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Abstract

An effective field theory framework, the Standard Model Extension (SME), provides

an agnostic, systematic test of General Relativity (GR) and its founding spacetime

symmetries, Lorentz and CPT symmetry. Violating these symmetries may provide

clues toward unifying the physics of the General Relativity and the Standard Model

of particle physics.

Part of this work involves the merge of theory, data analysis and experiments

with gravitational wave (GW) signals from LIGO/Virgo/KAGRA (LVK) detectors.

A modified dispersion relation derived from the SME of GWs is implemented into

the LIGO Scientific Collaboration Algorithm Library Suite (LALSuite), where a joint

Bayesian inference of the source parameters and coefficients for spacetime symmetry-

breaking is performed for binary black hole and neutron star events. Using 45 events

from the GWTC-3 LVK catalogue, constraints are placed on the symmetry-breaking

coefficients.

Additional work involves a 3+1 formulation of the SME in the gravitational sector

with a Dirac Hamiltonian analysis. The assumption of explicit local Lorentz and

diffeomorphism symmetry breaking is made. This work shows significant differences

in the structure of the dynamics when comparing to General Relativity and focus

is given to cosmological solutions, which produce modified Friedmann equations and

altered conservation laws. This research also find terms within the framework to

match certain modified gravity models along with noting further potential impact

toward other gravitational models, theories and phenomenology including quantum

gravity.

vii
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Chapter 1

Introduction

Physicists search for the truths that describe the Nature and universe that we ex-

ist within. It is the research and exploration itself, the appreciation of the beauty

learned during their career and the potential for special moments of discovery that

give purpose among the vastness in both established concepts and even more, the

mysteries yet understood.

Strong instinctual curiosity makes focusing within a subset area of physics quite

difficult for some. The sole physicist can learn to appreciate the significance of a

shared group of minds, with varying skills and perspectives. A single human is limited

and biased, adding to the unique experiences as one explores the essence of our world.

Yet if one wishes to experience more, possibly heading toward an unknown unified

theory, there is an overwhelming amount of knowledge along the way that one can

try to acquire within countless paths and avenues. This is where the community of

different minds, when acting together, allow a broader experience and view of the

immense landscape of physics.

A physicists can also look at nature around them and note our instinctual desire to

see symmetries. A rose with its pedals, trees with spreading branches, clouds, waters

1
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and mountains may not seem to have obvious perfect symmetries, possibly having

partial symmetries, yet are beautiful and admired. It is even unusual when one finds

perfect symmetry in nature, something that stands out. It is no surprise then, the

fascination with symmetries and the devotion of studies into trying to comprehend

them. Whether by finding their pure forms, or by breaking them, it is in the hopes

of seeing hints into the underlying fabric of our reality.

1.1 Research Motivation

General Relativity (GR), the current theory of gravity, and the Standard Model (SM)

of particle physics are well-tested, successful theories for over a century, yet it still

remains a challenge to find a fundamental unified theory that encompasses the two.

It is expected that GR and the SM describe the low-energy limits for this unified the-

ory, a theory of quantum gravity. Some theorists believe this should emerge around

some ultraviolet cutoff scale, commonly thought to be the Planck energy scale of 1019

GeV [43]. Experiments to probe such scales are not yet feasible and so one must

look for hints of this underlying fundamental physics. One approach is to take the

foundational symmetries of GR and the SM and test for any violations, investigating

any possible exposed clues that could guide us toward this unified physics. Many

proposed theories and models suggest symmetries can be broken, searching for space-

time breaking effects within sensitive tests [84, 51, 40, 16, 10, 88, 3, 4, 5, 9, 7]. The

research in this thesis is devoted toward the searches for Lorentz and CPT symmetry

breaking, focusing efforts on gravity.
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1.2 Notation and units

For most of this thesis, work is done within natural units more common among the SM

community, where ℏ = c = 1, and Newton’s gravitational constant is GN ̸= 1. Note

that later in this work, a devoted section is given to elaborating on different notation

used and their conversions when applicable. In regards to the chapter involving

gravitational waves, the metric signature is taken to be the standard choice for GR

(− + ++). For tensors and their components, Greek letters are used for spacetime

indices and Latin letters for spatial indices. The operator ∇µ is used for the spacetime

covariant derivative and Dµ for the covariant derivative that is defined on a spatial

hypersurface parameterized by time.

1.3 Spacetime Symmetries

Special Relativity (SR) states that the laws of physics are the same for any inertial

observer and the speed of light is the same for all inertial observers. When referring

to flat, Minkowski spacetime, this refers to the absence of gravity. As a result of

SR, a symmetry becomes apparent under certain transformations. As an illustrative

example, imagine a sphere. Under a rotation, the geometry does not change and thus

the sphere has a symmetric geometry. Likewise, in SR, the laws of physics are the

symmetry that do not change under transformations known as Lorentz transforma-

tions (LT). There are 6 Lorentz transformations one can apply to a frame O with

coordinates xµ to transform to the new primed frame O′ with coordinates x′µ. These

include 3 rotations about the frame’s coordinate axes and 3 boosts, where the O

frame is given a boost velocity along a coordinate axis (see Fig. 1.1). The LT are

contained within the Lorentz transformation, Λµ
ν , where a vector Bµ transforms as

B′µ = Λ′µ
ν B

ν .
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Figure 1.1: As a result of SR, six Lorentz transformations that can be applied to the
observer frame will preserve the laws of physics: three rotations and three boosts.

There is also charge conjugation, parity inversion, and time reversal (CPT) sym-

metries that are discrete symmetries in comparison to the continuous Lorentz sym-

metries. The existence of an antiparticle for every particle with an opposite charge

refers to charge conjugation; parity inversion describes the mirror-image counterpart

of particles and their interactions; time reversal refers to invariance of the laws of

physics that describe the particle interactions under a reversal of time.

A principle foundation for GR is the Einstein Equivalence Principle where in any

local Lorentz frame, the form for physical laws are the same as in any freely falling

inertial frames in SR (in the absence of gravitational fields). In GR, spacetime is no

longer flat and has curvature; its symmetry reduces to local Lorentz symmetry for

any one point P in spacetime and is defined to preserve Lorentz symmetry as shown

in 1.2. . The Minkowski metric is defined in SR for flat spacetime, i.e., ηµν while in

GR, the metric is gµν . The metric gµν can be connected to the local Lorentz frame

defined at point P via the vierbein eµa(P ) ≡ ∂xµ

∂ξa
(P ) using the form gµν = eaµ e

b
ν ηab.

There is also 4 diffeomorphism symmetries associated with translations ξµ within the
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Figure 1.2: Spacetime can have curvature in GR, while points are defined in a local
Lorentz frame (flat spacetime).

spacetime, where for a vector Bµ,

Bµ → Bµ + (∂νξ
µ)Bν − ξν∂νB

µ.

These are additional, local transformation symmetries within a pseudo Riemann man-

ifold. Additional information can be found within textbook sources including [92, 127,

58].
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1.4 Standard-Model Extension

One method that allows for the test of fundamental symmetries of GR and the SM is

an effective field theory framework, named the Standard-Model Extension (SME) [43,

72]. This model-independent framework provides a systematic, agnostic approach for

testing Lorentz and CPT symmetries as depicted in Fig. 1.3. It starts at the level of

Figure 1.3: The SME framework allows for tests that break foundational spacetime-
symmetry breaking to search for clues for some unified physics that is expected emerge
at Planck-scale physics. Image inspiration: Matthew Mewes and Quentin G. Bailey.

the action S, containing the known physics of GR within the Lagrange density LGR,

the SM of particle physics within LSM , plus an arbitrary number of terms that allow

for spacetime-breaking within LSME [44, 43, 72, 24, 67, 23, 29, 80, 78, 73],

S =

∫
d4x(LGR + LSM + LSME). (1.1)
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The last term includes tests of local Lorentz, CPT and diffeomorphism symmetries.

The additional terms in LSME contain operators derived from known physics fields

like that of gravity, which act on coefficients for spacetime-symmetry breaking that

control the degree of symmetry breaking within observable physics. Though there are

an arbitrary number of additional terms, in practice, one often chooses to truncate to

those of lower mass dimension, as in the case of the minimal SME, containing terms

of mass dimensions 3 and 4. The mass dimension is defined in terms of the chosen

natural units, e.g., GR is a mass dimension 4 term.

The SME is a framework and not a theory or model that covers many sectors of

physics as depicted in Fig. 1.1. Numerous literature provide both experimental and

theoretically-derived bounds on the SME coefficients. A collection of this decades-

worth progress is displayed within [81]. The focus of this research is the gravity sector

of the SME.

There are also many publications that devote efforts toward mapping existing

modified physics to terms within the SME. The table 1.4 displays current progress

within the gravity sector of the SME [22, 102]. A mapping between Hořava-Lifshitz

gravity and terms within the SME is elaborated on later in chapter 3.

1.5 Linkage to Scientific Papers and Overview

The chapters 2 and 3 contain the main body of this research, focusing on investigating

possible effects from spacetime symmetry-breaking in the pure gravity sector within

the SME framework. Most of the work has been published within peer-reviewed

journals and conference proceedings and can be accessed through:

https://inspirehep.net/authors/1815931.

Chapter 2 follows the research involving gravitational waves, and is based on
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Different Sectors of Physics Within the SME Framework:

Electron Sector

Charged-lepton Sector

Proton Sector

Neutrino Sector

Neutron Sector

Quark Sector

Nonminimal QED Sector

Gluon Sector

Gravity Sector

Table 1.1: There are 46 data tables compiled from current literature that cover many
sectors of physics when testing symmetry-breaking within the SME framework. The
focus of this dissertation is the gravity sector.

published works of the dissertation author [104, 55, 99, 97, 64, 102]. Chapter 3

contains the research regarding the 3+1 formulation of the gravity sector within

the SME framework, along with a Dirac-Hamiltonian analysis, and is based on the

publication of the dissertation author [103].
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Figure 1.4: The figure shows current progress toward mapping modified physics mod-
els and theories to terms within the SME. Table credit: Quentin G. Bailey



Chapter 2

Gravitational Wave Tests of

Spacetime Symmetries

Since the discovery of the first GW signal on September 14, 2015 [3], nearly one

hundred confidently-detected events [6, 41, 15] have opened a ripe, new testing ground

for gravitational physics. There are many specific models that have investigated the

effects from Lorentz-symmetry breaking for gravitational waves [24, 80, 78, 129, 130,

96, 91]. Other works test for deviations from GR via parameterization [5, 9, 125,

123]. Many more do so through the SME framework [131, 26, 18, 48, 120, 125, 123,

110, 86, 118, 126, 80, 101, 8, 124], including comparison tests between gravity and

light [2] and related works within this thesis [104, 55, 54].

2.1 Background Theory of Gravitational Waves

One can expand the spacetime metric gµν as a perturbation hµν around a flat Minkwoski

background ηµν ,

gµν = ηµν + hµν . (2.1)

10
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Near gravitational wave sources in the near zone, one finds strong, nonlinear gravity;

far from such sources in the radiation zone, propagating GWs can be represented

as small perturbations, i.e., hµν << ηµν , having strain around the order of 10−21.

Tensors including the Riemann and Ricci tensors, can be rewritten in a linear form,

up to the first order in hµν . The Einstein field equations can be written in a “relaxed

form”,

(GL)µν = κ[(TM)µν + τµν ], (2.2)

where κ = 8πGN , (TM)µν is the matter stress-energy tensor, τµν is the energy-

momentum pseudo tensor [107] containing terms of second and higher order in hµν ,

and (GL)µν is the linearized Einstein tensor. Gravitational Waves travel through the

vacuum, and in regions far from the source, reducing to, (2.2)

□hµν = 0. (2.3)

The general solution to ((2.3)) for a plane wave is a linear superposition for the

metric perturbation,

hµν = eµνe
ikαxα

+ e∗µνe
−ikαxα

, (2.4)

where kα = (ω, p⃗) is the four-momentum, xα = (t, x⃗) the configuration coordinates,

and eµν is a two-tensor that is labeled as the polarization tensor. Note that indices

for all tensors can be raised and lowered via the Minkowski metric, and thus the

polarization tensor is symmetric. When applying the solution to the equation in

(2.3) for the nontrivial case of hµν ̸= 0, one finds the dispersion relation,

kαkα = 0. (2.5)
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One can choose to impose the Lorentz gauge,

∂αh
α
β = 1

2
∂βh, (2.6)

where h ≡ hαα. Applying the general solution (2.4) to the Lorentz gauge, another

useful relation is found,

kαe
α
β = 1

2
kβe

α
α. (2.7)

The symmetric polarization tensor has initially 10 independent components and when

imposing the condition (2.7), four equations are found containing 10 unknown com-

ponents, leaving six independent components. One can also use the usual GR linear

gauge transformation hµν → hµν−∂µξν−∂νξµ, where ξµ is an arbitrary vector. Choos-

ing the form ξµ(x) = iϵµeikαx
α − iϵ∗µe−ikαxα

transforms the polarization tensor into a

new primed coordinate system as,

e′µν = eµν + kνϵµ + kµϵν . (2.8)

Since both e′µν and eµν must represent the same physical situation for the arbitrary

parameters kµ and ϵµ, the number of linearly independent components is narrowed

down to two polarizations. One can refer to textbook sources for further details

on this derivation [92, 127]. The two physical components are labeled as “+” and

“×” polarizations, having a phase angle difference of π/4. The gauge used is the
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transverse-traceless gauge (TT-gauge) which expresses the hµν components as,

hµν =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


. (2.9)

In order for the gravitational perturbation hµν to be observable, it must interact and

provide a means to measure changes with some type of detector, e.g., the LVK ground

based detectors.

2.2 Era of Ground-Based Gravitational Wave De-

tectors

The LVK collaboration includes a network of four ground based detectors, two of

which are located within the United States (LIGO), one in Italy (Virgo), and one in

Japan (KAGRA). The detectors are designed after the Michelson-Morley experiment

over a hundred years prior to the founding of the first LIGO detector [90]. Each

detector has two perpendicular laser trajectory paths a few kilometers in length, with

inertial tests mass mirrors at their ends. A laser source produces an electromagnetic

wave that is split into two separate, equal beams before propagating along perpen-

dicular arms (see Figure 2.1). The end mirrors reflect the beams back to the beam

splitter a few hundred times before ultimately, they are recombined at the origin cen-

ter point, producing an output signal at a photo detector [11, 12]. In the absence of

GW effects, the output signal is designed to produce a full destructive interference,

yet in the presence of a gravitational wave, the travel time of each propagating beam
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Figure 2.1: The above image provides a basic layout of a LIGO GW detector, where
the laser source beam is split evenly, each then traveling down their respective arm,
reflecting, and recombining to produce an interference pattern observed at the photo
detector.

can be altered, producing a possible interference pattern at the photo detector.

The observable signal can be represented as a projection of the GW’s plus and

cross polarizations onto the detector arms,

SA(t, θ, ϕ, ψ) = FA,+(θ, ϕ, ψ)h+(t, θ, ϕ, ψ, τ) + FA,×(θ, ϕ, ψ)h×(t, θ, ϕ, ψ, τ), (2.10)

where the antenna response patterns are the FA,∗ functions. These functions depend

on the source’s sky localization angles θ and ϕ, the time delay between the detectors

receiving the signal τ , and the GW frame rotation with respect to the frame of the

detectors ψ (see Figure 2.2). Each term within (2.10) is not gauge independent
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Figure 2.2: The projection of the incident GW frame onto the detector frame and the
relative angles.

considering they rely on the ψ, yet the entire observable signal is.

2.2.1 Demonstrating Simplified Detector Response and Sen-

sitivity

To expand some on the base understanding of the response behavior and sensitivities

of the detectors to GWs, consider a case where the wavelength of the GW becomes

comparable to the arm length of the detectors [112, 111] 1 Consider the input signal

as the GW, the response function as the LIGO equipment and related physics, and

the output signal as the recombined laser beam. Normally, it is assumed the GW

wavelength is much larger than the effective travel length of the beam. A traveling

photon experiences a small portion of the GW’s wavelength, or approximately only a

1The current actual characterization of systematic error in Advance LIGO calibration is not
discussed within this work and can be found in [14].
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particular phase during the complete trip to the end mirror and back. Yet consider

the case when the traveling photon experiences a complete GW cycle over its total

trip: the result would be no altered effect in the output signal. A form for the response

functions can be formed, where the simple case of light traveling down one arm is

first considered, subject to a GW passing through. The response system function for

this EM wave along one arm is,

F (fGW , nx) = 1
i2fGW

[(1 − e−iN(1−nx)fGW )/(1 − nx)

−ei2NfGW (1 − eiN(1+nx)fGW )(1 + nx)], (2.11)

where N = (2πL)/c and the dependence on the GW frame orientation with respect to

the detector frame is included within nx = sin θ cosϕ, ny = sin θ sinϕ and nz = cos θ

as noted in Figure 2.2. The unperturbed travel length is L while fGW is the GW

frequency. If there is no GW signal, there is no phase shift, and if the GW wavelength

approaches the effective length of the arms, the sensitivity to this signal can be

negligible.

One can also consider incorporating the effect of the Fabry-Perot cavities that

are situated along each LIGO arm, which effectively extend the detector arm lengths

via reflecting the laser beam several hundred times before passing it back to the out

port. The response function is modified by including the function C(f) as a product

F (fGW , nx)C(f) where,

C(f) = exp
(

2iπfGWT
sinh(2πf0T )

sinh[2πf0T (1+ifGW /f0)]

)
, (2.12)

and f0 = | ln(r1r2)|
4πT

, which includes the dependence on the mirrors’ reflectivities r1 and

r2. The unperturbed travel time is T . The response functions (2.11) are plotted in
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Figure 2.3: The magnitude and phase of the detector response function from (2.11)
is shown up to frequencies of a few thousand kHz.

Fig. 2.3 for the case of effective arm lengths of 4km and 40km. Given the response

function (2.11), one can see that around 1kHz, around 70% of the signal is lost within

the magnitude plot.

As further illustration, simulated supernovae waveforms from different sources are

injected [46, 105, 20, 114, 39], which are expected to produce GWs within frequency

ranges of a few thousand Hz. Plots of the real part of the frequency are shown in

Fig. 2.4. The original waveforms are injected with detector noise from O1 data

during GWTC-1 [15] and are plotted against the same waveform projected onto the

response function. One can see the amount of waveform that is lost or recovered in

this process.

The effect of spacetime symmetry breaking on gravitational waves is considered
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Figure 2.4: The real parts from five different supernovae waveforms injected with O1
detector noise are plotted in blue. The the red shows the distorted waveforms when
projecting onto the response function (2.11).
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next.

2.3 Spacetime-Symmetry breaking effects on prop-

agating Gravitational Waves

Spacetime-symmetry breaking effects on propagating GWs within the SME frame-

work are considered next. The theoretical framework is first explored before elabo-

rating on the data analysis method and implementation in the following sections.

2.3.1 Illustrative Scalar Field Case

A scalar field example illustrates how to derive the dynamics from the Lagrange within

the SME framework [104]. The action for a massless scalar field Φ in flat spacetime,

can be described as,

Isc = −1
2

∫
d4x ηµν(∂µΦ)(∂νΦ). (2.13)

When considering a small variation in the scalar field, i.e., Φ → Φ + δΦ, and keeping

up to the first order in δΦ, the varied action becomes,

δIsc = −
∫
d4x ηµν(∂µδΦ)(∂νΦ).

The Leibniz rule or integration by parts is implemented to arrive at,

δIsc = −
∫
d4x [∂µ (δΦ(∂µΦ)) − δΦ∂µ∂

µΦ]. (2.14)

The first term is a total derivative and thus a total 4-divergence. This means it can

be considered a surface term that bounds a 3 dimensional hypersurface volume, which

can be taken to vanish. The variational principle assumes that the small variation
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in the field δΦ vanishes at the boundary surface, and in ensuring the overall action

remains unchanged, i.e., δI = 0, the remaining ∂µ∂
µΦ term also must vanish leaving

the dynamical field equations,

□Φ = 0, (2.15)

where □ = ∂α∂
α.

It is expected that within this effective field theory framework, additional terms

that allow for Lorentz symmetry breaking can be formed by coupling known mat-

ter fields with unknown fixed, background fields: the massless scalar field Φ or the

GW field hµν are coupled to an unknown background coefficient that has an arbi-

trary number of indices kµνλ... [44, 43]. Two types of Lorentz transformations can be

considered. If a particle transformation is performed, the matter fields transform as

tensors while the unknown background fields remain fixed [44]. Yet for an observer

transformation, both fields transform like tensors, thus showing the physics remains

independent of the choice of the coordinate frame [27, 28].

To demonstrate incorporating Lorentz-violating terms, consider a background vec-

tor field kν that couples to a first derivative of the massless scalar field from above,

∆Isc =

∫
d4x kν(Φ∂νΦ). (2.16)

For the first attempt, explicit symmetry breaking is assumed and when applying

the Leibniz rule, along with assuming the resulting surface term vanishes, the varied

action becomes,

∆Isc = 1
2

∫
d4x kν∂

ν(Φ2)

= 1
2

∫
d3Σν k

ν Φ2. (2.17)
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The d3Σν is the hypersurface that encloses an “area” element. Yet as before, when

implementing a variation in the field δΦ that vanishes on the hypersurface, a resulting

expression is found that vanishes overall and thus does not contribute to the equations

of motion. Instead of using (2.17), one can apply the variation to (2.16),

δ∆Isc =

∫
d4x kν [δΦ ∂νΦ + Φ δ(∂νΦ)]

=

∫
d4x kν(∂νΦ − ∂νΦ) δΦ, (2.18)

which provides an explicit expression of how the resulting integrand identically is

zero.

In order to create an integrand that contributes to the equations of motion, the

action is composed as,

Isc = −1
2

∫
d4x (ηµν(∂µΦ)(∂νΦ) + (∂µΦ)kµν∂νΦ)) , (2.19)

where instead of the vector field kµ, a 2-tensor field kµν is coupled to the derivatives

acting on Φ. Then kµν are assumed to be small, constant coefficients, i.e., ∂αk
µν = 0,

containing ten independent components that dictate the size of the Lorentz violations.

When applying the variation principle as before, one arrives at the modified field

equations,

□Φ + kµν∂µ∂νΦ = 0. (2.20)

To relate the previous examples to the case for GWs, the plane wave solutions to

(2.20) are considered, and the scalar field is written as,

Φ = Aeipµx
µ

, (2.21)
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where the wave amplitude is A and the phase contains the four-momentum vector

pµ = (ω, p⃗) contracted with the spacetime position vector xµ. Upon performing a

Fourier transformation into momentum space, the equation of motion becomes,

pµp
µ + kµνp

µpν = 0. (2.22)

Expanding the four-vectors into their time and spatial components,

ω2(1 − k00) − 2k0jp
jω − kijp

ipj − p⃗2 = 0, (2.23)

and solving for ω(p⃗), a dispersion relation up to the leading order in kµν is found,

ω ≈ |p⃗|
(
1 + 1

2
(k00 + 2k0j p̂

j + kij p̂
ip̂j)
)
. (2.24)

To see how this will modify the GW propagation speed, the equation is rewritten

using v = ω
p⃗
,

v ≈ 1 + 1
2
(k00 + 2k0j p̂

j + kij p̂
ip̂j). (2.25)

It is important to note the directional dependence due to the terms containing kij

and k0j, which break the Lorentz symmetry. One could choose a particular isotropic

frame where k00 is the only nonvanishing component, yet this is a special case.

One could also include higher order terms involving a greater number of indices

for the Lorentz-violating background coefficients [76],

Isc = −1
2

∫
d4x

(
ηµν(∂µΦ)(∂νΦ) + (∂µΦ)

∑
d

(k(d))µνλ...(∂ν∂λ...Φ)

)
, (2.26)

where the d represents the mass dimension. Terms with higher mass dimension include

more spacetime derivatives. In general, the (k(d))µνλ... coefficients will have a mass
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dimension of M4−d.

2.3.2 Theoretical Derivation for Modified Gravitational Wave

Propagation

A detailed explanation of the derivations outline in Ref. [80] is provided here, as was

also done in Ref. [104]

In order to derive a modified form for gravitational waves, one first starts with

the simplest action from the gravity sector of the SME. Choosing terms up to second

order in hµν will lead to a set of linearized field equations. For reference, the action

for linearized GR is,

IGR = − 1
4κ

∫
d4xhµνG

µν . (2.27)

The modified action will contain all Lorentz invariant and Lorentz-violating terms,

including that for GR,

I = 1
8κ

∫
d4xhµνK̂

(d)µνρσhρσ, (2.28)

where K̂(d)µνρσ are operators consisting if derivatives that act on the metric pertur-

bation field hµν ,

K̂(d)µνρσ = K(d)µνρσϵ1...ϵd−2∂ϵ1 ...∂ϵd−2
. (2.29)

These derivatives are contracted with very small, unknown background fields that

one can refer to as either coefficients (more common within the SME framework

context) or parameters (more common within the LVK data analysis context). Each

coefficient has a mass dimension d of Md−4, and one can expect that for higher order

fields, their symmetry-breaking effects are smaller. The coefficients are constrained

experimentally as shown later in this work.

As done with the previous scalar field example, the action is varied with respect
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to the metric fluctuations δhµν ,

δI = 1
8κ

∫
d4x [δhµν K

(d)µνρσϵ1...ϵd−2∂ϵ1 ...∂ϵd−2
hρσ

+ hµν K
(d)µνρσϵ1...ϵd−2∂ϵ1 ...∂ϵd−2

δhρσ]. (2.30)

Then in order to factor out the fluctuations, one needs to perform integration by

parts for each derivative acting on hµν . As before, any surface terms are assumed to

vanish and the tensor density is unity. If the integration by parts is performed an even

number of times (when d is even), the remaining term will have an overall positive

sign, and when performed an odd number of times (when d is odd), the remaining

term is overall negative. This is represented via (−1)d. The varied action becomes,

δI = 1
8κ

∫
d4xδhαβ

[
K(d)(αβ)(µν)ϵ1...ϵd−2 + (−1)dK(d)(µν)(αβ)ϵ1...ϵd−2

]
∂ϵ1 ...∂ϵd−2

hµν ,

(2.31)

where one can take advantage of the symmetry in hµν and indicate other symmetries

imposed with parenthesis as in K̂(d)(µν)(αβ).

Two considerations are imposed when deriving the field equations. The first is to

ensure that all terms included will contribute to the field equations, i.e.,

K(d)(αβ)(µν)ϵ1...ϵd−2 + (−1)dK(d)(µν)(αβ)ϵ1...ϵd−2 ̸= 0. (2.32)

Secondly, it is ensured that the GR gauge symmetry is upheld under the linear trans-

formation hµν → hµν − ∂µξν − ∂νξµ, where ξµ is an arbitrary vector.2 Implementing

2For general gauge-breaking terms, refer to Ref. [78].
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this linear gauge transformation with (2.31), the Lagrange density becomes,

δξI = 1
8κ

∫
d4x ∂αξβ

[
(−1)dK̂(d)(µν)(αβ) + K̂(d)(αβ)(µν)

]
hµν ,

= − 1
8κ

∫
d4x ξν

[
(−1)dK̂(d)(ρσ)(µν) + K̂(d)(µν)(ρσ)

]
∂µhρσ. (2.33)

Since the derivatives of hµν are not necessarily zero and the gauge field ξµ is arbitrary,

a resulting relation is,

[
(−1)dK̂(d)(ρσ)(µν) + K̂(d)(ρσ)(µν)

]
∂µ = 0. (2.34)

From the two conditions (2.32) and (2.34), it is found that the coefficients can

be organized into three categories depending on their properties. One aspect of the

coefficients refers to their discrete spacetime symmetry property, determined via their

behavior under CPT transformations as either even or odd. Another property refers

to the values of mass dimension the coefficient are allowed (refer to the table in Ref.

[80] for details). The three categories for the operator coefficients are rewritten as ŝ,

q̂, and k̂,

ŝµρνσ = s(d)µρϵ1νσϵ2...ϵd−2∂ϵ1 ...∂ϵd−2
,

q̂µρνσ = q(d)µρϵ1νϵ2σϵ3...ϵd−2∂ϵ1 ...∂ϵd−2

k̂µνρσ = k(d)µϵ1νϵ2ρϵ3σϵ4...ϵd−2∂ϵ1 ...∂ϵd−2
, (2.35)

where the ŝ operators are CPT even and can take on mass dimensions d ≥ 4, the q̂

operators are CPT odd with possible mass dimensions of d ≥ 5, and the k̂ are CPT

even with possible mass dimensions of d ≥ 6. The term for GR is contained within

the mass dimension 4 terms.
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The Lagrange density then can be written in terms of the coefficients (2.35),

L = 1
8κ
ϵµρακϵνσβληκλhµν∂α∂βhρσ

+ 1
8κ
hµν(ŝµρνσ + q̂µρνσ + k̂µρνσ)hρσ, (2.36)

where GR is the first term and the second term contains the additional Lorentz invari-

ant and Lorentz-breaking terms where ϵµρακ is the totally antisymmetric Levi-Civita

tensor. The Lagrange density (2.36) is the most general form one can produce that

is second order in the metric fluctuations that ensures the linearized gauge symmetry

and allows for Lorentz invariant and violating terms. The terms can arise as spon-

taneous symmetry breaking in alternative gravity models, as with Nambu-Goldstone

modes and massive modes where additional fluctuations around the vacuum values

are “integrated out” or “de-coupled” [24, 17, 117, 115]. The terms can also arise as

explicit symmetry breaking as seen in other models. Both means of symmetry break-

ing will leave us with an “effective” Lagrange density where the metric fluctuations

around a vacuum, flat spacetime, will not appear.

The final expression for the field equations are,

0 = Gµν − [1
4
(ŝµρνσ + ŝµσνρ) + 1

2
k̂µνρσ + 1

8
(q̂µρνσ + q̂νρµσ + q̂µσνρ + q̂νσµρ)]hρσ. (2.37)

This will reduce to Gµν = 0 when there is no Lorentz violation, and further reduce,

using the Lorentz gauge, to □h̄µν = 0, whereh̄µν = hµν − (1/2)ηµνhαα and ∂µh̄
µν = 0.

Implementing plane wave solutions for propagating GWs into (2.37), i.e., h̄µν =

Aµνe
−ipαxα

, yields p2 = pαpα = 0. Transforming this into energy-momentum space

gives the dispersion relation for GR:

ω = |p⃗|. (2.38)
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Within the TT-gauge, and using the gauge freedom for this limit, the number of

independent degrees of freedom can be reduced to 2, where hµν has the form of (2.9).

Finding the dispersion relation in the case where there is Lorentz violation, the

plane wave solution for GWs is implemented into (2.37). To fully solve this, one can

choose a gauge condition, given the usual gauge freedom exists, then decompose the

terms into their time and spatial components. As an example, consider the temporal

gauge as a choice, i.e., h0µ = 0, and project the spatial results onto the helicity basis.

Within the first order in the coefficients that allow for Lorentz violation, one still find

2 independent degrees of freedom [89]. As another example, one may use differential

forms as a gauge-independent method to derive the dispersion relation [76].

For the Lorentz violating case above, the two independent degrees of freedom

differ than in the case for GR in that the two modes can travel at different speeds

and their frequencies are highly dispersive. The difference between the two modes

is referred to as birefringence within a vacuum. This is different than the scalar

field example in (2.24), where there are no birefringence effects yet there can still be

dispersion effects where, for example, both modes will experience the same change

in speed when compared to another type of physics like light. There is also two

additional propagating modes that are +2 and −2 helicity projections for the spatial

components of hij when choosing a particular helicity basis. The modified dispersion

relation form is then,

ω = |p⃗|
(

1 − ζ0 ± |ζ⃗|
)
, (2.39)

where

|ζ⃗| =
√

(ζ1)2 + (ζ2)2 + (ζ3)2 (2.40)
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and

ζ0 = 1
4|p⃗|2

(
−ŝµν µν + 1

2
k̂µν µν

)
,

(ζ1)2 + (ζ2)2 = 1
8|p⃗|4

(
k̂µνρσk̂µνρσ − k̂µρ νρ k̂µσ

νσ + 1
8
k̂µν µν k̂

ρσ
ρσ

)
,

(ζ3)2 = 1
16|p⃗|4

(
−1

2
q̂µρνσ q̂µρνσ − q̂µνρσ q̂µνρσ + (q̂µρν ρ + q̂νρµ ρ)q̂µσν

σ
)
.(2.41)

The derivative operators are also replaced in (2.35) by ∂µ → ipµ. The plus and minus

sign in (2.39) indicate the birefringence effects, where there is a slow and fast mode

for the GWs. Also important to note is the affected speed and degree of frequency

dispersion depends upon the incoming sky location for the GW, thus allowing for

anisotropic effects that one can map out across the celestial sky.

LIGO-Virgo event data uses localization angles for the incoming GW related to the

right ascension and declination for the sky position. Thus it is particularly useful when

analysing LIGO-Virgo event data to project the coefficients onto a basis containing

spin-weighted spherical harmonics,

ζ0 =
∑
djm

ωd−4 Yjm(n̂) k
(d)
(I)jm, (2.42)

ζ1 ∓ i ζ2 =
∑
djm

ωd−4
±4Yjm(n̂)

(
k
(d)
(E)jm ± ik

(d)
(B)jm

)
, (2.43)

ζ3 =
∑
djm

ωd−4 Yjm(n̂) k
(d)
(V )jm. (2.44)

The spin-weighted spherical harmonics are the usual ±4Yjm(n̂) (where a spin weight of

0 gives the usual spherical harmonics) and n̂ = −p̂ is related to what is shown in Fig.

2.2. The k
(d)
(I)jm, k

(d)
(E)jm, k

(d)
(B)jm, and k

(d)
(V )jm are the symmetry-breaking coefficients in

spherical harmonic form that are related to the ŝ, q̂ and k̂ coefficients from (2.41),

where j = 0, 1, ..., d − 2 and −j ≤ m ≤ j. The subscripts I, E, B and V refer to
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whether the coefficients are CPT odd or even and what mass dimensions they can

take as noted in Refs. 2.36.

One can rewrite (2.39) explicitly showing the speed of the GWs,

v = 1 − ζ0 ± |ζ⃗|, (2.45)

where in the GR case, the two polarizations will together, travel the speed of light,

i.e., v = ω/|p⃗| = 1 and the ζ terms in (2.45) vanish. Yet in the Lorentz-violating

case, the GW polarizations can travel at different speeds with respect to each other.

This is due to the dynamical interaction between the GWs and some Lorentz-violating

background field, where the degree of effect depends upon relative orientations. Given

the large distance between the GW source and the ground-based detectors (between

around 40 Mpc to over 8 Gpc), a difference in arrival times can be detectable even

with a small Lorentz violation, which is a feature that has been tested with photons

[69, 71, 70, 68, 75, 65, 49]. The larger the travel distance for the GW, the more

Lorentz-violating effects can build, and the greater the potential in their detection at

the interferometers.

In terms of the LVC event data, one can equivalently search for small devia-

tions in the phase of the GW polarizations. Even if no confident deviation from GR

detections are made, one can still place tighter constraints on the Lorentz-violating

coefficients. In light of this, the dispersion relation in (2.39) can be further developed,

first returning to a plane wave solution,

h ∼ e−i(ωt−kl), (2.46)

where l is the distance travelled and k is the wave number, k ∼ |p⃗| = ω/v. The

Lorentz-violating effects will create an additional phase shift, δψ±. Also included are
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the effects on the propagation distance from the expanding universe in terms of the

cosmological redshift. The expression for this additional phase shift is then,

δψ± = ωobs

∫ z

0

dz′ (−ζ0±|ζ⃗|)
H(z′)

, (2.47)

where z is the redshift, H(z) is the Hubble parameter, and the observed frequency is

is related to that emitted via ωobs(1 + z) = ωemit. The phase shift can be rewritten

as two terms,

δψ± = −δ ± β, (2.48)

where

δ = ωd−3τζ(d)0,

β = ωd−3τ |ζ⃗(d)|,

τ =

∫ z

0

dz
(1 + z)d−4

H(z)
(2.49)

and ζ0 = ωd−4ζ(d)0, |ζ⃗| = ωd−4|ζ⃗(d)|, and τ is the effective propagation time due to

the redshift.

The coefficients can also be rewritten in terms of effective angles, ϑ and φ defined

as,

sin ϑ = |ζ1∓iζ2|
|ζ⃗|

, cosϑ = ζ3

|ζ⃗|
, e∓iφ = ζ1∓iζ2√

(ζ1)2+(ζ2)2
. (2.50)

Such definitions are for efficiency, yet note that these angles are not the sky localiza-

tion angles θ and ϕ (there are cases where these different angles can appear to be the

same as will be seen later on). The plus and cross expressions can then be rewritten,
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incorporating the new phase shift as modified forms, coupled to the GR expressions,

h(+) = eiδ(cos β − i sinϑ cosφ sin β)hLI(+)

−eiδ sin β(cosϑ+ i sinϑ sinφ)hLI(×)

h(×) = eiδ(cos β + i sinϑ cosφ sin β)hLI(×)

+eiδ sin β(cosϑ− i sinϑ sinφ)hLI(+). (2.51)

where hLI(+,×) are the Lorentz-invariant gravitational wave for standard GR. Setting

β → 0 and δ → 0, one retrieves GR as a limiting case.

An important note refers to the choices in the frame of reference. The Sun-centered

Celestial-Equatorial coordinate system (SCF frame) is a standard within literature

for component values of the Lorentz-violating coefficients as with the k
(d)
(I)jm, k

(d)
(E)jm,

k
(d)
(B)jm, and k

(d)
(V )jm [81]. Note that one can perform a coordinate transformation on

the coefficients as they transform as tensors and it can be treated as global Lorentz

transformations in many cases. For the analysis of GWs, the constraints on the

coefficients in the SCF frame are reported.

2.3.3 A Note on Units and Dimensions

This section will elaborate on the conversion from natural units to SI units when

implementing the previous theory into the analysis code. So far, natural units where

ℏ = c = 1 are used 3. In this choice, physical quantities can be described in terms

of energy, usually in terms of electron volts (eV). As an example, one refers to a

coefficient as having a mass dimension M4−d. When wishing to convert to SI units,

one must note the choice of unit for the starting action, which one assumes to be

3Note there are other unit choices for natural units, e.g., GN = c = 1.
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joules meters Jm 4 Then for the Einstein Hilbert action written in SI units,

IEH = c4

16πG

∫
d4x

√−gR, (2.52)

while for the action (2.27), a factor of c4 is included. Specifically, the c4

G
has units of

kgm
s2

, the d4x has units m4, and the two derivatives within the Einstein tensor provide

units of m−2. The metric tensor gµν is dimensionless. For the Lorentz-violating action

in (2.28), each additional derivative operator provides another unit, in SI units, of

m−2, with a coefficient’s total unit being md−4.

When converting equations like (2.37) from configuration space to energy-momentum

space, each partial derivative will transform as ∂α → i
ℏpα, providing an inverse Planck

factor along with a pure imaginary quantity. Thus the form in configuration space,

∂∂ h + s(4) ∂∂ h + q(5) ∂∂∂ h + ... = 0, (2.53)

would transform into energy-momentum space as,

( i
ℏ)2pp h + ( i

ℏ)2s(4) pp h + ( i
ℏ)3q(5) ppp h + ... = 0, (2.54)

where ( i
ℏ)(d−2) pα1 ...pαd−2

are now in place of the partials in (2.53).

For the four-momenta, the time component will have factors in SI units, i.e.,

pα = (−ℏ
c
ω, p⃗). Then the speed equation (2.45) will appear as

v± = ℏω/|p⃗| = c
(

1 + c2(−ζ0 ± |ζ⃗| )
)
, (2.55)

where there is an additional factor or (ℏ
c
)2 for each ζ. Then for equations (2.44), given

4One can also make the choice of the starting action to have units of joules seconds Js as is done
in classical mechanics.
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each Lorentz-violating coefficient has SI units of md−4, an additional factor of c2−d is

added as in

ζ0 = c(2−d)
∑
djm

ωd−4 Yjm(n̂) k
(d)
(I)jm. (2.56)

2.3.4 Data Analysis Method and Implementation

Previous works have placed constraints on ŝ operators via comparing propagation

speeds between the GW signal and electromagnetic signal from the GW170817/GRB170817A

observations [80, 118, 126, 1], along with comparative travel speeds across the Earth

[86]. Such analysis can constrain the terms within the minimum SME with mass

dimension 4, by comparing two different types of physics signals as for cases of multi-

messenger astronomy. When using only GW signals to search for symmetry-breaking

effects, a minimum mass dimension of 5 is required for birefringence effects between

the two polarizations, as expressed within (2.39) with the term containing a plus

and minus value. Thus this work focuses on constraining terms with mass dimension

5 that allow for CPT and Lorentz violations. Both isotropic and anisotropic cases

are explored for dispersion and birefringence effects, providing a joint estimation of

all parameters including source parameters and those for symmetry-breaking. There

have been other works within the LVK that have performed such joint estimation for

a variety of alternative physics models with respective additional parameters [9]. This

work focuses on symmetry-breaking effects on GW propagation, directly analysing the

GW strain from the LIGO-Virgo detectors that does not rely on posteriors produced

under a GR model. The analysis software is modified to fully consider the source

parameters along with additional SME parameters that include possible dispersion

and birefringence effects. The LIGO Scientific Collaboration Algorithm Library Suite

(LALSuite) is used, an algorithm package that contains many available features in-

cluding waveform generation, injections of dispersed waveforms, inference processes
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and so on [121]. Two of the subpackages, LALSimulation and LALInference, are

modified as detailed below. Further details on the implementation can be found

within 5.

Implementation into software simulation package

The modified waveforms derived from the SME framework in (2.51) are implemented

directly into the LALSuite subpackage LALSimulation. The simplest additional term

that allows for CPT and Lorentz symmetry breaking are those of mass dimension 5.

These are the k
(d)∗
jm = (−1)mk

(d)
j(−m) coefficients, for j = 0, 1, 2, 3, −j ≤ m ≤ j, and are

contained within the β term in (2.51). This coefficient contains sixteen independent

coefficients deduced a priori, all additional parameters to be constrained from GW

event data. Thus the first few terms within the expression for β of mass dimension 5

in SI units will appear as

β(5) = ω2τ (5)

2
√
πc

∣∣k(5)(V )00−
√

3
2

sin θ
(
eiϕ k

(5)
(V )11 + e−iϕ k

(5)∗
(V )11

)
+
√

3 cos θ k
(5)
(V )10 + ...

∣∣. (2.57)

where the θ and ϕ angles are sky localization angles that are expressed in the SCF

frame. Note this expression allows for anisotropic symmetry-breaking effects, as can

also be noted by the dependence on the direction n̂ for the spherical harmonics in

(2.44).

The observable output signal as expressed in (2.10) will have these modified wave-

forms implemented along with the included standard detector response functions that

depend on the angles relating the different frames, namely the merger frame at the

source and the detector frames defined within LALSuite.

The effective propagation time τ in (2.57) accounts for the redshift, yet due to

additional symmetry-breaking terms, it also depends on the mass dimension as noted
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in (2.49). This quantity is evaluated via numerical integration for every SME param-

eter value being tested. Thus for a feasible computation time, the effective coefficient

is probed instead (k
(5)
(V )jm)eff = τ k

(5)
(V )jm. Once convergence of the inference process

produces the posterior of this parameter, the recovery of the k
(5)
(V )jm coefficient is done

as discussed later.

Lastly, transformations of the SME coefficients under observer boosts are possible

to compute, as possibly important if one wishes to include the Earth’s motion, the

interferometers, or the motion of the center of mass for the source system relative to

the SCF. For this work, the strain measurements are not sensitive enough to consider

this effect with boosts for values of v/c = 10−4.

Sensitivity Studies for LALSimulation

Sensitivity studies are performed to test the implementation within the LALSimulation.

As an illustrative example, consider a special case where the only nonzero parameter

is the time component k
(5)
(V )00 that corresponds to an isotropic, polarization-dependent

dispersion. Comparisons of the waveform generated from GR with those for different

values of k
(5)
(V )00 are shown in Fig. 2.5 This system is assumed to be a non-spinning bi-

nary system at a luminosity distance of 4 Gpc, with equal masses ofm1 = m2 = 50M⊙.

There are visible differences within the amplitude and frequency of the waveform sig-

nal for values as small as 10−13m in the SME coefficient. Values are chosen which

can be used to compare to template models presented within [89]. The alterations

within the waveform tend to occur at the peak amplitude times for the later work,

yet modifications to the waveform appear earlier for the simulation.
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Figure 2.5: Shown are simulated waveform examples above with varying k
(5)
(V )00 values,

for the coalescence of a non-spinning binary system of black holes with m1 = m2 =
50M⊙ located at a luminosity distance of 4 Gpc. The solid black lines denotes GR

in the case where k
(5)
(V )00 = 0 and the dotted lines denoted the waveforms for Lorentz

violation where k
(5)
(V )00 has the value specified above the plot.
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Bayesian Inference Analysis

The second subpackage of LALSuite modified is the parameter estimation package

LALInference. A Bayesian inference is performed on the posterior probabilities that

include the GW source parameters along with the systematic uncertainties from the

detector resolutions. The initial vector set of GR prior parameters within the vector

array θ⃗GR include the intrinsic parameters associated with the source system, e.g.,

the masses of the black holes and their spins, along with the extrinsic parameters,

e.g., the sky location, the distance from source to detector, and the incoming GW

frame’s inclination. Additional SME coefficients mentioned in the previous section

for the case of mass dimension 5 within the vector array θ⃗SME are added.

A Bayesian inference framework is used in order to compare GW strain from

events to a template bank of modified gravitational waveforms that include effects

from the SME. A simultaneous inference is done across all parameters, allowing the

inclusion correlation between GR parameters and those for the SME, producing a

joint posterior probability,

P (θ⃗GR, θ⃗SME|d, I) = P (d|θ⃗GR,θ⃗SME ,I) P (θ⃗GR,θ⃗SME |I)
P (d|I) , (2.58)

where P (θ⃗GR, θ⃗SME|d, I) is the posterior probability, P (d|θ⃗GR, θ⃗SME, I) the likelihood,

P (θ⃗GR, θ⃗SME|I) the prior probability and P (d|I) the evidence where I contains any

pertinent background information to be included. The likelihood function within the

frequency domain is,

P (d|θ⃗GR, θ⃗SME, I) = exp

(∑
i

−2|h̃i(θ⃗GR,θ⃗SME)−d̃i|2
TSn(fi)

− 1
2

log
(

πTSn(fi)
2

))
(2.59)

where the template signal is h̃i, d̃i is the interferometer datastream, T is the duration
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of the signal and Sn is the PSD of the detector noise. In initial work involving

sensitivity studies, a flat prior probability is chosen for the effective SME parameter

(k
(5)
(V )jm)eff , which is bounded by |(k(5)(V )jm)eff | ∈ [0; 10−10]. Resulting max values on

the order of 10−15 were larger than the constraints found within the work of [118].

The inference process is calculated using a Markov Chain (MC) method in order

to effectively handle a large number of parameters that describe the emitted GW

from coalescing binary systems. A chain involves semi-random walks inside the n-

dimensional parameter space (n being the number of parameters involved), where

the steps being recorded are proportional to the posterior probability. There are

variations of the MC method, as in the Markov-chain Monte-Carlo (MCMC), that

uses paralleled tempering and nesting sampling, which is implemented within the

LALSuite algorithm library. The calculated output are joint posterior probabilities

of the designated parameters. At this stage, marginalised posterior probabilities can

be extracted from a subset of parameters via integrating over the distribution of

other variables. One then sums over the volume of the posterior probabilities asso-

ciated with the intended fraction of confidence to produce credible intervals for the

parameters. The structure and methods of the Bayesian inference and the MC algo-

rithms, including any PSD and calibration envelopes that are already developed by

the LVK collaboration for parameter estimation are used. One can find these within

the PESummary package [60], including a list of waveforms models with associated

options such as IMRPhenomPv2 [57].

Sensitivity Studies for LALInference

As with the LALSimulation package, sensitivities studies are done for the modified

LALInference. A simulated GW signal with detector noise is created that contains

the CPT and Lorentz violations, then a Bayesian inference is performed in order
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Figure 2.6: Both figures show the posterior probability density on the k
(5)
(V )00 coefficient

for a simulated coalescence of a non-spinning binary system of black holes with m1 =
m2 = 50M⊙ located at a luminosity distance of 5 Gpc. The left figure shows the 1σ

and 90% credible intervals in the DL − k
(d)
(V )00 plane, while the violin plot on the right

shows the posterior probability of k
(5)
(V )00 marginalising the source and systematical

uncertainty parameters.

to understand the potential to measure the SME coefficients given an LVK event

detection. An example of this was done for a system of non-spinning, coalescing binary

black holes with masses of 50M⊙ located at 5 Gpc, and where the symmetry-breaking

dispersion effect is incorporated with one SME coefficient set to a value of k
(d)
(V )00 =

10−14. The Figure 2.6 shows the resulting posterior probability relation between the

luminosity distance and the SME coefficient. The expected values are recovered and

an expected degeneracy is observed between the SME coefficient and the luminosity

distance: the luminosity distance is degenerate with the SME coefficient considering

the farther the distance from the source to the detector, the more the symmetry-

breaking effects can compound and the more energy is lost. The constraint for k
(d)
(V )00
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shows a 1σ credible interval around the expected value of zero, indicating that the

SME coefficient can be measured with a single event given its value is relatively large.

The violin plot in the right of the figure shows the k
(d)
(V )00 marginalized posterior

probability from the source and systemic uncertainties. The symmetric distribution

stems from the absolute form of the SME coefficients as can be seen in (??).

The results can be compared to values found for the mass of the graviton, which

include a modified dispersion relation in the GW signal. The constraints provide an

improved of an order of magnitude. The event GW159014 initially provided a mass

constraint ofmg ≤ 1.2·10−22 eV/c2, where nowmg ≤ 1.76·10−23 eV/c2 using 33 events

from the second GW catalog [4, 9]. The choice of waveform modelling approximate has

also been investigated in determining the robustness of the measurement constraints

[5], where systematic uncertainties may not lead to a large bias or a re-estimation of

the constraints given the current detector sensitivity.

Using the GWTC-3 Catalogue Events to Measure Spacetime Symmetry-

Breaking Parameters

For this analysis, 45 events are used from over 90 from the first three observing runs

contained within the cumulative catalogue GWTC-3 [7]. There are 10 events from

GWTC-1, 23 events from GWTC-2, and 12 events from GWTC-3, all with a signal-

to-noise ratio (SNR) between [9.2; 26.8] and luminosity distances between [0.32; 4.42]

Gpc. All events are coalescing binary black holes and/or neutron stars that have over

a 50% probability of an astrophysical origin.

It was noted that when assuming GR waveforms that best fit the data and ac-

counting for any expected noise, any possible deviations from GR would have to

allude to the higher order terms within the model that allow for small modifications

in the signal morphology [8]. Hence to avoid possible false deviations from GR that
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may be due to transient noise or a model that requires higher order terms, any low-

sensitivity events are not included within the analysis [85, 93]. In particular, to ensure

only high-confidence signals are used, only events that have a false alarm rate (FAR)

lower than 10−3 year−1 and that have been designated by the LVK to be tested for

dispersion effects are chosen.

As noted earlier, an effective coefficient |k(5)(V )00| is sampled over to allow for fea-

sible computation time, assuming a flat prior. This constitutes as an isotropic limit

for (2.57). The 45 posterior probability densities from the chosen events are then

combined to obtain a measurement for the 16 independent, anisotropic coefficients

for |k(5)(V )µν |, which includes the dependence on the sky localization angles. This is

done by first writing the sampled effective parameter as a linear combination,

K⃗ = Y · ⃗
k
(5)
(V )ij, (2.60)

where K⃗ represents the vector of the 45 posteriors, Y is the matrix comprised of

spherical harmonics, and
⃗

k
(5)
(V )ij contains the 16 independent coefficients. The Singular

Value Decomposition (SVD) method is implemented in order to invert (2.60),

k⃗ = V Σ†UT K⃗, , (2.61)

which allows one to retrieve values for our anisotropic coefficients. The V , Σ† and

UT matrices are the SVD factorisation of Y .

For the isotropic coefficient, the posterior probability densities are shown in Fig.

2.7 for all 45 events. Most of the events are compatible with GR and show peak values

near zero except for 10 events that are shown in colors other than grey. For the 68%

credible intervals (CI) the upper bound range is between the orders of magnitude

O(10−14) and O(10−13). The 10 events in color show a 68% CI that is not compatible
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Figure 2.7: The posterior probability on the isotropic coefficient |k(5)(V )00| for GW

dispersion is shown for 45 individual events. The events in color presents a 68.3%
CI not compatible with the GR case of |k(5)(V )00| = 0, while the events in grey are
compatible.
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with GR and one event, GW190828 065509, that is not compatible within the 90% CI

range. The combined constraint from all events for |k(5)(V )00| is 3.19 ·10−15 m at 90% CI

while the bound is 5.62·10−16 < |k(5)(V )00| < 2.81·10−15 m for the 68% CI. The combined

deviation from GR is gone when removing three events from the combination, namely

GW190720 000836, GW190828 065509 and GW200225 060421.

Having more events than the number of independent anisotropic coefficients to

constrain, one can extract bounds from the marginalized posterior |k(5)(V )00| for each

of these events, reported in imaginary and real values as summarized in Table 2.1.

The credible intervals derived from the SVD method and correlations between the

16 parameters are shown in Fig. 2.8. Note that all anisotropic coefficients are

90% 68.3% k
(5)
(V )ij 68.3% 90%

lower lower coefficient upper upper

0.51 1.21 k00 4.38 7.37
-4.54 -2.13 k10 1.19 3.91
-2.30 -1.00 Re(k11) 1.73 3.39
-3.64 -1.21 Im(k11) 2.35 4.45
-7.40 -3.75 k20 1.10 3.78
-1.75 -0.61 Re(k21) 1.43 3.02
-2.77 -1.16 Im(k21) 1.71 3.67
-3.58 -1.72 Re(k22) 1.02 2.55
-2.49 -0.96 Im(k22) 2.80 5.58
-6.40 -3.31 k30 1.17 3.57
-3.34 -1.65 Re(k31) 0.98 2.48
-3.90 -1.92 Im(k31) 1.75 3.87
-2.76 -1.23 Re(k32) 1.34 2.87
-2.26 -0.90 Im(k32) 1.82 3.60
-3.95 -1.95 Re(k33) 1.28 3.18
-3.22 -1.35 Im(k33) 2.25 4.78

Table 2.1: The table shows the CI on the k
(5)
(V )ij coefficients (in 10−13 m), determined

from the marginalised posterior probability distributions estimated with the joint
estimation of the 16 k

(5)
(V )ij coefficients shown in diagonal in Fig. 2.8.

compatible with GR while the isotropic symmetry-breaking coefficient shows devi-
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Figure 2.8: Shown are the posterior probabilities of the 16 k
(5)
(V )ij coefficients (in

10−12 m). For the 2-dimensional distribution, dark blue areas are the 68.3% credible
intervals and light blue are the 90% credible intervals.
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ation from the GR case where |k(5)(V )00| = 0 m. Note also that the joint estimation

shows weaker constraints than that for individual constraints, being three orders of

magnitude larger.

The cases that show possible deviations from GR are investigated to search for

other pathological behavior that might account for this. Results within LVK articles

refer to such events that show deviation from GR [5, 9, 8] including two events from O2

(GW170729, GW170814), and two from O3 (GW190828 065509, GW200225 060421) for

the dispersion relation parameters. There are three events from O3 (GW190519 153544,

GW190521 074359, and GW190828 065509) that present deviations when using the

post-Newtonian tests and an additional event (GW200225 0604321) that results in

poor residual tests. It is possible that these deviations may result from a lack of new

physics in the GR model where there should be added features from a new theory.

It is also possible that the model used assumes too much of an approximation such

as assuming circular orbits or oversimplified approximation of the precession, thus

missing needed dynamical phenomena [93].

To test the robustness of the results, different waveform models are included in the

inference process across several of our included events. Two events inferred with differ-

ent waveform models are shown in Fig. 2.9. Initial analysis is done with the waveform

IMRPhenomPv2 (inspiral, merger, ringdown phenomenological model up to Post New-

tonian term 2) which is a single-precessing-spin waveform model. The results from

this waveform are compared to those inferred by SEOBRNv4 which is an effective-one-

body waveform model that describes the physics of the spinning binaries [35]. Results

inferred by IMRPhenomXPHM, an updated version of IMRPhenomPv2, are also copmared,

which include higher harmonics within the expansion terms and an updated calibra-

tion for precession [109]. When comparing IMRPhenomXPHM with IMRPhenomPv2 across

23 events, four show a significant modification in the CI while only one presents a devi-
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Figure 2.9: The posterior probability for the isotropic dispersion coefficient |k(5)(V )00|
is obtained with different waveform models, where comparisons with two events are
shown. The top figure presents consistent estimation while the bottom figure presents
a case where the probability shape differs between two of the waveform model used
for inference.

ation from zero for the mode (GW190519 153544, GW190706 222641, GW200219 094415,

GW200225 060421). The latter four events are then compared with the SEOBRNv4 and

IMRPhenomPv2 waveform models, where two then present modifications to the CI

(GW190630 185205, GW190720 000836). 10 events are investigated that have a CI not
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containing zero, where only three are compatible with GR when using other waveform

models (GW190519 153544, GW190706 222641, GW190720 000836). Thus one can con-

clude that while apparent deviations are not necessarily due to mismodelling, the high

sensitivity requirement of the analysis in finding deviations from GR has become ev-

ident. However, a more detailed study is in order when noting that these waveforms

share common assumptions and have uncertainty due to the modeling process that

is not carried through the analysis (i.e., mismatching with numerical relativity simu-

lations) before one can be more certain to conclude the results are indicative of new

physics beyond GR.

The correlation between the source and symmetry-breaking parameters were taken

into account during the inference process by the joint estimation. This is investigated

by measuring the Pearson coefficients between the coefficient |k(5)(V )00| and the source

parameters produced from different waveforms as shown in Fig. 2.10, where the

events that produced apparent deviations from GR for the 68% CI are shown. Most

of the events show either no or moderate correlation, yet two events, GW170814 and

GW190519 153544, show a large anti-correlation with the mass and spin parameters.

Events with higher SNR or more accuracy in source parameter measurements would

lead to more stringent bounded constraints on the symmetry-breaking coefficients.
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Figure 2.10: The correlations between |k(5)(V )00| and the source parameters are shown

for events with apparent deviation within the 68% CI. The x-axis shows the chirp
mass Mc, the mass ratio q, the luminosity distance DL, the spin magnitudes a1
and a2, the spin tilt angles θ1,2, the projected angle difference between spins is ϕ12,
the right ascension α, and the declination δ. The colored markers are the events
corresponding to those presenting a deviation on Fig. 2.7, with GW170814 in pink and
GW190519 153544 in blue; the grey markers are the other events.



Chapter 3

3+1 Formulation for the Gravity

Sector of the Standard-Model

Extension

Solutions to Einstein’s Field equations of General Relativity are difficult to solve for

most physical systems where only a few solutions have been found for idealized cases.

In physical systems where slow velocity, weak field regimes exist, it is sufficient to use

Post-Newtonian or general relativistic perturbation theories to describe the dynamics.

This is not sufficient for cases were strong-field gravity exist, such as coalescing bodies

including black holes and neutron stars and cosmology. The 3+1 formulation, or

Numerical Relativity (NR), provides a means to describe nonlinear dynamics that is

more easily modeled and provides an alternative means to investigate gravitational

dynamics within constrained systems.

When facing complicated dynamical equations for a system containing constraints,

the Dirac-Hamiltonian formulation provides an alternative means to better under-

stand and manipulate the dynamics. The analysis in particular provides a systematic

49
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treatment of these systems in order to find an easier, possible transition into quantum

mechanics for gravitational physics.

The following work applied the 3+1 formulation with a Dirac-Hamiltonian analysis

to the gravity sector of the SME, allowing for a spacetime symmetry breaking analysis

to be conducted beyond the weak-field limit [100, 103].

3.1 Starting with the SME Framework

Within the gravity sector of the SME, we focus on the lowest order terms of mass

dimension 4 (the minimal SME), and begin with the Lagrange density form,

LSME =
√
−g
2κ

(R− 2Λ + (kR)αβγδR
αβγδ) + L′, (3.1)

where R, the Ricci scalar, and λ, the cosmological constant, are the usual GR

terms while the additional term contracts the Riemann curvature tensor, Rαβγδ with

(kR)αβγδ, the SME coefficient fields [72]. The GN is the gravitational constant and

κ = 8πGN . The L′ is present to allow for coefficients that would arise from spon-

taneous symmetry breaking. In general, it is also important to note that the SME

action is invariant under general coordinate transformations.

We can write the (kR)αβγδ coefficients in terms of a scalar, u, a 2-tensor sµν , and a

4-tensor tαβγδ contracted with the Ricci scalar, the trace-free Ricci tensor,
(
R(T )

)µν
,

and the Weyl curvature tensor Wαβγδ,

(kR)αβγδR
αβγδ = −uR + sµν

(
R(T )

)µν
+ tαβγδW

αβγδ. (3.2)

It is important to note that one could redefine the fields u and sµν in order to transfer

them to the matter sector, up to the first order [38]. Either way, we still have observ-
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able quantities one can measure. For this work, the additional SME terms within the

gravity sector are kept.

There are ten symmetries to consider contained within the action: four from the

diffeomorphism symmetry group and six for local Lorentz transformations. Under a

general coordinate transformation, the observer diffeomorphism is invariant and all

the fields transform as tensors: the action is invariant. Yet when applying particle

diffeomorphisms, one would see that only the coefficients (kR)αβγδ remain fixed and

thus the action breaks particle diffeomorphism. This is relevant to case studies later

on in this work.

The vierbein eµa maps the metric gµν , defined on the spacetime manifold, to

the Minkowski ηab metric for each local point in spacetime, i.e., ηab = eµae
ν
bgµν .

Thus when considering observer local Lorentz transformations, the curvature fields

and coefficients will transform locally. Yet when considering a particle local Lorentz

transformations, only the coefficients remain fixed and the action breaks local Lorentz

transformation symmetries [31].

If the action (3.1) is interpreted to have spontaneous symmetry breaking, the fields

including the coefficients (kR)αβγδ are dynamical. The particle local Lorentz trans-

formation symmetries and diffeomorphism symmetries are invariant and one could

interpret the dynamical mechanism as potential fields that interact and produce a

nonzero vacuum expectation value ⟨(kR)abcd⟩ of the fields [83, 82]. Many other works

have explored spontaneous symmetry breaking models with vector and tensor cou-

plings to curvature [32, 33]. Additional works provide more detailed investigations

into the differences between explicit and symmetry breaking associated with local

Lorentz and diffeomorphism transformations, along with investigating the associated

conservation laws [29, 34, 30, 31]. For this work, we assume explicit symmetry break-

ing.
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One derives the conservation equations from the Lagrange, and in the case of

either Lorentz or diffeomorphism symmetry breaking, we derive the modified field

equations by varying the metric gµν within (3.1),

Gµν = (Tust)
µν + κ(TM)µν , (3.3)

where (TM)µν is the energy-momentum density tensor for the matter sector and the

explicit form for (Tust)
µν can be found in [72]. The traced Bianchi identities, ∇µG

µν =

0, are the conservation laws that are usually upheld, and in the modified case lead to

∇µ(Tust)
µν = −κ∇µ(TM)µν , (3.4)

where Tust subscripts of ust refer to the SME coefficients.

3.2 3+1 Formalism

The 3+1 formalism follows the work within [adm, 45, 92, 36]. One starts with a

4-dimensional manifold M with a defined metric gµν . This manifold is decomposed

into 3-dimensional spatial hypersurfaces Σt that are parameterized by time t. There

is a time-like normal vector nµ for each spatial hypersurface that is normalized, i.e.g,

nµn
µ = −1 (one could normalize to +1, this is purely a conventional choice associ-

ated with the metric signature). In Arnowitt-Deser-Misner (ADM) coordinates, the

components of the normalized time vector are nµ = (−α, 0, 0, 0), where α is referred

to as the lapse function (see Fig. 3.1). This figure shows the connections between two

spatial hypersurfaces of Σt and one later in time Σt+dt. The xi are fixed neighboring

points that are mapped through the vector tµdt [25]. The βi is the spatial shift vector

that accounts for the difference between nν and tµ. There is a purely spatial metric
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Figure 3.1: The ADM variables connecting spatial hypersurfaces Σ at time t and
t+ dt.

γµν that that measures proper spatial distances within a hypersurface. It has an in-

verse and satisfies γilγlk = δik. The spatial metric is written in terms of the metric

gµν and the normal time vectors, γµν ,

γµν = gµν + nµnν . (3.5)

As a check, one can note the orthogonality between the spatial metric and time

vector, i.e., γbanb = 0. The γµν and nµ are used as operators to decompose and

project GR tensors into spatial and time-like, and mixed terms. A 3-dimensional

covariant derivative is formed from projections with the spatial metric. For a tensor

with mixed indices, T µ
ν , the spatial covariant derivative is

DµT
α
β = γδµγ

α
ϵγ

ζ
β∇δT

ϵ
ζ , (3.6)
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where the placement and number of indices indicates the number of spatial metrics

required for the projection. This derivative is completely compatible with the spatial

metric, i.e., Dµγ
µν = 0. The components of a spatial covariant derivative acting on

an arbitrary covariant vector vµ satisfying nµvµ = (1/α)(v0 − βivi) are

D0v0 = βiβj(∂ivj −3 Γk
ijvk + nµvµKij),

D0vi = βj(∂jvi −3 Γk
ijvk + nµvµKij),

Div0 = βj(∂ivj −3 Γk
ijvk + nµvµKij),

Divj = ∂ivj −3 Γk
ijvk + nµvµKij, (3.7)

where the 3-dimensional Christoffel symbols 3Γi
jk are written in terms of the spatial

metric,

3Γi
jk = 1

2
γil(∂jγkl + ∂kγjl − ∂lγjk). (3.8)

A purely spatial 3-dimensional Riemann tensor is defined in terms of the commutator

of spatial covariant derivatives acting on a purely spatial vector vµ,

[Dα,Dβ] vδ = −Rϵ
δαβvϵ, (3.9)

where Rϵ
δαβnϵ = 0. The Lie derivative shows how to evolve the spatial metric in

time along the normal time vector nµ. Also defined, the extrinsic curvature Kµν

is symmetric, purely spatial tensor. It measures how much a normal vectors (to a

spatial hypersurface) change in orientation as it moves along neighboring points. It

measures the rate in which a spatial hypersurface curves, and thus is related to the

Lie derivative acting on γµν along nµ,

Kµν = −1
2
Lnγµν . (3.10)
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It is also useful to define a purely spatial acceleration, aµ = nν∇νnµ, where nµaµ = 0.

There are three types of projections on the Riemann curvature tensor,

γαµγ
β
νγ

γ
κγ

δ
λRαβγδ = Rµνκλ +KµκKνλ −KµλKνκ,

γαµγ
β
νγ

γ
κn

δRαβγδ = DνKµκ −DµKνκ,

γβµγ
δ
νn

αnγRαβγδ = LnKµν + 1
α
DµDνα +Kβ

µKνβ.

(3.11)

From this, the 4-dimensional Ricci tensor can be decomposed,

Rµν = Rµν + nµKναaα + nνKµαaα +KKµν − LnK
µν

+2KαµKν
α − aµaν −Dµaν − nµDνK − nνDµK

+nµDαK
αν + nνDαK

αµ

+nµnν
(
LnK −KαβKαβ + a2 + Dαa

α
)
. (3.12)

For this work, it was found to be useful to write the decomposition forms for the

Riemann tensor and the Ricci tensor and scalar in terms of the 4-dimensional covariant

derivative instead of the purely spatial covariant derivative. After some manipulation
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of (3.11), the following expressions are found:

R = R +KαβKαβ −K2 − 2∇α(nαK + aα),

Rαβ = Rαβ − 2KαβK + 2Kα
δK

δβ − nαaβK

+nαKβ
δa

δ − nαnβ(K2 −KαβKαβ)

+∇δ[n
αnβ(nδK + aδ) − nδKαβ − γδβaα

−(nαγβδ + nβγαδ)K + nαKβδ + nβKαδ],

Rαβγδ = Rαβγδ − 3(KαγKβδ −KβγKαδ)

+(KαϵKγ
ϵn

βnδ + sym) − (KαγnβnδK + sym)

−(Kαγn(βaδ) + sym)

+∇ϵ

[
nϵ(Kαγnβnδ + sym)

+ (γϵ(αaγ)nβnδ + sym)

− 2(Kαγn(βγδ)ϵ + sym)
]
, (3.13)

where sym represents the Riemann symmetric combination of terms with the indices

α, β, γ, δ. As an example, for two symmetric tensors Aαγ and Bβδ, AαγBβδ + sym =

AαγBβδ − AβγBαδ − AαδBβγ + AβδBαγ.

Lastly, the metric line element can be expressed in terms of the spatial and time-

like projection operators as,

ds2 = −(α2 − βjβj)dt
2 + 2βjdtdx

j + γijdx
idxj, (3.14)

where it is apparent that there are the usual initial 10 degrees of freedom in GR from

α, βj, and γij.
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3.2.1 The Decomposition of the GR Action

We start with the decomposition of the GR Lagrange using the 3+1 projection oper-

ators,

LGR =
√
−g
2κ

[R +KαβKαβ −K2 − 2∇α(nαK + aα)], (3.15)

where the last term is a surface term that normally does not contribute to the equation

of motion and is usually dropped [36]. The last two terms with the extrinsic curvature

Kµµ include information on how to evolve the spatial metric γµν in time along the

time vector nµ. The extrinsic curvature is rewritten via evaluating the Lie derivative,

Kij = − 1
2α

(∂tγij −Diβj −Djβi), (3.16)

showing explicitly the time derivatives. All other components k0µ do not contain any

time derivatives. This is useful when noting the importance of time derivatives in the

Hamiltonian formulation: when working with GR, time derivatives only appear on the

spatial metric, giving 6 dynamical degrees of freedom. We also have 4 nondynamical

degrees of freedom: 1 from α and 3 from βi, which give 4 primary constraints.

3.2.2 SME decomposition with global background coefficients

With the additional Lorentz-violating coefficients (kR)αβγδ, we decompose the La-

grange in (3.1). During this process, the coefficients for Lorentz violation do not

generally vanish when operated on by a covariant derivative. The Lagrange form is
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then,

LkR =
√
−g
2κ

{
(kR)αβγδ

[
Rαβγδ − 6KαγKβδ

+ 4nαnγ(KβϵKδ
ϵ −KβδKϵ

ϵ) + 4aβnγKαδ
]

− 4
(
nαnγ(nϵKβδ + γδϵaβ) − 2nαγγϵKβδ

)
∇ϵ(kR)αβγδ

}
. (3.17)

where all but one term are expressed with the acceleration aµ, the 3-dimensional

Riemann curvature tensor, and the extrinsic curvature. The last term shows a co-

variant derivative on the coefficients that cannot be made to vanish [72]. Also note

also that the acceleration aµ has only spatial derivatives, as it can be shown that the

components are purely spatial: aj = ∂j lnα and a0 = βjaj.

The following is a simpler example that investigates the importance of dynamical

terms in the 3+1 framework. Consider the covariant derivative of the covariant vector

bµ and its projection onto the 3+1 framework while using the Lie derivative properties

along nµ,

∇µbν = Dµbν − nνDµ(nλbλ) − 2n(µK
λ

ν) bλ

−nµnν(aλbλ) + nµnνLn(nλbλ) − nµγ
β
νLnbβ.

(3.18)

From (3.18), the terms containing spatial covariant derivatives Dµ do not produce any

time derivatives on the metric fields α and βµ. Geometrically, the spatial covariant

derivatives live and only describe changes on the 3-dimensional hypersurface Σt. Nor

are there time derivatives contained within the term with the acceleration, since

this only contains spatial partial derivatives on α. This leaves two terms with Lie

derivatives that could potentially contain time derivatives on the metric fields. To
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investigate, nλbλ is expanded in terms of its components,

nλbλ = 1
α

(b0 − βjbj), (3.19)

then applying the Lie derivative,

Ln(nλbλ) = − α̇(nλbλ)+biβ̇i

α2 + 1
α
nµḃµ − 1

α
βjDj(n

λbλ). (3.20)

The time derivatives within the lapse α̇ = ∂tα and the shift functions β̇j = ∂tβ
j are

apparent. This alters the number of primary constraints from the GR case. The

other term containing a Lie derivative is proportional to γiνLnbi, which will also have

time derivatives on α, βi and γij.

The time dependence on α and βi is investigated to ensure whether it is simply

coordinate artifacts that will disappear under a general coordinate transformation.

For instance, the covariant tensor bµ transforms under a general coordinate transfor-

mation in the usual way,

b′µ = ∂xν

∂x′µ bν . (3.21)

Yet there are terms containing the projection of b along the normal time-like vector n

in (3.20), which produce a scalar that provides no orientation information on the SME

background field. An alternative coordinate system is chosen with the contraction

nµ′bµ′ = b0′ and the assumption that the unknown background fields are fixed and

independent of the gravitational fields. This is a different model to work with, and is

an example of an explicit symmetry breaking case of diffeomorphism. This illustrates

the importance in specifying the background fields as noted later on.

Similar to the latter example, the form of (3.17) can be rearranged to make the
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time derivative acting on fields more explicit,

LkR =
√
−g
2κ

{
(kR)αβγδ

[
Rαβγδ + 2KαγKβδ

−12nαnγKβϵKδ
ϵ + 4nαnγKβδKϵ

ϵ + 8Kαγnβaδ
]

+ 8KϵζDλ

(
(kR)αβγδγ

α
ϵγ

βλγγζn
δ
)

− 4aϵDζ

(
(kR)αβγδγ

αζγγϵn
βnδ
)

− 4KϵζLn

(
(kR)αβγδγ

α
ϵγ

γ
ζn

βnδ
)
.
}
, (3.22)

The last term with the Lie derivative is the only one that will contain explicit time

derivatives. Expanding the Lie derivative,

LkR ⊃ 4
√
−g

κα2 K
ijnδ
(
(kR)iβjδn

βα̇ + (kR)iljδβ̇l
)
, (3.23)

the terms containing α̇ and β̇l are apparent. As mentioned, this is not the case in GR

and in many alternative models for gravity. Yet it is not surprising considering this

case has explicit diffeomorphism symmetry breaking, which also breaks the usual GR

gauge symmetry.

There are alternative gravity models that incorporate explicit symmetry breaking

like that of massive gravity, yet this does not introduce time derivatives on the metric

fields. There are also models that contain contractions such as RαβR
αβ within the

Lagrange density, and even introduce higher order derivatives. Yet still these models

do not produce time-dependent metric fields and the gauge symmetry still holds [119].

There are models which allow for higher order time derivatives on the fields, yet they

still find a means to hold the GR gauge symmetry [95, 94].

One could assume a spontaneous symmetry breaking scenario, where one relabels

bµ → Bµ to be a dynamical field. Thus additional field equations would appear and
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the α̇ and β̇j fields would be tied into the dynamics of Bµ; the extra time derivatives

on the metric fields appear in combination with the dynamical fields of Bµ. There

would be no extra degrees of freedom and α̇ and β̇j can be eliminated by performing

a particle diffeomorphism. This is analogous to the Nambu-Goldstone modes for

spontaneous symmetry [32, 33].

3.2.3 SME Decomposition with Local Background Coeffi-

cients

In the explicit symmetry breaking case where the SME coefficients kαβγδ are fixed

background fields that are independent of the gravitational fields, different results

can be achieved through incorporating the vierbein formalism, relating the global

frame to a local frame. For the α, βj and γij fields, the vierbein components e a
µ are

given by,

e 0̄
t = α,

e 0̄
j = 0,

e j̄
t = e j̄

i β
i,

γij = e j̄
i ejj̄, (3.24)

where the Latin indices are for spatial components, an explicit t is for time, and the

bar over the indices represents the local frame. The full expression for the spatial

metric can be calculated once a γij form is chosen. This vierbein is not a general

solution, and there can be other possible ways to use this formalism. In this case, ba

is the local background field that will break spacetime symmetry [72, 42, 52]. One
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can take the scalar contraction within (3.20) and assume,

bµn
µ = b0̄, (3.25)

which, when applying the Lie derivative along na would give,

Ln(nλbλ) = ∂tb0̄
α

− 1
α
βj∂j(b0̄). (3.26)

Note there is no explicit time derivatives on α and βj.

3.3 Dirac-Hamiltonian Analysis

A Dirac-Hamiltonian analysis is done that follows standard procedures performed in

[21, 47, 61]. The Lagrange density (3.22) is transformed into a conjugate momentum

space where one can more explicitly analyse the system’s constraints and degrees of

freedom. The decomposition of the coefficient k into u, sµν , and tκλµν provides three
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parts of the Lagrange density,

Lu =
√
−g
2κ

[u
(
R +KαβKαβ −K2

)
+ 2(KLnu+ aµDµu)]

Ls =
√
−g
2κ

[sµνRµν − nαnβsαβ(KµνKµν −K2)

+ 2sαβK
αδKβ

δ +KµνLnsµν −KLn(nµnνsµν)

+ 2K
(
sµνn

µaν + Dλ(sµνn
µγνλ)

)
− 2Kλ

κDλ(sµνn
µγνκ)

+ aκDλ(sµνγ
µλγνκ) − aλDλ(sµνn

µnν)]

Lt =
√
−g
2κ

{
tαβγδ

[
Rαβγδ + 2KαγKβδ

−12nαnγKβϵKδ
ϵ + 4nαnγKβδKϵ

ϵ + 8Kαγnβaδ
]

+ 8KϵζDλ

(
tαβγδγ

α
ϵγ

βλγγζn
δ
)

− 4aϵDζ

(
tαβγδγ

αζγγϵn
βnδ
)

− 4KϵζLn

(
tαβγδγ

α
ϵγ

γ
ζn

βnδ
)}
. (3.27)

The variation of the actions L =
∫
d3xL is done with respect to all fields that are

time dependent using the definition,

Πn = δL
δϕ̇n

, (3.28)

where ϕ̇n is substituted for α̇, β̇j and γ̇ij. Assuming the case of global background

coefficients, the conjugate momenta are,

Πα =
√
γ

κα
nµnν

(
Ksµν + 4Kijtiµjν

)
, (3.29)

Πβ,i =
√
γ

κα
nµ
(
Ksµi + 4Kjktjikµ

)
, (3.30)
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where Πα = δL/δα̇ and (Πβ)i = δL/δβ̇i. There is no expression for Πu since this

term vanishes 1. The conjugate momentum for γij is Πij
γ = δL/δγ̇ij,

Πij
γ ⊃

√
γ

2κ

(
Kγij −Kij − slmγ

liKjm − slmγ
ljKim + ...

)
,

where only the terms relating to sµν coupled to γij are shown to avoid the lengthy

expression. Other terms include those with tκλµν and mixed terms having sµν and

Kij ∼ γ̇ij −Diβj −Djβi.

The Hamiltonian density is then constructed with the canonical form H = Πnϕn−

L. The conjugate momenta expressions must be rewritten as the time dependent

fields ϕ̇ in terms of the conjugate momenta Πn in order to substitute and find the

Hamiltonian density form. This turns out to be an extremely algebraically challeng-

ing process, thus the work resorts to first investigating limiting cases in the follow

subsections.

3.3.1 First Case Study: Global Frame

The first case study chooses a particular coordinate system where sµν has only one

nonzero, time component, s00. Then the Lagrange density for Ls from (3.27), with

the ADM metric form from (3.14) is,

L1 =
α
√
γ

2κ

[
R + α2−s00

α2

(
KijKij −K2

)
+K

(
2
α4 s00(α̇− αβiai) − 1

α3 (ṡ00 − βi∂is00)
)

+ 2
α2 s00a

iai − 1
α2a

i∂is00

]
+ LM , (3.31)

1One could assume u = sµµ and would obtain a nonzero result for Πu.
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where LM contains the matter sector terms. The conjugate momenta densities for

the α, βµ, and γµν fields are then,

Πij
γ =

√
γ

2κ

[
α2−s00

α2

(
Kγij −Kij

)
+ 1

2α
γij(∂t − βk∂k)

(
s00
α2

) ]
, (3.32)

Πβ,i = 0, (3.33)

Πα =
√
γs00
κα3 K. (3.34)

For convenience, the definitions are made: Πij
γ ≡ Πij, Πi ≡ Πβ,i, and the trace is

abbreviated to Π = Πijγij. The vanishing conjugate momenta Πi provides three

primary constraints. The expressions (3.32), (3.34) and that for extrinsic curvature

(3.16) can be used together to find expression for α̇ and γ̇ij.

A Legendre transformation is applied next on the Lagrange density to obtain the

base Hamiltonian density,

H0 = πij γ̇ij + παα̇− L, (3.35)

which for GR is

HGR =
2κα√
γ

(
ΠijΠ

ij − 1
2
Π2
)
− α

√
γ

2κ
R− 2βiDjΠ

j
i. (3.36)

For this case study, the base Hamiltonian density is found to be,

H0 = 2κα3
√
γ(α2−s00)

(
ΠijΠ

ij − 1
3
Π2
)

+κα5(α2−s00)

3
√
γs200

Π2
α − 2κα4

3
√
γs00

ΠαΠ + αṡ00
2s00

Πα

−
√
γ

κα

(
s00a

iai − 1
2
ai∂is00

)
− α

√
γ

2κ
R

+βi
(

Πα[αai − α
2s00

∂is00] − 2DjΠ
j
i

)
, (3.37)
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where the last line contains the primary constraints. Terms can be removed in (3.37)

that include Πα and s00 to retrieve the GR case, yet taking the limit s00 → 0 will not

provide a smooth connection between the Hamiltonians. This is an artifact of this

method where the assumption s00 ̸= 0 is made in order to invert the expression of Πα

in (3.34). This is not a singularity but a parameter singularity. Further investigation

is required.

The augmented Hamiltonian density is formulated next by adding the primary

constraints. The general format includes the base Hamiltonian density plus additional

terms that contract primary constraints Πi with the Lagrange multipliers ξi. For

this case study, the augmented Hamiltonian density is found using the three primary

constraints (3.34). Then the format becomes HA = H0+ξ
iΠi. Next, one must proceed

to check the consistency condition, observing how the updated Hamiltonian density

evolves in time and requiring the derivatives of the constraints to vanish or produce a

linear combination of previously found constraints that are weakly zero (i.e.,when one

imposes the constraints collected and finds the result to vanish) [47]. This requires

taking a Poisson bracket between the time-dependent primary constraints and the

augmented Hamiltonian.

At this point, remarks on the usage of Poisson brackets during the Dirac-Hamiltonian

process is made (more information can be found within other literature [36, 116]). Yet

during this work, many subtitles arose during the calculations that were not found

within other sources, which is discussed in the following. Consider a set of n fields

qn(t, r⃗) and a set of n momenta pn(t, r⃗) as functions of time t and space r⃗. Functions

can be defined from these fields and momenta, f(q, p) and g(q, p). Then the definition

of the Poisson bracket is,

{f, g} =

∫
d3z
(

δf
δqn(t,z⃗)

δg
δpn(t,z⃗)

− δf
δpn(t,z⃗)

δg
δqn(t,z⃗)

)
, (3.38)
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where the functions of f and g can be defined at different spatial points within the

spatial volume dz3. The fields are all defined at the same points in time. The number

of fields and momenta are chosen to be n = 1 for simplicity, i.e., let q1 = ϕ(t, r⃗) and

p1 = Π = Π(t, r⃗′). The Poisson bracket is then,

{ϕ(t, r⃗),Π(t, r⃗′)} = δ3(r⃗ − r⃗′). (3.39)

In classical mechanics, it is common for the functions f and g to be functions of

the coordinates and momenta. Yet when one works in field theory, one will often find

spatial derivatives of these function involved in the Poisson bracket calculation. Thus

for the case when the spatial derivative ∂i operator is applied to the first function

within the Poisson bracket, the following identity is found,

{∂if, g} = ∂i{f, g}. (3.40)

This result can be extended to covariant spatial derivatives as can be illustrated with

the momentum constraint term encountered in both GR and the SME: DiΠ
i
k. Its

Poisson bracket with the Hamiltonian H is then,

{γklDiΠ
il, H} = {γkl, H}DiΠ

il + γklDi{Πil, H}

+ΠijDi{γjk, H} − 1
2
ΠjlDk{γjl, H}.

(3.41)

The last two terms in (3.41) emerge after noting a couple subtitles. Firstly, it is

important to keep track of the weight of integrand terms: the weight of the three

dimensional tensor Πij is −1. Secondly, one must keep track of the dependence of the

covariant derivative on the spatial metric γij.
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Returning to current case study, one proceeds to check the consistency condition

as the new Hamiltonian is evolved in time by taking the Poisson bracket, i.e., Π̇i =

{Πi, HA}. The result may produce two possibilities: one which produces no new

information, or one that provides a new expression relating the fields βi and their

momenta Π. If the result is the latter, this new relation is added as an additional term

the the Hamiltonian density and again, the consistency condition must be checked

for the new constraints.

The result for this case is a secondary constraint,

Π̇i = 2γijDkΠjk − Πα

(
αai − α

2s00
∂is00

)
≈ 0. (3.42)

Note the above expression weakly equals zero when imposing the constraints collected,

i.e., Πi = 0. Considering this result expresses a new relation between the fields

and their momenta, again the consistency condition is checked with the secondary

constraint Φi = Π̇i. For this, the full expression is required with the explicit time

dependence on Φi, which will contain terms with time derivatives on s00,

dΦi

dt
= {Φi, HA} + ∂Φi

∂t

= Dj(β
jΦi) + ΦjDiβ

j + Ψ∂is00,

(3.43)
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where Ψ is a function of coordinates and momenta,

Ψ = − κα3
√
γ(α2−s00)s00

(
ΠijΠ

ij − 1
3
Π2
)

−κα5(α2−s00)

6
√
γs300

Π2
α + κα4

3
√
γs200

ΠαΠ +
α
√
γ

4κs00
R

+
√
γ

4κs00α
D2s00 −

√
γ

2κα2D2α

−
√
γ

κs00α
aj∂js00 +

3
√
γ

2κα
ajaj. (3.44)

The first two terms in (3.42) are linear in the primary constraint Φi, and when

imposing the primary constraint Πi = 0, the terms are found to be weakly equal

to zero. The third term Ψ∂is00 can create two possibilities. If we assume that the

background coefficients of sµν are left arbitrary, they can provide new constraints that

would update the Hamiltonian and consistency conditions would again be checked.

Yet if one chooses a coordinate system where one can impose the spatial partial

derivative of the coefficient to vanish, ∂is00 = 0, the secondary constraint would be

weakly equal to zero and there would have been no need to find further constraints.

The results of (3.42) can be compared to the case for GR, where the third term is an

additional term that modifies the usual momentum constraint found in GR, which

can be thought of as a “shift” in the conservation law.

We can investigate the implications on the traced Bianchi identities and input the

choice of SME coefficient into (3.4),

∇µ(Ts)
µ
ν = 1

2
Rµλ∇νsµλ −∇µ(Rµλsλν). (3.45)

Then the expression is decomposed by replacing the Ricci tensor with (3.12) and

the covariant derivative with the form in (3.18). We explicitly write any tensors in

terms of α, βi and γij and the conjugate momenta densities α, βi and γij, using the
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expressions from (3.32)-(3.34). Considering the case where s00 ̸= 0 and ∂is00 = 0, the

expression becomes,

∇µ(Ts)
µ
j = κ√

γα
Ψ∂js00, (3.46)

which are the same terms found within the third term in (3.43). This provides a

comparison check to ensure that the constraint found by evolving the Hamiltonian

(3.37) is a constraint expected for the field equations.

Next, a second coordinate assumption for sµν is made,

∂is00 = 0, (3.47)

where the SME coefficients do not change within the spatial hypersurface parameter-

ized by time.

The Hamilton’s equations of motion are then calculated via the standard method

using Poisson brackets: ṗn = {pn, H}, where we use the final Hamiltonian for H,

containing all constraints found. For this case, this would include the three additional

secondary constraints and their associated Lagrange multipliers to (3.37), yet one

would find these secondary constraints already to be contained within the primary

constraints βj. This emphasizes the gauge freedom in the case for this framework.
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The Hamilton’s equations of motion are then,

Π̇α = −2κα2(α2−3s00)√
γ(α2−s00)2

(
ΠijΠij − 1

3
Π2
)

+ 8κα3

3
√
γs00

ΠαΠ − κα4

3
√
γs200

(
7α2 − 5s00

)
Π2

α

+Dk

(
βkΠα

)
− 1

2s00
Παṡ00 +

s00
√
γ

κα2

(
aiai − 2Dia

i
)

+
√
γ

2κ
R, (3.48)

Π̇i = 2γijDkΠjk − Πααai, (3.49)

Π̇ij = − 4κα3
√
γ(α2−s00)

(
Πi

kΠjk − 1
3
ΠΠij

)
+ κα3

√
γ(α2−s00)

γij
(
ΠklΠkl − 1

3
Π2
)

+κα5(α2−s00)

6
√
γs200

γijΠ2
α

− κα4

3
√
γs00

Πα(Πγij − 2Πij) − 2Πk(iDkβ
j) + Dk

(
Πijβk

)
−

√
γ

2κ

(
αRij − 1

2
γijαR−DiDjα + γijD2α

)
+

√
γs00
κα

(
1
2
γijakak − aiaj

)
, (3.50)

and

α̇ = − 2κα4

3s00
√
γ

[
Π − α(α2−s00)

s00
Πα

]
+ αβkak

+ α
2s00

ṡ00 (3.51)

β̇i = ξi (3.52)

γ̇ij = 4κα3
√
γ(α2−s00)

(
Πij − 1

3
Πγij

)
− 2κα4

3
√
γs00

Παγij + Diβj + Djβi. (3.53)

The next discussion refers to the degrees of freedom in this system, which are

represented by the pairs of coordinate and momenta variables that can be freely

chosen on the spatial hypersurface.

Initially there are 10 possible degrees of freedom: one from α, three from βj and

4 from γij. Within this case model, there are three primary constraints and three

secondary constraints, all having an associated total of six undetermined Lagrange
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multipliers. If one adheres to the recipe provided in the equation B11 in the Appendix

B in Ref. [61], the degrees of freedom are counted by,

Ndof = Ndof,initial − 1
2
(#constraints)

−1
2
(#undeterminedLagrangemultipliers), (3.54)

where dof refers to the degrees of freedom. For this case study, this would imply

that there are 10 − (1/2)(6) − (1/2)(6) = 4 degrees of freedom. For the GR case,

from the initial 10 possible degrees of freedom, there are four primary constraints,

four secondary constraints, and thus eight undetermined Lagrange multipliers, giving

a total of 10 − (1/2)8 − (1/2)8 = 2 degrees of freedom.

One could choose a different choice in the case example for the background coeffi-

cients of sµν , providing applicable Hamilton equations for physical systems where one

would model strong gravity with numerical simulations, as in CCSNe or Cosmology.

This work presents applications in the latter.

3.3.2 Second Case Study: Local Lorentz Frame

In this second illustrative case, a different choice is presented for the background

coefficients within the local Lorentz frame. The coefficient sab is chosen to be diagonal

and isotropic,

sab =



s0̄0̄ 0 0 0

0 1
3
s 0 0

0 0 1
3
s 0

0 0 0 1
3
s


, (3.55)



3.3. DIRAC-HAMILTONIAN ANALYSIS 73

where s0̄0̄ and s are arbitrary functions of spacetime. These local Lorentz coordinates

of sab can be related to that of sµν = e a
µ e

b
ν sab through the vierbein expressions in

(3.24). Then the new explicit form for the Lagrange density becomes,

L2 =
α
√
γ

2κ

[
R
(
1 + 1

3
s
)

+
(
KijKij −K2

)
(1 − s0̄0̄)

+KLnΩ + ai∂iΩ
]
, (3.56)

where for simplicity, the definition Ω = s/3 − s0̄0̄ is used. This Lagrange density

expression appears to be the GR case with scalings of the extrinsic curvature and

spatial curvature terms. There is no presence of the α and βj as time-dependent

terms as seen in the first case. Note though, that these coefficients can depend on

time and space. Continuing as before, the conjugate momenta densities are calculated,

Πij =
√
γ

2κ

[ (
Kγij −Kij

)
(1 − s0̄0̄) − 1

2
γijLnΩ

]
, (3.57)

Πβ,i = 0, (3.58)

Πα = 0, (3.59)

where now there are four primary constraints for Πα and Πβ,i, as in the GR case.

The conjugate momenta for Πij deviates from that of GR with an additional term

containing s0̄0̄ and another containing a Lie derivative of the SME coefficients. Note

that the results for local Lorentz coefficients in (3.59) is not a limiting case for the

general form shown in the global case shown in (3.34). Continuing with the derivation
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of the base Hamiltonian,

H0 = 2κα√
γ(1−)

(
ΠijΠ

ij − 1
2
Π2
)

+ 2ΠijDiβj

−α
√
γ

2κ

(
1 + 1

3
s
)
R− 1

2(1 − s0̄0̄)
ΠΩ′

− 3
√
γ

16κα(1−s0̄0̄)
(Ω′)2 − α

√
γ

2κ
ai∂iΩ, (3.60)

where another definition is implemented for simplicity, Ω′ = (∂0 − βi∂i)Ω. The con-

sistency condition is checked by evolving the primary constraints with respect to the

augmented Hamiltonian

HA =

∫
d3x(H0 + vΠα + ξiΠi), (3.61)

where the Lagrange multipliers are v and ξj. The secondary constraints are found to

be,

{Πα, HA} = − 2κ√
γ(1−s0̄0̄)

(
ΠijΠij − 1

2
Π2
)

+
√
γ

2κ
(1 + 1

3
s)R− 3

√
γ

16κ(1−s0̄0̄)α
2 (Ω′)2

−
√
γ

2κ
D2Ω, (3.62)

{Πi, HA} = 2DjΠ
j
i − Π

2(1−s0̄0̄)
∂iΩ

− 3
√
γ

8κ(1−s0̄0̄)α
Ω′∂iΩ. (3.63)

There are additional terms beyond GR that contain time and space derivatives Ω

containing expressions of the coefficients. Proceeding to check the consistency condi-

tions once more, but noting that the resulting expression will be similar to that for

the first case study, one can expect to see a term containing canonical variables that

scale with ∂iΩ. Since this is a lengthy expression, the condition ∂iΩ = 0 is chosen for
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simplicity. This will in effect, reduce the constraints from Πi in (3.63) to the form for

GR, i.e., Π̇i = 2DjΠ
j
i ≈ 0.

Continuing the calculations for the secondary constraint, the following expression

is found,

{Φα, HA} + ∂Φα

∂t
= Di(β

iΦα) +
2(1+

1
3
s)

(1−s0̄0̄)
ΦiDiα +

(1+
1
3
s)α

(1−s0̄0̄)
DiΦi + v

3
√
γ

8κα3(1−s0̄0̄)
Ω̇2

+
9
√
γ

64κα2(1−s0̄0̄)
2 Ω̇3 + 3

8α(1−s0̄0̄)
2 Ω̇2Π − κ(ṡ+ṡ0̄0̄)

2
√
γ(1−s0̄0̄)

2

(
ΠijΠ

ij − 1
2
Π2
)

− 3
√
γ

8κα3(1−s0̄0̄)
Ω̇2βiDiα−

√
γ

8κ(1−s0̄0̄)

(
(1 + 1

3
s)Ω̇ − 4

3
ṡ(1 − s0̄0̄)

)
R

− 3
√
γ

8κα2(1−s0̄0̄)
Ω̇Ω̈ − 3

√
γ

16κα2(1−s0̄0̄)
2 Ω̇2ṡ0̄0̄, (3.64)

{Φj, HA} = ΦiDjβ
i + Di(β

iΦj) + ΦαDjα, (3.65)

where the following are defined: Φα = {Πα, HA}, and Φi = {Πi, HA}. Given the

secondary constraints of Φi and Πα weakly equal zero, and tertiary constraints in

(3.65) are linear in Φi and Πal and thus itself weakly equals zero. In contrast to the

first case study, there are additional constraints for Πα, Φα = Π̇α and Φ̇α with v being

an undetermined Lagrange multiplier.

The undetermined Lagrange multiplier v in (3.61) can be solved for by setting the

constraint in (3.64) weakly equal to zero. The first three terms in (3.64) vanish when

imposing the secondary constraints, and the expression for v becomes,

v = − 3αΩ̇

8(1 − s0̄0̄)
− κα2Π

(1 − s0̄0̄)
√
γ

+ βiDiα

−4κ2α3(ṡ+ṡ0̄0̄)

3γ(1−s0̄0̄)Ω̇
2

(
ΠijΠ

ij − 1
2
Π2
)

+
(

(1 + 1
3
s)Ω̇ − 4

3
ṡ(1 − s0̄0̄)

) α3R
3Ω̇2

+
αΩ̈

Ω̇
+

αṡ0̄0̄
2(1 − s0̄0̄)

. (3.66)
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As before, there are SME coefficients in some of the term denominators, and so for

this solution one would impose the condition that Ω̇ ̸= 0.

The Hamiltonian can now be updated where the solution for v is labeled as V =

V (α, γij, β
i,Πij, ...), a function of canonical variables and the coefficients, giving us

the form,

HF =

∫
d3x(H0 + V (α, γij, β

i,Πij, ...)Πα + ξiΠi

+ ζjΦj). (3.67)

Note the base Hamiltonian H0 is evaluated when ∂iΩ = 0 and there are three addi-

tional Lagrange multipliers, ζj contracted with the secondary constraints. The v is

no longer Lagrange multiplier as it has been solved for in (3.66).

To summarize (3.67), four primary constraints are found in (3.58) and (3.59), four

secondary constraints (3.62) and (3.63) and six Lagrange multipliers ξi and ζ i. Using

the formula (3.54), the degrees of freedom are 10 − (1/2)(8) − (1/2)6 = 3, one more

than for GR.

One can also make a specific choice of setting the coefficients s00 and s to be

constants, greatly reducing the Hamiltonian to terms that are scalings of GR terms

(one can see this by setting Ω = 0 and Ω̇ = 0 in (3.60)). In doing so, an explicit

symmetry breaking framework is found from the SME that helps find matches to

other explicit symmetry models. In this case, two degrees of freedom are found.

3.3.3 The Inclusion of Matter

Next is the addition of the matter sector to the Hamiltonian analysis in order to apply

this framework to physical systems including Cosmology or CCSN. The the minimal

couplings of the SME symmetry breaking coefficients are retained solely within the
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gravity sector. The description of matter can be as simple as a perfect fluid to the

inclusion of gauge fields and spinors. In this analysis, the former is chosen.

Turning to the term within the Lagrange density that contains the matter sector,

(TM)µν , and varying this with respect to the metric gµν ,

(TM)µν = 2√
−g

δSM

δgµν
. (3.68)

Note the conventional choice in overall sign for this term, which does not effect the

resulting physics. The 3+1 decomposition is applied and variations with respect to

the fields produce the conjugate momenta forms,

δHM

δα
= α2√γ(TM)00,

δHM

δβi = −α√γ[(TM)00βi + (TM)0jγij],

δHM

δγij
= −1

2
α
√
γ[(TM)ij + βiβj(TM)00 + 2(TM)0(iβj)].

(3.69)

One then proceeds to check the consistency condition, or the evolution of the con-

straints while including the matter terms (3.69). As an example, the secondary con-

straints that would appear for the second case study for Φi = Π̇i in (3.63) with the

inclusion of the extra matter term −δHM/δβ
i gives,

{
δHM

δβi , HA

}
= δHM

δα
Diα + Dj

(
βj δHM

δβj

)
+ δHM

δβj (Diβ
j) − 2γkiDj

δHM

δγjk
(3.70)

where the augmented Hamiltonian HA now also contains the matter section.
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3.4 Applications to Cosmology

The following applications focus on solutions within a Friedmann-Lemaitre-Robertson-

Walker (FLRW) spacetime [92]. Results from the first case study are used, assuming

global background SME coefficients with smuν having only one nonzero component,

s00, and the coordinate choice of ∂is00 = 0. Then, the general FLRW metric in

spherical coordinates is,

ds2 = −dt2 + a2(t)
[

dr2

1−kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
, (3.71)

where the scale factor for the universe is a(t) and k = {+1, 0,−1} depending on

whether the universe is closed, flat or open, respectively. When comparing this metric

to the 3+1 decomposition fields from (3.14), one can see that α = 1, βi = 0 with a

vanishing acceleration ai = 0.

As before, the conjugate momenta for the fields that relate to those found in (3.32)

and (3.34) are found,

Πij = −
√
γ

κ
(1 − s00)

ȧ
a
γij +

√
γ

4κ
ṡ00γ

ij,

Πα = −3s00
κ

√
γ ȧ
a
, (3.72)

where one uses the relation γ̇ij = 2ȧγij/a and
√
γ = a3r2 sin θ/

√
1 − kr2. There

are three primary constraints for Πi = 0 as in the initial first case study. As with
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(3.48)-(3.50), one continues with evaluating the Hamilton’s equations of motion,

Π̇ij = κ(1−s00)

6
√
γs200

γijΠ2
α − κ

3
√
γs00

Πα(Πγij − 2Πij)

−
√
γ

2κ
Gij +

√
γ

2
(TM)ij,

Π̇α =
√
γ

2κ
R + 8κ

3
√
γs00

ΠαΠ − κ
3
√
γs200

(7 − 5s00) Π2
α

− 1
2s00

Παṡ00 −
√
γ(TM)00, (3.73)

where now there are terms involving the matter couplings (3.69), and Gij is the three

dimensional Einstein tensor. The constraint β̇i from (3.49) still holds in this case.

Matter is described as the usual perfect fluid, i.e., (TM)µν = diag(−ρ, p, p, p),

where ρ is the energy density and p is the pressure, related by the equation of state

p = wρ, where the barotropic index is w and includes values of 1/3 for radiation, 0

for dust matter and −1 for vacuum energy. This matter description is also within

a homogeneous, isotropic universe for the FLRW case. The three-dimensional Ricci

scalar and three-dimensional Einstein tensor are calculated to be R = 6k/a2, and

Gij = −kγij/a2.

The Friedman equations are found through combing the equations (3.72) and

(3.73),

(
ȧ
a

)2
(1 − s00) = κρ

3
− k

a2
− s00

ä
a

+ ȧ
a
ṡ00
2
,

(3.74)[
ä
a

+ 1
2

(
ȧ
a

)2]
(1 − s00) = −κp

2
− k

2a2
+ ȧ

a
ṡ00 + 1

4
s̈00,

(3.75)

where GR is a limiting by setting s00 → 0. The modifications to the first equation

(3.74) can be seen, which describe the evolution of the scale factor. Modifications in
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the second equation (3.73) describe the acceleration of the universe.Both equations

contain terms that include first and second time derivatives on the coefficient s00,

along with scalings by (1 − s00). There is also an additional term with ä in the

first equation. No further rearranging is done to these equations to better match

the standard form of the Friedman equations as the s00 still remains an unspecified

function.

The implications for the conservation laws, stated generally in (3.4), are studied

with respect to the chosen coordinates in (3.45). To ensure consistency with the field

equations, one can enforce,

∇µ(Ts)
µν = −κ∇µ(TM)µν . (3.76)

The spatial component ν = i for (3.76) is already satisfied by the chosen condition

∂is00 = 0 (3.47), thus the usual conservation of matter still holds: ∇µ(TM)µj = 0.

The usual conservation of energy holds within the cosmological solutions as there is

no explicit time component ν = 0 within the Hamiltonian calculations.

The left hand side of (3.76) first expanded, containing gravity coupled to the

coefficients to find,

∇µ(Ts)
µ
0 = ä

a

(
3
2
ṡ00 + 6s00

ȧ
a

)
+ 3s00

...
a
a
. (3.77)

The right hand side containing matter is worked out to give,

∇µ(TM)µ0 = −ρ̇− 3 ȧ
a

(ρ+ p) . (3.78)

The next subsections continue to investigate the cosmological solutions through

different choices in the functional forms for coefficient s00. The first example will have
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the matter stress-energy tensor be conserved by itself, such that (3.78) vanishes. In

contrast, the second example will assume the entire conservation expression in (3.76)

holds while not satisfying (3.78).

3.4.1 First Cosmological Example: Conserving the Matter

Stress-Energy Tensor

In this example, the matter stress-energy tensor alone is assumed to be conserved

and thus (3.78) vanishes. A note on terminology: when matter energy equations are

conserved, it is referred to as “on-shell”. The condition then allows one to solve for

s00,

− ä
a

(
3
2
ṡ00 + 6s00

ȧ
a

)
= 3s00

...
a
a
. (3.79)

When defining s00 as

s00 = ζ
a4ä2

, (3.80)

an analytical solution can be found, where ζ is an arbitrary constant. Yet this so-

lution was problematic for a couple reasons. If one chooses the acceleration ä = 0,

matching standard cosmological solutions, one would find that the solution diverges.

If one chooses the acceleration ä to be a constant, the scale factor describing the size

of the universe would naturally decrease for an expanding universe. Even more so,

when substituting (3.80) into the Friedman expressions (3.72) and (3.73), one dis-

covers up to fourth order time derivatives on the scale factor without making any

approximations. When attempting to use a perturbative method, assuming that the

dimensionless s00 is significantly smaller than unity, an unbounded growth is seen in

(3.80). Therefore, the next step pursues a different choice in the coefficient.
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3.4.2 Second Cosmological Example: A Modified Conserva-

tion Law

The second cosmological example assumes the entire conservation expression in (3.76)

holds. The coefficient s00 is chosen to remain arbitrary, yet it is enforced that ˙s00 = 0.

The result is a modified matter conservation law, where the solutions show a modified

evolution of matter. As before, the modified Friedman equations are derived,

(
ȧ
a

)2
= κρ

3(1−3
2
s00)

− k
a2(1−s00)

+ κps00
(2−3s00)(1−s00)

,

ä
a

= − κ(ρ+3p)

6(1−3
2
s00)

. (3.81)

Scalings can be seen of the usual terms involving the evolution of the scale factor and

the acceleration, along with the additional ä/a terms that were also found in the first

example and a modified pressure term.

Combining equations (3.81) and (3.78) to derive the modified conservation law,

or continuity equation,

ρ̇+ 3 ȧ
a
f(w, s00)ρ = 0, (3.82)

where f(w, s00) is the auxiliary equation defined as

f(w, s00) = 2(1+w−s00)
2+s00(3w−2)

. (3.83)

One can retrieve the GR limit for when f → 1 +w as s00 → 0. Solving for the energy

density through integration of the modified continuity equation gives,

ρ = ρ0

(
a
a0

)−3f(w,s00)

, (3.84)
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where the present day scale factor and energy density is a0 and ρ0 respectively. When

assuming a universe dominated by matter, i.e., w = 0, and setting the auxiliary

equation to unity, f = 1, no modification to the cosmological evolution ρ −3 is found.

Yet assuming radiation-dominated universe, w = 1/3, a modified evolution equation

similar to other modifications to GR is found [53, 113, 106].

The evolution of this matter is investigated and the Friedman equations are de-

rived, using the dimensionless density parameters of Ωm for matter, Ωr for radia-

tion, ΩΛ for the cosmological constant Λ and Ωk for the curvature of the universe.

This describes the ratio of observed energy-matter density to that of the critical

ρc = 3H2/8πGN . An expression using the Hubble parameter H = ȧ/a in terms of

the cosmological constants is found. When dividing the Friedman equations (3.81) by

the current Hubble constant squared, H2
0 = ȧ20/a

2
0, and combining with the evolution

equation (3.84), the following expression is found:

H2

H2
0

= Ωm0a
−3 + Ωr0a

−4ηr + ΩΛ0a
ηΛ + Ωk0a

−2, (3.85)

where the definitions ηr = (1− 3
4
s00)/(1− 1

2
s00) and ηΛ = 3s00/(1− 5

2
s00) are used, and

the subscripts including 0 refer to the present epoch t0. There are modifications in the

evolution of the radiation and cosmological constant terms, while the terms involving

matter and curvature do not differ from GR. The exponent for radiation shows an

altered evolution rate while more interesting, the cosmological constant term now is

time dependent. One can then find the modified expressions for each of the density

parameters,

ΩX =
κρ

3H2(1 − 3
2
s00)

2+(3w−2)s00
2(1−s00)

, (3.86)

where X = m, r,Λ, k for matter, radiation, the cosmological constant, or curvature,

respectively. For the curvature, this expression would be Ωk = −k/[H2(1−s00)]. Also
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note that any scalings with s00 are absorbed into the density parameters.

Looking at the expression for the acceleration of the scale factor in terms of the

density parameters,

ä
aH2

0
= −1

2
Ωm0a

−3 − Ωr0
2(1−s00)
2−s00

a−4ηr

+ΩΛ0
2(1−s00)
2−5s00

aηΛ , (3.87)

where one cannot remove the modified scalings by simply re-defining constants.

From the results in (3.87), rough constraints are found for the coefficient s00 by

calculating the deceleration parameter q ≡ −(ä/a)H−2. For present day t = t0, the

value of q is negative to match the observed increasing acceleration of the universe,

giving the inequality,

−1
2
Ωm0 − Ωr0

2(1−s00)
2−s00

+ ΩΛ0
2(1−s00)
2−5s00

> 0. (3.88)

The coefficient from the density parameters could not be decoupled, and a more

complete analysis is required for using cosmological data [98]. In the least, the effects

on the cosmological scale factor are shown by solving the Friendman equations (3.85)

as displayed in the plot in Fig. 3.2.

3.5 Mapping to models and frameworks

In theory, any model derived from an action that describes coordinate-independent

Lorentz violations can be expected to be contained within the SME framework. As

already mentioned, there have been many works that have successfully matched,

either completely or in partial, modified physics models to terms within the SME

framework. Within the gravity sector, such models include those with dynamical
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Figure 3.2: In the case of the flat FLRW universe, solutions for the scale factor are
compared between the case of GR and the case for constant s00. It is assumed that
Ωr0 = 0, Ωm0 = 0.31, and ΩΛ0 = 0.69. The dashed vertical line represents the present
day.

vectors and tensors, noncommutative geometry and massive gravity models [31].

In particular, Hořava-Lifshitz (HL) gravity is a proposed model that breaks Lorentz

symmetry in the ultraviolet limit yet allows for a renormalizable quantum gravity [59,

122]. In this model, time and space do not evolve in the same manner, where there

are only higher order spatial derivatives, thus avoiding Ostrogradsky instabilities and

ghosts that can come with higher order time derivatives. Using the 3+1 format for

LS in (3.27), on can attempt to find a match to the HL model, also in the 3+1

framework. A simple version of the Lagrange density for HL gravity is,

LH = α
√
γ(KijK

ij − λK2 + ξR + ηaiai + . . .) (3.89)

where higher the possible higher order spatial derivative terms and the matter sec-
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tor terms are within the ellipses [13, 50]. For simplicity, the coupling constant has

been set to 2κ = 1. To better understand how to find a match between (3.89) and

terms within the SME framework, aspects from both expressions are cpompared. The

SME framework adds observer covariant terms to terms of known physics that have

unknown coefficients with indices. The LH model places scalar parameters in front

of GR terms, which can be seen with early kinematic approaches to testing special

relativity [128]. In order to find mappings to these HL terms, components of SME

coefficients are chosen in a particular coordinate system, which has been done with

other models [79, 77].

The equation (3.89) has a form that is in a rotationally isotropic frame. Then the

second case study is used for a local Lorentz frame, assuming the isotropic limit and

coefficients sµν that are constant in time and space. Focusing on the term with the

contraction sµνR
µν the form is found,

L2 = α
√
γ
[
R
(
1 + 1

3
s
)

+
(
KijKij −K2

)
(1 − s0̄0̄)

]
. (3.90)

Initially, the terms KijKij−K2 would need to be broken apart to match to the terms

KijK
ij − λK2 in the HL model. Yet, this could not be done with the sµν-type terms

alone, but the SME is a limit to spontaneous symmetry breaking and one can add

dynamical terms to the action as needed [22]. Looking at an action containing higher
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order terms,

Ls =

√−g
2κ

[
a1s

λ
λR + a2sµνR

µν

+a3
1
2
(∇µsνλ)(∇µsνλ) + a4

1
2
(∇µs

µλ)(∇λs
β
β)

+a5
1
2
(∇µs

µλ)(∇νs
ν
λ) + a6

1
2
(∇µs

ν
ν)(∇µsλλ)

+a7sµνsκλR
µκνλ + a8sµνs

µ
λR

νλ

+a9s
λ
λsµνR

µν + a10s
µνsµνR + a11s

λ
λs

µ
µR
]
,

(3.91)

where an are dimensionless coupling parameters. The first two terms are the familiar,

linear in sµν , yet the remaining terms are all second order in the coefficient[22]. Using

the knowledge that sµν are considered as small and dimensionless, second order terms

are considered a special case and are not contained within the minimal SME portion

of the framework (see Table V and Table VII of Ref. [74]). These higher order terms,

as symmetric 2-tensors, have been considered in other modified physics models [128].

There are other terms not shown in (3.91) including those are were found to equate

to mentioned terms after performing an integration by parts on the action as in

0 =

∫
d4x

√−g
(
∇γsαβ∇βsαγ −∇βs

β
α ∇γs

αγ

− sαβsγδR
αδβγ + sαδs

α
βR

δβ
)
. (3.92)

For spontaneous symmetry breaking, one could omit potential terms

V = V (s µ
µ , sµνs

µν , . . .) [108]. After integration by parts, the particular terms in

(3.91) that can be used to map to HL terms. In particular,

∆Ls = a12

√−g
2κ

(sµν∇µsνλ)(sκρ∇κs
λ

ρ ). (3.93)
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Writing out the Lagrange density found in terms of the SME coefficients that are

matched to the HL form (3.89),

LSME,Match = α
√
γ
[
R
(
1 + 1

3
s
)

+KijKij −K2

+a5
1
2
(∇µS

µλ)(∇νS
ν
λ)

+a12(S
µν∇µSνλ)(Sκρ∇κS

λ
ρ )
]
. (3.94)

where definition Sµν is used as the set of new coefficients and all terms are nondynam-

ical. Further applying a specific coordinate frame where the only nonzero component

of Sµν is the pure time component that must be set to unity, i.e., S00 = 1, the form

is found to be

LSME,Match = α
√
γ
[
R
(
1 + 1

3
s
)

+KijKij

−K2(1 + 1
2
a5) +

(
a12 + 1

2
a5
)
aiai

]
.

(3.95)

This choice in Sµν is equivalent to Sµν = nµnν when applying the vierbein (3.24), and

has been used to match HL gravity to vector models in previous works [62, 63]. Other

literature present matter couplings that have been matched to the matter sector for

the HL gravity model [31]. The following choices can be made for the coefficients:

λ = 1 + a5/2, ξ = 1 + s/3, and η = a12 + a5/2, then the (3.95) will match the HL

form of (3.89).

As final notes for consideration, the results of this work use subsets of the SME

framework in the case of explicit symmetry breaking, which produce extra degrees

of freedom when compared to the normal gauge of GR. Thus it would be interesting

to explore future investigations into approaches to quantum gravity [45] and the
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“problem of time” within the SME [19, 87]. This work also provides the first steps in

investigating the degrees of freedom and constraints that are imposed by the Bianchi

identities, which stems from the underlying geometrical framework [74]. This remains

an open problem to understand. For example, when considering an effective classical

Hamiltonian within a homogeneous spacetime and vanishing potential curvature, the

cosmological solutions from section 3.4 are derived. The Hamiltonian is then

H = κα5(α2−s00)p2α
3a3s200

− κα4pαpa
3a2s00

+HM , (3.96)

where HM is the matter Hamiltonian and the variables are a(t), α(t), and their

conjugate momenta pa = ∂L/∂ȧ and pα = ∂L/∂α̇ This alters the Wheeler-deWitt

equation, which instead has α as a nondynamical parameter and includes a p2α [37, 56].

In (3.96), the usual Hamilton constraint is no longer present and the wave function

Ψ = Ψ(a, α, ..., t) would become time dependent, evolving as it would in Schrödinger

equation i∂tΨ = HΨ.



Chapter 4

Conclusions

The work in this thesis tests fundamental spacetime symmetries for GR and the SM

through an effective field theory, the SME. This is an agnostic, model-independent

framework where the focus was within the pure gravity sector.

In chapter 2, terms were implemented from the SME to test for Lorentz and CPT

violations within dispersion and birefringence effects of gravitational waves. No-

tably, this work does not rely on posterior results produced by the LVK that assumes

standard GR. Instead, modifications and symmetry-breaking parameters were imple-

mented directly at the level before the Bayesian inference, into the templates that

initially contain all parameters. In this way, the full information can be incorporated,

which includes symmetry-breaking effects that is provided by the signal morphology.

A joint inference across all parameters is performed and constraints on the order of

O(10−13)m are found.

Within chapter 3, in the case of explicit symmetry breaking, the 3+1 formula-

tion of the lowest-order terms for gravity within the SME were published for the

first time. The Dirac-Hamiltonian analysis was applied for global and local Lorentz

frames, where in the former produced an addition degree of freedom when compared

90
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to that of GR. Applications to cosmological solutions show modifications to Fried-

mann equations, altering time-dependent scalings for density parameters including

the cosmological constant, and new interpretations of Bianchi identities and conser-

vation laws.

4.1 Outlook

Foundations were laid for a rigorous means of merging the SME framework with

the LVK data analysis community. There is present implementations into new, im-

proved algorithms within the LVK, and many more higher order terms yet to be

investigated. Teh plethora of events will provide the prospect of mapping out the

spacetime symmetry-breaking effects across the celestial sky. In addition, GWs from

more stochastic sources such as supernovae, include different algorithms like coherent

WaveBurst (cWB) [66], that have yet to be combined with the SME.

The 3+1 formulation provides general equations that can be applied to specific

strong field gravity physics systems with black holes and neutron stars and possible

traversable wormholes. A subset of the 3+1 formulation equations can be used to

study initial value formalism, where numerical relativity techniques that include the

spacetime symmetry-breaking can be incorporated with sources including CCSN. This

would include the inclusion of matter such as neutrino, to create and analysis the

simulated supernovae. Investigating the emergence of extra degrees of freedom for

explicit symmetry breaking within the case for global background coefficients 3.3.1,

might help better understand the interpretation of time when considering quantum

gravity.

There are many future works one can follow from the research presented here,

some exist as unfinished projects waiting to be revisited.



Chapter 5

Appendix

This appendix provides the details on the implementation of birefringence effects for

gravitational waves into LALSuite. Files within LALSuite are primarily written with

C, C++ and various Python packages.

5.1 LALSimulation

The following files within the LALSimulation are modified to include the dispersion

and birefringence effects:

• lib/LALSimInspiral.c

• lib/LALSimInspiral.h

• lib/LALSimInspiralWaveformParams.c

• lib/LALSimInspiralWaveformParams.h

Within the C-file lib/LALSimInspiral.c, which calls in LAL parameters to be

used, an additional function is implemented that introduces isotropic birefringence

effects in the frequency domain (FD) for the GW waveform:

92
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/* Function to introduce isotropic birefringent Lorentz violating

effects in FD waveform; implementation is via Eq. 24 along

with the associated equations for finding the phases and

angles in arxiv 1905.00409 */

int XLALSMEIsotropicBirefringence(

COMPLEX16FrequencySeries **

hptilde , /**< Frequency -

domain waveform h+ */

COMPLEX16FrequencySeries **

hctilde , /**< Frequency -

domain waveform hx */

LALDict *LALparams

/**< LAL

dictionary containing

accessory parameters */

)

{

REAL8 f0 , f, df;

COMPLEX16 hplus , hcross; /*tmpExp , lists of variavles removed */

REAL8 beta , betanf; /*dPhiPref , tmpVal , zeta , Mc , eta , M*/

UINT4 len , i;

len = (* hptilde)->data ->length;

if ((* hctilde)->data ->length != len) {

XLALPrintError("Lengths of plus and cross polarization series

do not agree \n");

XLAL_ERROR(XLAL_EBADLEN);

}

f0 = (* hptilde)->f0;

if ((* hctilde)->f0 != f0) {
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XLALPrintError("Starting frequencies of plus and cross

polarization series do not agree \n");

XLAL_ERROR(XLAL_EINVAL);

}

df = (* hptilde)->deltaF;

if ((* hctilde)->deltaF != df) {

XLALPrintError("Frequency steps of plus and cross polarization

series do not agree \n");

XLAL_ERROR(XLAL_EINVAL);

}

REAL8 SME_kv5_00_eff =

XLALSimInspiralWaveformParamsLookupNonGRSMEKv500Eff(LALparams

); /* Effective SME coefficient in metres ^d-4*/

REAL8 SME_d = 5 ; /* the mass dimension of the SME operator */

// printf (" XLALSMEIsotropicBirefringence SME_kv5_00_eff %4.1f",

SME_kv5_00_eff);

UINT4 k = 0;

if (f0 == 0.0)

k=1;

// betanf = 2 * pow(LAL_PI , SME_d -3. -0.5) * SME_kv5_00_eff / (

pow(LAL_C_SI , SME_d - 3.));

betanf = 2 * pow(LAL_PI , 1.5) * SME_kv5_00_eff / LAL_C_SI;

for (i=k; i<len; i++) {

f = f0 + i * df;

beta = betanf * pow(f, SME_d - 3.);
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hplus = (* hptilde)->data ->data[i] * cos(beta) - (* hctilde)->

data ->data[i] * sin(beta);

hcross = (* hctilde)->data ->data[i] * cos(beta) + (* hptilde)->

data ->data[i] * sin(beta);

(* hptilde)->data ->data[i] = hplus;

(* hctilde)->data ->data[i] = hcross;

}

return XLAL_SUCCESS;

}

The associated C library file LALSimInspiral.h also has an additional function:

/* Function to introduce isotropic birefringent Lorentz violating

effects in FD waveform */

int XLALSMEIsotropicBirefringence(COMPLEX16FrequencySeries **

hptilde , COMPLEX16FrequencySeries **hctilde , LALDict *

LALparams);

The lib/LALSimInspiralWaveformParams.c file generates definitions for differ-

ent parameters included in waveforms. There are three locations where additional

definitions are inserted for the SME symmetry-breaking parameter. One is within

the section INSERT FUNCTIONS,

DEFINE_INSERT_FUNC(NonGRSMEKv500Eff , REAL8 , "kv5_00_eff", 0)

DEFINE_INSERT_FUNC(NonGRSMELogKv500Eff , REAL8 , "log_kv5_00_eff

", 0)

another within the section LOOKUP FUNCTIONS,

DEFINE_LOOKUP_FUNC(NonGRSMEKv500Eff , REAL8 , "kv5_00_eff", 0)

DEFINE_LOOKUP_FUNC(NonGRSMELogKv500Eff , REAL8 , "log_kv5_00_eff

", 0)

and the last within the section ISDEFAULT FUNCTIONS:
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DEFINE_ISDEFAULT_FUNC(NonGRSMEKv500Eff , REAL8 , "kv5_00_eff",

0)

DEFINE_ISDEFAULT_FUNC(NonGRSMELogKv500Eff , REAL8 , "

log_kv5_00_eff", 0)

The associated library file LALSimInspiralWaveformParams.h also has three addi-

tions, analogous to above:

int XLALSimInspiralWaveformParamsInsertEnableSME(LALDict *params ,

REAL8 value);

int XLALSimInspiralWaveformParamsInsertNonGRSMEKv500Eff(LALDict *

params , REAL8 value);

int XLALSimInspiralWaveformParamsInsertNonGRSMELogKv500Eff(LALDict

*params , REAL8 value);

...

REAL8 XLALSimInspiralWaveformParamsLookupEnableSME(LALDict *params

);

REAL8 XLALSimInspiralWaveformParamsLookupNonGRSMEKv500Eff(LALDict

*params);

REAL8 XLALSimInspiralWaveformParamsLookupNonGRSMELogKv500Eff(

LALDict *params);

...

int XLALSimInspiralWaveformParamsEnableSMEIsDefault(LALDict *

params);

int XLALSimInspiralWaveformParamsNonGRSMEKv500EffIsDefault(LALDict

*params);

int XLALSimInspiralWaveformParamsNonGRSMELogKv500EffIsDefault(

LALDict *params);

The library has an additional function that is used to enable the SME symmetry-

breaking effects.
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5.2 LALInference

The following files within the LALInference package are modified to include the

dispersion and birefringence effects:

• LALInferenceInitCBC.c

• LALInferenceProposal.c

• LALInferenceTemplate.c

• LALInferenceReadData.c

The file LALInferenceInitCBC.c is edited to include the flag for the symmetry-

breaking effects from the SME. It functions to call for initiating inference runs with

the symmetry-breaking parameter. Under the function,

LALInferenceModel *LALInferenceInitCBCModel(

LALInferenceRunState *state) {

char help []="\

within the Template Arguments, the additional insertion is:

(--sme) this flag activates the SME parameters kv5* in the

inference run.\n\

Within the LALInferenceProposal.c file, additional parameters are included in a

list of initial parameters used to generate the waveform:

static const char *intrinsicNames [] = {...,"LIV_A_sign","

kv5_00_eff", "log_kv5_00_eff",NULL};

Likewise, a parameter list defined within LALInferenceTemplate.c is modified to

include the additional parameters:

const char list_extra_parameters [40][16] = {...,"LIV_A_sign","

kv5_00_eff","log_kv5_00_eff"};
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const UINT4 N_extra_params = 40;

It is important to update the number of parameters listed (see two locations above

where the number 40 appears). The last mentioned file LALInferenceReadData.c

provides definitions and responses for injection input commands. The first addition

is within the Data Parameters, where the options for reading and generating data

are provided:

(--inj -sme) Set to 1. to activate SME

injection \n\

(--inj -kv5_00_eff) value of kv5_00_eff to be injected

\n\

(--inj -log_kv5_00_eff) value of log_kv5_00_eff to be

injected\n\

Additional conditional statements and functions are used to ensure the correction

SME parameters are inserted into an inference run:

// if(LALInferenceGetProcParamVal(commandLine ,"--

inj -kv5_00_eff ") && LALInferenceGetProcParamVal(

commandLine ,"--inj -log_kv5_00_eff ")) {

// fprintf(stderr , "ERROR: You have injected --inj -

kv5_00_eff and --inj -log_kv5_00_eff. The first is to

sample kv5_00_eff with a flat prior , the second is to

sample kv5_00_eff with a log prior. You must chose only

one!\n");

// exit (1);

// }

// if(LALInferenceGetProcParamVal(commandLine ,"--inj -

log_kv5_00_eff ")) {

// log_kv5_00_eff = atof(LALInferenceGetProcParamVal(

commandLine ,"--inj -log_kv5_00_eff ")->value);
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// fprintf(stdout ," ReadData:

LALInferenceInjectInspiralSignal / log_kv5_00_eff set to

%f\n",kv5_00_eff);

// }

if(LALInferenceGetProcParamVal(commandLine ,"--inj -sme") ||

LALInferenceGetProcParamVal(commandLine ,"--inj -

kv5_00_eff")) {

fprintf(stderr , "WARNING: You are injecting SME parameters

on a time -domain waveform. SME modifications are only

supported for FD waveforms") ;

}

A similar block of code to the above is also added for the log kv5 00 eff coefficient.

Further conditional statements and functions ensure a valid injection of the SME

parameter:

// Inject kv5_00_eff parameters for SME analysis

REAL8 sme = 0.;

REAL8 kv5_00_eff = 0.;

if(LALInferenceGetProcParamVal(commandLine ,"--inj -sme")) {

if( (! LALInferenceGetProcParamVal(commandLine ,"--inj -

kv5_00_eff")) || ( atof(LALInferenceGetProcParamVal(

commandLine ,"--inj -sme")->value) == 1. && atof(

LALInferenceGetProcParamVal(commandLine ,"--inj -kv5_00_eff

")->value) == 0.) ){

fprintf(stderr ,"WARNING: You are asking SME modifications

but the injected parameter kv5_ij is 0.! Is this what

you want?\n") ;

}
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sme = atof(LALInferenceGetProcParamVal(commandLine ,"--inj -sme

")->value);

XLALSimInspiralWaveformParamsInsertEnableSME(LALpars , sme);

}

if(LALInferenceGetProcParamVal(commandLine ,"--inj -kv5_00_eff"))

{

if( (! LALInferenceGetProcParamVal(commandLine ,"--inj -sme")) ||

( atof(LALInferenceGetProcParamVal(commandLine ,"--inj -sme

")->value) == 0. && atof(LALInferenceGetProcParamVal(

commandLine ,"--inj -kv5_00_eff")->value) != 0.)) {

fprintf(stderr ,"WARNING: You are injecting a non -0 value of

kv5_ij but SME is not enabled , modifications will not be

injected. Use ‘--inj -sme 1‘ to include the SME

modifications on the injected waveform. \n") ;

}

kv5_00_eff = atof(LALInferenceGetProcParamVal(commandLine ,"--

inj -kv5_00_eff")->value);

XLALSimInspiralWaveformParamsInsertNonGRSMEKv500Eff(LALpars ,

kv5_00_eff);

}

// fprintf(stdout ," ReadData:InjectFD / LookupEnableSME = %f\n",

XLALSimInspiralWaveformParamsLookupEnableSME(LALpars));

// fprintf(stdout ," ReadData:InjectFD / LookupNonGRSMEKv500Eff =

%f\n", XLALSimInspiralWaveformParamsLookupNonGRSMEKv500Eff(

LALpars));



Bibliography

[1] B. P. Abbott et al. “Gravitational Waves and Gamma-rays from a Binary

Neutron Star Merger: GW170817 and GRB 170817A”. In: Astrophys. J. Lett.

848.2 (2017), p. L13. doi: 10.3847/2041-s8213/aa920c. arXiv: 1710.05834

[astro-ph.HE].

[2] B. P. Abbott et al. “Gravitational Waves and Gamma-Rays from a Binary

Neutron Star Merger: GW170817 and GRB 170817A”. In: The Astrophysical

Journal 848.2 (Oct. 2017), p. L13. doi: 10.3847/2041-s8213/aa920c. url:

https://doi.org/10.3847/2041-s8213/aa920c.

[3] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary Black

Hole Merger”. In: Phys. Rev. Lett. 116 (6 Feb. 2016), p. 061102. doi: 10.

1103/PhysRevLett.116.061102. url: https://link.aps.org/doi/10.

1103/PhysRevLett.116.061102.

[4] B. P. Abbott et al. “Tests of general relativity with GW150914”. In: Phys. Rev.

Lett. 116.22 (2016). [Erratum: Phys.Rev.Lett. 121, 129902 (2018)], p. 221101.

doi: 10.1103/PhysRevLett.116.221101. arXiv: 1602.03841 [gr-qc].

[5] B. P. Abbott et al. “Tests of General Relativity with the Binary Black Hole

Signals from the LIGO-Virgo Catalog GWTC-1”. In: Phys. Rev. D 100.10

101



BIBLIOGRAPHY 102

(2019), p. 104036. doi: 10.1103/PhysRevD.100.104036. arXiv: 1903.04467

[gr-qc].

[6] B. P. et al Abbott. “GWTC-1: A Gravitational-Wave Transient Catalog of

Compact Binary Mergers Observed by LIGO and Virgo during the First and

Second Observing Runs”. In: Phys. Rev. X 9 (3 Sept. 2019), p. 031040. doi:

10.1103/PhysRevX.9.031040. url: https://link.aps.org/doi/10.1103/

PhysRevX.9.031040.

[7] R. Abbott et al. “GWTC-3: Compact Binary Coalescences Observed by LIGO

and Virgo During the Second Part of the Third Observing Run”. In: (Nov.

2021). arXiv: 2111.03606 [gr-qc].

[8] R. Abbott et al. Tests of General Relativity with GWTC-3. Dec. 2021. arXiv:

2112.06861 [gr-qc].

[9] R. Abbott et al. “Tests of General Relativity with Binary Black Holes from the

second LIGO-Virgo Gravitational-Wave Transient Catalog”. In: (Oct. 2020).

arXiv: 2010.14529 [gr-qc].

[10] A. Addazi et al. “Quantum gravity phenomenology at the dawn of the multi-

messenger era—A review”. In: Prog. Part. Nucl. Phys. 125 (2022), p. 103948.

doi: 10.1016/j.ppnp.2022.103948. arXiv: 2111.05659 [hep-ph].

[11] B P Abbott et al. “LIGO: the Laser Interferometer Gravitational-Wave Ob-

servatory”. In: Reports on Progress in Physics 72.7 (June 2009), p. 076901.

doi: 10.1088/0034-s4885/72/7/076901. url: https://doi.org/10.1088%

2F0034-s4885%2F72%2F7%2F076901.

[12] B. P. Abbott et al. “GW150914: The Advanced LIGO Detectors in the Era

of First Discoveries”. In: Physical Review Letters 116.13 (Mar. 2016). doi:



BIBLIOGRAPHY 103

10.1103/physrevlett.116.131103. url: https://doi.org/10.1103%

2Fphysrevlett.116.131103.

[13] D. Blas et al. “Consistent Extension of Hořava Gravity”. In: Phys. Rev. Lett.
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