. We encode our data after preprocessing.

We encode the characteristics in a multibit tree as

CLKs, which we have decided to use as index keys.

This proposed methodology encoded attributes

using phonetic encoding, a conventional indexing

method and then translated the encoded data into a

cryptographic long-term key, another method to

secure the data. We used the multibit tree approach

to obtain approximate matches after converting

them into CLKs.

The layered design in Figure 3 depicts a step-by-

step breakdown of the indexing approach that leads

to potential matches among a vast number of

entries. This process we have discussed earlier.

This is the actual bottom-to-top approach to get the

proper matching fields. Standardization is the most

important step because error-free data gives the

most appropriate and true matches.

Figure 3. Layered design with Indexing step

The information flow diagram in Figure 4 depicts

how record data flows through the indexing

process, resulting in record match pairs.

Figure 4. Information flow with Indexing step

Individual techniques, such as typical blocking

Soundex approaches, are commonly used to encode

properties. These keys are then compared to other

database keys, and matching indexes are

discovered. We used both phonetics and CLKs to

encode the data in the combined technique and then

combined their results to locate the matched pairs.

Data matching, which is the latter part of the record

linkage process, requires true or false matches to

check the efficiency and quality of the indexing

method.

4. RESULTS AND DISCUSSIONS

This experiment requires Rstudio, the R version

software, and Rtools, which is used to install

packages directly from the internet. This software is

available as freeware and may be downloaded

quickly. The R version is available depending on

the type of operating system, along with many

useful packages. These built-in packages are

written in C or C++. We have used the R

programming language, which is frequently used

by statisticians and data miners to create statistical

tools and for data analysis.

The experiment was conducted on a laptop

computer with an Intel Core i3-7100U processor, a

64-bit version of windows 10 operating system, 4

GB of RAM. To run the data, a variety of software

is available. The PPRL package provides the

necessary functionality for using PPRL methods in

R. It is available for free on CRAN. It can use

PPRL methods to encrypt, preprocess, and link

data, allowing us to complete the entire record

linkage process in R. For the tree’s creation, the

Multibit Tree package is used. The gmodels

package was used to plot the graphs. We tested our

dataset and calculated comparison pairings using

built-in R language tools. We have included both

tabular and graphical representations of our

findings.

We can observe from Table 3 that the combined

technique offers better comparative values than the

multibit tree alone. We measured the number of

functions used, the time taken for each loop, and

the bit positions set to one for the graph analysis. In

this experiment, CLKs have a length of 256, which

implies we will have 0 or 1 values within 256-bit

vectors. Information is securely saved within these

values. As the hash function number grows, so do

the bit values, which can lead to false positives.

This necessitates the use of a correct k function to

avoid erroneous matches. We have also looked at

the time it takes to execute each loop, which will

help us estimate the total time required for the

entire process. By calculating the amount of time,

we can determine whether one way is better than

the other.

Figure 5 shows the percentage of bits position set to

1 and the number of used hash functions using the

combined approach.

Figure 5. The percentage of bits position set to 1

and No. of used hash functions with Combined

Method

Figure 6 shows the percent of bits position set to 1

and the number of used hash functions with MBT.

Figure 6. The percentage of bits position set to 1

and No. of used hash functions with MBT

 Figure 7 shows the running time and the number of

used hash functions with the combined approach.

Table 3. Result comparison of both methods

 Indexing Methods

Evaluation Metrics
MBT Combined Approach

Reduction ratio 0.9953 0.9996

Pairs completeness 0.7514 0.84

F-score 0.8563 0.9129

Running time (sec) 6.9535 4.9463

Figure 7. Running time and No. of used hash

functions with Combined Method

Figure 8 shows the running time and the number of

used hash functions with the combined approach.

Figure 8. Running time and No. of used hash

functions with MBT

We used two real datasets that contained

information about articles that had been published

earlier in the corresponding publication or

conference. ID, title, author, publication, and year

are all the fields in one dataset. Other fields in the

collection include reference information, title,

author, publication, and year. It will be simple to

match data if datasets include common attributes

used as index keys. Using a combined method, we

were able to isolate matched record sets that are

most likely equal.

The indexing keys have been encoded. We have

calculated evaluation metrics such as reduction

ratio, pair completeness, f-score, and running time

depending on the number of records. Table 3

compares the two techniques using these metrics.

RR= 1-
𝑠

𝑁
 for reduction ratio, which is the possible

number of record pairs in the total datasets and s is

the number of record pairs produced by the

indexing method for comparison.

PC= 1-
𝑠𝑀

𝑁𝑀
 for pair completeness, where NM is the

total number of true match pairs in the entire

dataset and sM is the number of true match record

pairs in the set of record pairs produced for

comparison by the indexing method.

F-score =
2∗𝑃𝐶∗𝑅𝑅

𝑃𝐶+𝑅𝑅
 for f-score value, which uses a

harmonic mean to combine RR and PC.

5. CONCLUSION AND FUTURE WORK

We presented a combined indexing method for

PPRL that uses traditional indexing and multibit

trees. Each party creates a multibit tree structure

based on the CLKs created by the parties, and their

datasets collaborate to determine the optimum bit

positions to use. An experimental evaluation of the

suggested methodology was conducted, in which

we tested it on two separate datasets with common

values and varying record sizes.

The evaluation findings revealed that this

methodology is scalable in terms of both the

number of databases to be linked and the database

size. This technique outperforms the traditional

standard indexing strategy in terms of privacy and

indexing quality. We used to employ phonetic

encoding for index keys in classical indexing,

which allowed us to encode data in a basic method,

such as a single letter and integers up to a few

digits. In the previous technique, we were directly

encoding index keys in CLKs in a multibit tree, but

in this combined technique, we are applying CLKs

over phonetic encoded data, which is more secure

and less vulnerable to attack. Finally, using private

comparison and classification techniques, the

blocks formed by a multibit tree can be compared

to determine related record sets in different

databases.

We intend to expand this method with other tree

structures that can minimize the number of trees

and split the tree nodes into more bits. We will also

look into the best and most efficient parameter

selection for encoding the data. This system has a

disadvantage in that privacy can be jeopardized

when some of the parties are not genuine,

necessitating more protective safety measures and

communication. We want to further improve this

approach so that it can be used in applications in

the real world of PPRL.

REFERENCES

A./M. Mitzenmacher, Kirsch. (2006). Less Hashing

Same Performance: Building a Better CLK,

456-467, In Azar, Y./T. Erlebach (Eds.),

Algorithms-ESA 2006, Proceedings of the

14th Annual European Symposium.

Baxter R, GuL. (2004). Adaptive filtering for

efficient record linkage, In SIAM international

conference on data mining, Orlando.

C. Borgs. (2019). Optimal Parameter Choice for

Bloom Filter-based Privacy-preserving Record

Linkage.

Cohen WW, Richman J. (2002). Learning to

match and cluster large high dimensional

datasets for data integration, In Proceedings of

ACM SIGKDD, Edmonton.

Dice, L. R. (1945). Measures of the Amount of

Ecologic Association between Species, In:

Ecology.

Holmes, D., McCabe, C.M. (2002). Improving

precision and recall for Soundex retrieval, In:

Proceedings of the IEEE International

Conference on Information Technology-

Coding and Computing, Las Vegas.

Kristensen, T. G./J. Nielsen/C. N. S. Pedersen.

(2010). A Tree-based Method for the Rapid

Screening of Chemical Fingerprints, In:

Algorithms for Molecular Biology.

Latanya Sweeney. (2002). k-anonymity: A model

for protecting privacy, In: International Journal

of Uncertainty, Fuzziness and Knowledge-

Based Systems 10.05.

Lifang Gu and Rohan Baxter. (2006). Decision

models for record linkage, In: Data mining,

Springer.

M. Hernandez and S. Stolfo. (1998). Real world

data is dirty: data cleansing and the

merge/purge problem, Journal of Data Mining

and Knowledge Discovery, 1(2).

Peter Christen. (2012). Data Matching: Concepts

and Techniques for Record Linkage, Entity

Resolution, and Duplicate Detection, Springer

Science and Business Media.

Pyle D. (1999). Data preparation for data mining,

Morgan Kaufmann Publishers, San Francisco.

Schnell, R./C. Borgs. (2017). State of the Art

Privacy-preserving Record Linkage of Large

Administrative Datasets, New Techniques and

Technologies for Statistics.

S. Joshua Swamidass and Pierre Baldi. (2007).

Bounds and Algorithms for Fast Exact

Searches of Chemical Fingerprints in Linear

and Sublinear Time, In: Journal of Chemical

Information and Modeling.

Tobias Bachteler, Rainer Schnell and J ̈org Reiher.

(2011). A novel error-tolerant anonymous

linking code, Working Paper WP-GRLC-

2011-02, German Record Linkage Center.

	A Combined Approach For Private Indexing Mechanism
	Recommended Citation

	tmp.1646506687.pdf.pL4XK

