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ABSTRACT  

Private indexing is a set of approaches for analyzing research data that are similar or resemble similar ones. 

This is used in the database to keep track of the keys and their values. The main subject of this research is 

private indexing in record linkage to secure the data. Because unique personal identification numbers or 

social security numbers are not accessible in most countries or databases, data linkage is limited to 

attributes such as date of birth and names to distinguish between the number of records and the real-life 

entities they represent. For security reasons, the encryption of these identifiers is required. Privacy-

preserving record linkage, frequently used to link private data within several databases from different 

companies, prevents sensitive information from being exposed to other companies. This research used a 

combined method to evaluate the data, using classic and new indexing methods. A combined approach is 

more secure than typical standard indexing in terms of privacy. Multibit tree indexing, which groups 

comparable data in many ways, creates a scalable tree-like structure that is both space and time flexible, as 

it avoids the need for redundant block structures. Because the record pair numbers to compare are the 

Cartesian product of both the file record numbers, the work required grows with the number of records to 

compare in the files. The evaluation findings of this research showed that combined method is scalable in 

terms of the number of databases to be linked, the database size, and the time required. 

Keywords: Indexing, Deduplication, Record linkage, Data preprocessing, Fingerprint, Query 

 

1. INTRODUCTION 

With the advancement in technology, a large 

amount of data is being collected by both private 

and public-sector companies and individuals. Many 

of these records are about people involved in 

financial transactions, transactions related to 

shopping, transactions with travel facilities, health 

records, and electronic data. This also includes 

records of census, tax, social security, blog entries, 

tweets, emails, and SMS. Businesses and 

governments use this information for their 

advantage. The information gathered is saved in the 

database as records. Each record has a key field that 

allows it to be distinguished from others. This 

record key is important in finding the data whose 

key is already known to the user. Indexing is a 

technique for quickly retrieving records from 

database files that have some attributes on which it 

has been performed. It is used in databases to keep 

track of the number of records. For example, in the 

health care industry, maintaining patient records up 

to date. Frequently, data from diverse sources must 

be combined and linked. When databases are linked 

across businesses, data security, preserving privacy 

and confidentiality is vital to protecting sensitive 

data used for analysis.  

If indexing were not used, every record in one 

dataset would need to be compared to every other 

record in another dataset. This results in a 

substantially larger number of comparisons and 

would rapidly lower system performance. Suppose 

each record in one dataset must be compared to 

each record in another dataset. In that case, the 

number of record pair comparisons increases as the 

number of records to be matched increases. For 

example, the number of record comparisons with a 

rising number of records is illustrated in Table 1. In 

the second row, 1000 records from one dataset need  



 

 

Table 1. Record comparison 

Number of Records Number of Comparisons 

1,000 1,000,000 

10,000 100,000,000 

1,000,000 1,000,000,000,000 

 

to be compared with 1000 records from another 

dataset. For any number of datasets, this strategy is 

computationally inefficient, which will consume 

extra time and space. It limits comparison pairings 

to those that are most likely to match. 

Indexing separates the data into subsets or blocks 

based on the premise that no matches exist between 

the blocks that are different. Areas like business 

names, family names, and dates of birth are most 

used to create blocks. Since blocks can lead to 

typographical or spelling problems, they are 

frequently standardized. Certain matches may occur 

within the blocks. For example, records for a 

woman who has changed her surname may not be 

related or linked in a block based on the surname 

because it changes after marriage. However, if the 

date of birth is used, the records may be linked. As 

a result, several indexing variables are frequently 

used, increasing the likelihood that a linkage 

missed by one run may be identified by a 

subsequent indexing pass, reducing future errors. 

The indexing method filters out similar or 

approximately similar records from the number of 

record comparisons. This is the most important step 

in the privacy-preserving record linkage (PPRL), 

which is a type of record linkage (A./M. 

Mitzenmacher, Kirsch (2006)) process. After data 

preprocessing and deduplication, which reduces 

duplicates and errors in data, the proper indexing 

method increases the chances of getting the more 

accurate number of matching pairs used in the final 

linkage process. 

The following is the paper’s structure: the 

background knowledge of the methodologies used 

in this research is elaborated in Section 2. The 

proposed research technique is described in Section 

3, together with its system requirements and 

architecture. The results of the experiments we 

have described in Section 4. The conclusion and 

future scope are addressed in Section 5. 

 

2. RELATED WORK 

By bringing potentially linkable record pairs 

together, indexing or searching reduces the number 

of comparative record pairs. A good indexing 

variable attribute should have a high number of 

attribute values that are fairly and evenly 

distributed. Also, it should have a low probability 

of reporting an error. Linkable record pairs can be 

broken due to errors in the characteristics used for 

indexing. Many phonetic codes have been 

developed for text properties to prevent the effects 

of spelling and aural problems when recording 

names. New York State Identification and 

Intelligence System (NYSIIS) and Soundex are two 

common phonetic codes. These codes were used to 

represent various types of names and English 

pronunciations. 

Before indexing, data preprocessing, identifier 

selection, and data duplication are all essential 

procedures. Real-world data from various data 

holders will typically store the same information in 

various ways. How one maintains a date of birth, 

for example, will differ per country due to 

differences in the placement and year separation of 

days and months. Other issues emerge when 

months are stored using their names or even 

abbreviations rather than their numeric values in 

the intended language. Only the final two digits 

(Baxter R, GuL (2004)) are used when storing birth 

years, eliminating the century. For this reason, data 

preparation before linkage is an important aspect of 

every record linkage application. This stage 

includes data cleaning for inconsistencies, foreign 

character sets, erroneous characters caused by 

encoding issues, and normalizing variables. 

Unaffectedly, the record linkage variables provided 

in both datasets are limited to the same set of 

identifiers. 

Other things to consider are the number of values 

that are missing in both selected datasets. If there 



 

 

are few entries (Cohen WW, Richman J. (2002)), 

the variable is not a good fit. The quantity of 

information attained by including a variable to 

identify an entity in the data is also important. For 

example, an address is a better attribute to identify 

various entities than a selected person’s gender. 

Finally, the number of errors that can be expected, 

such as address fields changing over time and 

resulting in missing linkages, is critical. 

Further, deduplication is the process of matching a 

data file with itself or another file to detect 

representations of duplicate data of the same thing 

in a set of data. Multiple matches for a single 

representation indicate data duplication. Because 

duplicate data values add no information to the data 

but increase the size of the available database, they 

are frequently deleted before the data is gathered or 

separated as part of the preprocessing. The major 

goal of the privacy-preserving record linkage 

(Holmes, D., McCabe, C. M. (2002)) process is to 

link similar records. PPRL is a method of record 

linkage that uses encrypted identifiers and may 

become more popular in the future due to these new 

protection standards for data. Indexing is a phase in 

the process of record linkage that is important for 

reducing the number of needless comparisons. 

Standard, sorted neighborhood (Kristensen, T.  

G./J.  Nielsen/C.  N.  S.  Pedersen (2010)), q-gram 

based (Latanya Sweeney (2002)), canopy clustering 

(Lifang Gu and Rohan Baxter (2006)), locality 

sensitive hashing and multibit trees (M. Hernandez 

and S. Stolfo (1998)) are some of the methods 

available. Some are traditional, while others are 

more recent procedures with improved features 

over the previous ones. To create the appropriate 

indexes for the comparison, we will be using both 

old and recent methodologies with their security 

features in this research. Our major goal is to 

combine standard indexing, which uses Soundex 

(Peter Christen (2012)) and multibit tree indexing, 

which uses Cryptographic Long-term Key (CLK) to 

encode the data. 

For decades, many classic indexing strategies have 

been used in deduplication and data matching. The 

identifier for each record is simply entered into one 

block, which makes this approach unique. Soundex, 

phonix, double metaphone, phonex, NYSIIS, and 

other methods generate indexing keys. Other 

indexing methods split a single record into many 

blocks. An indexing key value (IKV) is generated 

for each record in the input database. This IKV 

determines where a record is placed in the database. 

All records with the same IKV are grouped into the 

same block. For database matching, pairs of 

candidate records are constructed from all the 

records in both databases with the same IKV. If an 

IKV occurs exclusively in records from one of the 

databases, no record pairings will be created from 

this block because the matching block in the other 

database has no records. All similar pairs of record 

identifiers inside a block are used to generate 

candidate record pairs for deduplication. To prevent 

superfluous pairs, each similar record pair only has 

to be compared once because the comparison of 

two records is symmetric. For example, as 

illustrated in Table 2, with the three record 

identifiers’ Rid1’, ’Rid2’, and ’Rid3’ in a block, the 

resulting record pairs for deduplication would be 

(Rid1, Rid3), (Rid2, Rid3), and (Rid1, Rid2) but 

not (Rid3, Rid2) or (Rid3, Rid1), (Rid2, Rid1). 

The Soundex algorithm is one of the most 

extensively used and oldest methods of phonetic 

encoding. It encodes name strings based on the 

pronunciation of the American-English language by 

preserving the first letter of the string and 

transforming the other letters into integers 

according to the transformation rule. All the zeroes 

that correspond to the letter’s “w”, “y”, “h” and 

vowels are removed from the encoded string 

because they are all repeats of the same number. 

For example, a converted encoding of “t0440555” 

is translated to “t45” and a transformed encoding of 

“k770399051” is changed to “k7391”. Moreover, if 

the first digit of the encoding is less than three 

digits, the code is extended with 0’s to a total 

length of 3 digits, resulting in “t45” becoming 

“t450”. In contrast, codes with more than three 

digits are truncated to 3 digits alone, resulting in 

“k7391” becoming “k739”. For example, we have 

shown in Table 2 the indexing key values of these 

records, like Robert becomes R163 and Ashcroft 

becomes A261. 

Multibit trees work with bit vectors, as suggested 

by Kristensen for cheminformatics and adapted by 

Schnell for PPRL. This is used to quickly search 

large databases of molecular fingerprints. In a bit 

vector of length l, a molecular fingerprint describes 

structural information about molecules. To locate 



 

 

Table 2. Lastname values with their Soundex encodes 

RecId Lastname IKVs 

Rid1 Robert R163 

Rid2 Ashcraft A261 

Rid3 Rubin R150 

Rid4 Ashcroft A261 

Rid5 Rupert R163 

 

A261 R150 R163 

     

Rid2 Rid3 Rid1 

Rid4  Rid5 

 

these pairs, molecular fingerprints are used to look 

for structurally related compounds. 

Assume one needs to look up a query (Pyle D 

(1999)) in a database of molecular fingerprints, Yi. 

To put it another way, the goal is to locate all 

fingerprints in the database that are similar to X 

above particular threshold t. Multibit trees locate all 

fingerprints, Yi where (X, Yi) ≥ t, or filter out any 

fingerprints lower or equal to t. 

Multibit trees follow a three-step process: The 

fingerprint database is partitioned into groups of 

fingerprints for future use in the first step. In the 

second step, an actual tree is formed within each 

created group. The trees built earlier are searched 

for fingerprints in the third step. All the 

fingerprints, Yi, are divided into bins of identical 

size during the partition process. The bit numbers 

set to 1 in Y determine the size of a fingerprint, 

which is indicated by |Y|. Because 
min(|Y |,|X|)

max(|Y |,|X|
 is an 

upper bound on 𝑆𝑗(X, Yi), all bins satisfying t|Y| ≥ 

|X| or |Y| ≤ t|X| can be disregarded in the searching 

step. 

In the next tree building step, fingerprints of similar 

size are actually stored in a binary tree structure 

(Schnell, R./C. Borgs (2017)) with one single tree 

for each bin. The method starts by assigning all of 

the fingerprints from the bin to the tree’s root node. 

The algorithm then recursively allocates all the 

fingerprints, Yi, with 0 at a fixed bit location to the 

 

subtree on the left side and all other fingerprints 

with a 1 at the bit position to the subtree on the 

right side at each parent node. At each parent node, 

the deciding bit position is determined so that the 

tree remains as balanced as possible. At each node, 

there are also two lists of match bits. List O 

contains all positions of bit with constant value 0 in 

all remaining fingerprints below that node, and list 

I contains all positions of bit with constant value 1. 

The recursion ends when the number of fingerprints 

at a node falls below a previously determined 

threshold. 

The search procedure for query fingerprint A is 

divided into three sections.  All bins that met the 

conditions indicated in the partition step were 

discarded in the first phase of searching. In the 

second phase of the search, each remaining tree is 

subjected to a depth first search. For each of the 

tree nodes currently explored, the recorded lists of 

O’s and I allow the computation of an upper bound 

of the Jaccard Similarity for all fingerprints below 

the currently visited node. During the search, the 

algorithm determines the bit position numbers 

assigned to 1 in X as well as the number of bit 

positions set to 0. 

The Cryptographic Long-term Key (CLK), an 

extension of the bloom filter, is used in the multibit 

tree approach. This is a type of composite bloom 

filter (S. Joshua Swamidass and Pierre Baldi 

(2007)), which is the result of an OR operation on 

each identifier attribute’s bloom filter. In Figure 1, 



 

 

we have shown the CLKs construction with 0 and 1 

values, which gives the Dice coefficient (Tobias 

Bachteler, Rainer Schnell and J ̈org Reiher (2011)), 

which is the sum of the unique bi-grams in both 

sets divided by the doubled intersect of the two sets 

of bi-grams. To approximate the dice coefficient 

using CLKs, each unique element in a collection of 

q-grams sets the k number of different bit positions 

in the CLK to a value of 1. A hash function value is 

one of the k mappings of an element to a selected 

bit location. 

Figure 1 depicts how a CLK is built from two 

separate names using a hash function with k=1 and 

l=18 bits for each bi-gram. For visualization 

purposes, the bit locations are set to 1 and in the 

same sequence as the bigrams. However, this may 

vary depending on the string. We have two strings, 

FREDDIE and FREDDEE, that differ by one 

character, resulting in an edit distance of one. The 

clear-text bi-grams’ dice coefficient would be: 

D = 
2.4

6+6
 = 0.667 

 

Figure 1. CLK construction (C. Borgs (2019)) 

The basic method for implementing any CLK-

based encoding usually follows the pattern outlined 

in the following subsections: 

1.  Input strings are standardized depending on the 

sort of data they contain. 

2.  Blank space is sometimes added to standardized 

strings at the end and beginning as padding, 

which gives the string’s last and first character 

additional weight. The resulting string is then 

broken into q-grams by dividing it into subsets 

of length q, where q is one of the user defined 

parameters. 

3. In the CLK, each element formed in step (2) 

corresponds to numerous k bit places. The 

technique determines these bit places, which is 

dependent on the implementation details. 

Currently, using random hashing to hash 

components into the CLK is strongly suggested 

overusing double hashing, which is considered 

outdated. 

4. The resulting bit positions of value 1 in the 

initially empty CLK with all bit positions set to 

0 are dependent on the parameter choices. 

For each element formed in step (2), steps (3) and 

(4) are repeated. A standard CLK is a bit vector that 

contains only the elements of a single identity.  

Some parameters must be selected to construct a 

multibit tree, such as the length of the CLK within 

which values of 0 and 1 are alternately inserted, the 

minimal threshold which is Tanimoto coefficient 

and the number of functions which is k. There are 

three phases of indexing with Q-gram fingerprints 

using multibit trees: 

1. Both the file records are converted into Q-gram 

fingerprints. 

2. Larger file fingerprints are stored in a multibit 

tree. 

3. A smaller file is compared to each fingerprint’s 

multibit tree. 

3. PROPOSED WORK 

When the number of parties grows, it becomes 

computationally expensive to generate candidate 

record sets for myriads of databases. In such cases, 

methods for reducing the space of comparison are 

required. In the record linkage process, these 

strategies are known as indexing methods. Such 

algorithms identify reduced sets of candidate 

records for comparison and categorization by 

retaining true matching records in sets of candidate 

records while deleting as many genuine non-

matching record sets as possible. 

As the number of parties increases, more complex 

indexing systems are required. More comparisons 

are required regardless of whether there are large 

block numbers with small record numbers or small 

block numbers with large numbers of records. This 

challenge demonstrates the number of candidate 

record sets generated for various parties using 

various block sizes and datasets. 

The generated candidate number record sets grow 

in large volumes with the increasing number of 

https://duepublico2.uni-due.de/servlets/solr/mods_nameIdentifier?q=mods.nameIdentifier:gnd%5C:1192385772&owner=createdby:guest


 

 

parties involved in a multiparty protocol. The 

number of candidates generated record sets 

becomes so large that it is practically impossible to 

handle, even with very small-sized blocks. One of 

the primary issues is the lack of control over block 

sizes in currently available indexing systems. The 

comparison procedure becomes significantly more 

arduous and time-consuming when a large number 

of blocks are generated in various sizes. We created 

a method that constructs blocks of entries in a 

balanced tree data structure using an indexing 

technique and phonetic encoding to address this 

issue. Each party will have a tree data structure 

with leaf nodes holding blocks of records. The tree 

is constructed securely, with no information about 

each party’s records being shared.  

We have developed a technique that uses both 

classic indexing and more contemporary tree-based 

indexing to incorporate the benefits of both 

processes while also overcoming the shortcomings 

that can emerge when using them alone. This 

research employed a combination of strategies that 

decreased both space and time. The normal 

indexing method takes more time to create blocks 

than the multibit tree. The multibit tree produces 

good results, it still produces a lot of false-positive 

pairs, which we can eliminate with this combined 

technique. 

 

Figure 2. Indexing step in comparing two databases 

By using more than one database for indexing and 

with the help of an efficient method, we created a 

collection of pairs and sent them to be compared 

further. Figure 2 depicts two database parties 

preprocessing their data at their respective sites. 

Both sides provide their preprocessed data to be 

indexed, where pair blocks are formed and 

matched. We encode our data after preprocessing. 

We encode the characteristics in a multibit tree as 

CLKs, which we have decided to use as index keys. 

This proposed methodology encoded attributes 

using phonetic encoding, a conventional indexing 

method and then translated the encoded data into a 

cryptographic long-term key, another method to 

secure the data. We used the multibit tree approach 

to obtain approximate matches after converting 

them into CLKs. 

The layered design in Figure 3 depicts a step-by-

step breakdown of the indexing approach that leads 

to potential matches among a vast number of 

entries. This process we have discussed earlier. 

This is the actual bottom-to-top approach to get the 

proper matching fields. Standardization is the most 

important step because error-free data gives the 

most appropriate and true matches. 

 

Figure 3. Layered design with Indexing step 

The information flow diagram in Figure 4 depicts 

how record data flows through the indexing 

process, resulting in record match pairs. 

 

Figure 4. Information flow with Indexing step 



 

 

Individual techniques, such as typical blocking 

Soundex approaches, are commonly used to encode 

properties. These keys are then compared to other 

database keys, and matching indexes are 

discovered. We used both phonetics and CLKs to 

encode the data in the combined technique and then 

combined their results to locate the matched pairs. 

Data matching, which is the latter part of the record 

linkage process, requires true or false matches to 

check the efficiency and quality of the indexing 

method. 

4. RESULTS AND DISCUSSIONS  

This experiment requires Rstudio, the R version 

software, and Rtools, which is used to install 

packages directly from the internet. This software is 

available as freeware and may be downloaded 

quickly. The R version is available depending on 

the type of operating system, along with many 

useful packages. These built-in packages are 

written in C or C++. We have used the R 

programming language, which is frequently used 

by statisticians and data miners to create statistical 

tools and for data analysis. 

The experiment was conducted on a laptop 

computer with an Intel Core i3-7100U processor, a 

64-bit version of windows 10 operating system, 4 

GB of RAM. To run the data, a variety of software 

is available. The PPRL package provides the 

necessary functionality for using PPRL methods in 

R. It is available for free on CRAN. It can use 

PPRL methods to encrypt, preprocess, and link 

data, allowing us to complete the entire record 

linkage process in R. For the tree’s creation, the 

Multibit Tree package is used. The gmodels 

package was used to plot the graphs. We tested our 

dataset and calculated comparison pairings using 

built-in R language tools. We have included both 

tabular and graphical representations of our 

findings. 

We can observe from Table 3 that the combined 

technique offers better comparative values than the 

multibit tree alone. We measured the number of 

functions used, the time taken for each loop, and 

the bit positions set to one for the graph analysis. In 

this experiment, CLKs have a length of 256, which 

implies we will have 0 or 1 values within 256-bit 

vectors. Information is securely saved within these 

values. As the hash function number grows, so do 

the bit values, which can lead to false positives. 

This necessitates the use of a correct k function to 

avoid erroneous matches. We have also looked at 

the time it takes to execute each loop, which will 

help us estimate the total time required for the 

entire process. By calculating the amount of time, 

we can determine whether one way is better than 

the other. 

Figure 5 shows the percentage of bits position set to 

1 and the number of used hash functions using the 

combined approach. 

 

Figure 5. The percentage of bits position set to 1 

and No. of used hash functions with Combined 

Method 

Figure 6 shows the percent of bits position set to 1 

and the number of used hash functions with MBT. 

 

Figure 6. The percentage of bits position set to 1 

and No. of used hash functions with MBT  

 Figure 7 shows the running time and the number of 

used hash functions with the combined approach.  



 

 

Table 3. Result comparison of both methods 

             Indexing Methods 

Evaluation Metrics 
MBT Combined Approach 

Reduction ratio 0.9953 0.9996 

Pairs completeness 0.7514 0.84 

F-score 0.8563 0.9129 

Running time (sec) 6.9535 4.9463 

 

 

Figure 7. Running time and No. of used hash 

functions with Combined Method 

Figure 8 shows the running time and the number of 

used hash functions with the combined approach.  

 

Figure 8. Running time and No. of used hash 

functions with MBT  

We used two real datasets that contained 

information about articles that had been published 

earlier in the corresponding publication or 

conference. ID, title, author, publication, and year 

 

are all the fields in one dataset. Other fields in the 

collection include reference information, title, 

author, publication, and year. It will be simple to 

match data if datasets include common attributes 

used as index keys. Using a combined method, we 

were able to isolate matched record sets that are 

most likely equal. 

The indexing keys have been encoded. We have 

calculated evaluation metrics such as reduction 

ratio, pair completeness, f-score, and running time 

depending on the number of records. Table 3 

compares the two techniques using these metrics. 

RR= 1- 
𝑠

𝑁
 for reduction ratio, which is the possible 

number of record pairs in the total datasets and s is 

the number of record pairs produced by the 

indexing method for comparison. 

PC= 1- 
𝑠𝑀

𝑁𝑀
  for pair completeness, where NM is the 

total number of true match pairs in the entire 

dataset and sM is the number of true match record 

pairs in the set of record pairs produced for 

comparison by the indexing method. 

F-score = 
2∗𝑃𝐶∗𝑅𝑅

𝑃𝐶+𝑅𝑅
 for f-score value, which uses a 

harmonic mean to combine RR and PC. 

5. CONCLUSION AND FUTURE WORK  

We presented a combined indexing method for 

PPRL that uses traditional indexing and multibit 

trees. Each party creates a multibit tree structure 

based on the CLKs created by the parties, and their 

datasets collaborate to determine the optimum bit 

positions to use. An experimental evaluation of the 

suggested methodology was conducted, in which 

we tested it on two separate datasets with common 

values and varying record sizes. 



 

 

The evaluation findings revealed that this 

methodology is scalable in terms of both the 

number of databases to be linked and the database 

size. This technique outperforms the traditional 

standard indexing strategy in terms of privacy and 

indexing quality. We used to employ phonetic 

encoding for index keys in classical indexing, 

which allowed us to encode data in a basic method, 

such as a single letter and integers up to a few 

digits. In the previous technique, we were directly 

encoding index keys in CLKs in a multibit tree, but 

in this combined technique, we are applying CLKs 

over phonetic encoded data, which is more secure 

and less vulnerable to attack. Finally, using private 

comparison and classification techniques, the 

blocks formed by a multibit tree can be compared 

to determine related record sets in different 

databases. 

We intend to expand this method with other tree 

structures that can minimize the number of trees 

and split the tree nodes into more bits. We will also 

look into the best and most efficient parameter 

selection for encoding the data. This system has a 

disadvantage in that privacy can be jeopardized 

when some of the parties are not genuine, 

necessitating more protective safety measures and 

communication. We want to further improve this 

approach so that it can be used in applications in 

the real world of PPRL. 
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