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1. Abstract 

Adversarial attacks, or attacks committed by an adversary to hijack a system, are prevalent in the 

deep learning tasks of computer vision and are one of the greatest threats to these models' safe 

and accurate use. These attacks force the trained model to misclassify an image, using pixel-level 

changes undetectable to the human eye. Various defenses against these attacks exist and are 

detailed in this work. The work of previous researchers has established that when adversarial 

attacks occur, different node patterns in a Deep Neural Network (DNN) are activated within the 

model. Additionally, it is known that CPU and GPU metrics look different when different 

computations are occurring. This work builds upon that knowledge to hypothesize that the 

system performance metrics, in the form of CPUs, GPUs, and throughput, will reflect the 

presence of adversarial input in a DNN. This experiment found that external measurements of 

system performance metrics did not reflect the presence of adversarial input. This work 

establishes the beginning stages of using system performance metrics to detect and defend 

against adversarial attacks. Using performance metrics to defend against adversarial attacks can 

increase the model's safety, improving the robustness and trustworthiness of DNNs.  

Keywords: adversarial defenses, DNNs, CNNs, neural networks, adversarial attacks, system 

performance metrics 



2. Introduction 

The field of computer vision has developed rapidly in recent years, with computer vision models 

able to decipher images with an incredibly high level of accuracy [1]. The current success would 

not have been possible without the architectural development of Deep Neural Networks (DNNs) 

and Convolutional Neural Networks (CNNs). Despite the incredible performance of these 

computer vision models, which have been researched and adapted across domains, DNNs remain 

susceptible to adversarial attacks [2]. 

Adversarial attacks perturb images, or make minimal changes to an image's composition, 

resulting in a DNN making incorrect predictions even though these perturbations are practically 

undetectable to humans [2]. There are a variety of defenses against adversarial attacks that exist, 

which are described in Section 3. However, these defenses are not comprehensive, and there is 

no guarantee that a model is safe against adversarial attacks, as new attack methods are 

frequently developed. Until these deep learning models show appropriate robustness against 

adversarial attacks, they must be used cautiously and not with safety critical systems [3].  

In a world where the power of computer vision holds so much potential, these Deep Learning 

(DL) models are rising in popularity. The general public can use them without regulation and 

with minimal policy guidance, which causes the safety risk of adversarial attacks to be 

significant. This problem, as it is related to the structure of DNNs and not just computer vision, 

threatens a wide range of state-of-the-art Artificial Intelligence (AI) practices. In order to 

counteract the threat of adversarial attacks, this work proposes a novel strategy for detecting the 

presence of an adversarial attack, with the hopes that it can be used to prevent adversarial attacks 

in the future. This work fits into a wide array of mitigations against adversarial attacks, from 



building robust models to detecting the occurrence of attacks to recovering from these attacks 

with various methods. 

The purpose of this experiment is to test the theory that adversarial attacks cause a significant 

effect on the system performance metrics during inference. Specifically, four adversarial attack 

techniques will be studied on two different benchmark data sets to determine the significance of 

this difference and the potential to use it as an adversarial defense mechanism. This work 

attempts to answer the following questions: 

RQ1. To what extent does the presence of an adversarial attack reflect in the system 

performance metrics? 

RQ2. How effective is monitoring the system performance metrics in stopping an 

adversarial attack in real-time? 

The approach presented in this work analyzes the system performance metrics in order to detect 

adversarial attacks. Two benchmark image datasets, MNIST [4] and CIFAR-10 [5], are used to 

train and test a CNN model. These datasets are used to train a CNN made with Tensorflow, and 

then the testing dataset is tested using a variety of adversarial attack methods (Fast Gradient Sign 

Method [6], Projected Gradient Descent [7], Carlini-Wagner [8], and DeepFool [9]). These 

adversarial attacks were tested and compared against non-adversarial images to determine if an 

adversarial attack affected the system performance metrics during inference. 

This study provides a preliminary study into a potential defense for adversarial attacks. This 

experiment was structured within a specific environment with a limited number of models and 

datasets. Therefore, the findings of this study may not hold for alternate model structures. 



Despite these limitations, this study addresses the potential of discovering a new method for 

detecting adversarial input into Deep Neural Networks (DNNs). Exploring novel defense 

solutions like the one presented in this work is a step towards making deep learning, and 

therefore artificial intelligence, safer and more trustworthy for the general public and safety-

critical systems. 



3. Background 

This work addresses the impact of adversarial attacks on DNNs. Though existing defenses can 

protect against some adversarial attacks, the current state of DNNs is that they are not robust 

against adversarial attacks. Specific properties of the DNNs and prior knowledge about system 

performance metrics form the theory that suggests that system performance metrics can be used 

to detect the presence of an adversarial attack.  

3.1. Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) 

Computer vision is a series of tasks built with the concepts of deep learning and neural networks. 

CNNs are a version of DNNs that have been researched and developed since the 1980s [10]. 

DNNs, as depicted in Figure 3.1, have multiple hidden layers between the input and the output 

layers [11]. In computer vision, the input represents the pixels that make up a visual image; the 

output is the conclusions drawn based on that image. The neurons process that input based on 

various weights and activations determined in the training process.  

Unlike traditional DNNs, CNNs make use of limited connections between neurons in what are 

called convolutional layers [12]. Having fewer connections limits the number of parameters for 

the model to calculate, allowing the CNNs to process and make predictions on larger images 

more effectively. The difference between the convolutional layers and the fully connected layers 

can be seen in Figure 3.2. CNNs and the variations of CNNs are the standard for computer vision 

tasks due to their high level of performance [12]. 

DNNs, CNNs, and their derivatives form the basis for most state-of-the-art computer vision 

tasks. Within that, a wide variety of specific architectures have been developed and tested against 



each other to improve the performance and accuracy of the models [13]. Most of these 

algorithms have incredibly high levels of accuracy. 

 

Figure 3.1. shows the connections and representation of a Deep Neural Network (DNN) [14] 

 

Figure 3.2. shows how convolutional layers compare to fully connected (FC) networks used in 

traditional deep learning [10] 

The complexity that allows these models to interpret complex data accurately comes with the 

drawback of being difficult to interpret black boxes [15]. This lack of explainability of these 

models makes their outputs challenging to trust, a feeling compounded by their vulnerability to 

adversarial attacks [16]. 

Some traits of these neural networks have been discovered. The conception of node-pruning 

showed that some nodes within the DNN are either redundant or have little influence over 



accurate prediction [17]. These less valuable nodes, however, do tend to be affected more by 

adversarial inputs [18] [19]. 

3.2. Adversarial Attacks 

Adversarial attacks are not a new threat to AI but rather an ongoing danger. Other researchers 

have determined [20] that the first description of an adversary purposefully changing data to 

affect the results of a system was in a 2004 paper on the result of using adversarial manipulations 

to bypass a textual spam filter [21]. 

Adversarial attacks occur in computer vision when an input image is distorted, perturbed, or 

changed so that it is misclassified by the model [22]. These changes are usually indistinguishable 

to the human eye, yet are one of the significant risks for implementing computer vision tasks in 

safety-critical environments [23]. These attacks have been a concern for applying deep neural 

networks over the last decade [16]. Adversarial attacks pose an even greater danger because an 

attack that works effectively on one model can be effective on a different model, even if the 

attack was not created for that model [16] [24] [25]. This concept is known as transferability. 

There are many variations of adversarial attacks [23]. Some techniques allow for general 

misclassification, while others target a specific misclassification to occur and cause change to a 

particular category. Some techniques require access to the model, thus specifically generating 

adversarial images for a particular model. Other attacks are more general and can be applied to 

images regardless of the method used for detection and classification.  

Improving adversarial attacks has been a popular research topic, as researchers attempt to find 

the most minimal perturbation that can fool a model, which is also the most dangerous and 

effective attack [9]. Perturbation size can be used as a measure of robustness, as a model 



vulnerable to more minor perturbations is considered less robust than a model that only 

misclassifies when presented with more significant perturbations. 

In addition to the adversarial attack strategies described above (which address the alteration of 

pixels and other digital changes to the images), there is also a concern that there are natural 

perturbations or physical objects that change the results from computer vision models [26]. In 

some cases, these issues naturally occur in the world and exist without malicious intent. In other 

cases, objects in the physical world are manipulated to no longer be classified by existing 

models. For example, small black and white stickers can be added to stop signs, and while a 

human can still read these, computer vision models fail to perform [27]. These contribute to 

various adversarial attacks that can affect computer vision models. 

Most frustratingly to researchers, it is unclear why adversarial examples exist [28]. Part of the 

complexity in determining the cause of adversarial examples is due to the black-box nature of 

DNNs. The lack of understanding surrounding adversarial examples is closely tied to the lack of 

explainability surrounding DNNs. Nevertheless, it signals that DNNs cannot mimic the human 

decision and learning process as closely as researchers would like. 

3.2.1. Adversarial Attack Types 

The focus of this work is to detect evasion attacks. In evasion attacks, the model is already 

trained, and the attack occurs at run time [28]. However, in the field of adversarial attacks, there 

are more opportunities to attack the model. For example, poisoning attacks, where adversarial 

data is mixed with the training data to create exploitation paths for future attacks, occur during 

the model's training [28].  



Another distinction between attack types is the goal of the misclassification. If the adversary 

wants to change the classification to a specific target, the attack is a targeted attack [28]. 

Alternatively, the attack is untargeted if the only goal is wrong input without a specific class in 

mind. 

If the attacker knows the model’s structure and uses the knowledge of that structure to fine-tune 

the attack, that is considered a white-box attack [28]. If the attacker lacks the structural 

knowledge of the model and can only access the input and output of the model, the attack is a 

black-box attack. 

The goal of the defense mechanism defined in this work is to defend existing DNNs, unlike other 

defenses that involve changing the structure of the model from the beginning. Therefore, this 

work is concerned with detecting evasion attacks. Within the evasion attacks, untargeted and 

white-box adversarial methods represent typical attacks. Details regarding the attacks replicated 

in this study can be seen in Section 3.2.2. 

3.2.2. Known/Published Adversarial Attacks 

This section describes a series of modern and effective adversarial attacks. These adversarial 

attacks are all replicated in this work to test and evaluate the proposed defense method. 

3.2.2.1. Fast Gradient Sign Method (FGSM) 

The Fast Gradient Sign Method (FGSM) was introduced in 2014 [6]. This adversarial attack is an 

example of an untargeted white-box attack [29]. The perturbations are considered small, yet 

further minimal perturbations have been determined, as shown in Figure 3.4. In this method, a 

gradient of the loss is used to determine how much each pixel in the input contributes to the loss, 



which is used to determine what pixels to change in an input image to generate an adversarial 

attack. 

3.2.2.2. Projected Gradient Descent (PGD) 

Projected Gradient Descent [7] is another example of an untargeted, white-box attack [29] 

published in 2017. This attack is iterative, unlike the one-step method seen in FGSM. The 

iterations make this method slower, as it calculates a gradient of the loss and uses the gradient to 

create a perturbation that is projected on an image. However, the iterative nature aims to fine-

tune the perturbation to be more effective. 

3.2.2.3. Carlini-Wagner (CW) 

The Carlini-Wagner (CW) is an adversarial attack published in 2017 [8]. This attack, like the two 

previous, is a white box attack, but it can be used as a targeted approach [29]. This approach 

treats finding the slightest perturbation as an optimization problem. Three algorithms (𝐿0, 𝐿2, 

and 𝐿∞) were developed and compared in the original publication. The most robust attack is the 

𝐿2 attack, the version implemented in this paper. 



 

Figure 3.3. The Carlini-Wagner adversarial attack is shown on the MNIST dataset. The three 

attacks, 𝐿0, 𝐿2, and 𝐿∞, are shown under the “Adversarial” heading from left to right. This image 

is adapted from [8]. 

3.2.2.4. DeepFool (DF) 

DeepFool [9] is a method for adversarial perturbations published in 2016. This attack is an 

advanced example of an untargeted white box attack [29]. The algorithm of DeepFool addresses 



that previous adversarial perturbations were not finding the minimal change needed for an attack. 

The difference in perturbation found by DeepFool and FGSM is shown in Figure 3.4. Using a 

smaller perturbation makes the adversarial attack more subtle and, therefore, more challenging to 

detect.  

 

Figure 3.4. The difference between noise needed for DeepFool’s perturbation (top) compared to 

an FGSM perturbation (bottom). Adapted from [9]. 

3.2.2.5. Other Attacks 

A wide variety of attacks exist in the literature but are not replicated in this work. This work 

selected some of the most popularly discussed and modern adversarial attack techniques. An 

example of an attack not replicated in this study is the HopSkipJump (HSJ) attack [30], which is 



an example of a black box attack that can be either targeted or untargeted [29]. This attack only 

has access to the model's output but uses changes in the classification to estimate the gradient 

descent and then optimize the perturbation. This attack is valuable in showing how black box 

attacks can work, but as discussed in Section Error! Reference source not found., relying on 

hiding a model to prevent white box attacks from occurring is not a viable strategy. 

Further work on this subject should consider other adversarial attack strategies such as HSJ, 

universal perturbations [31], and physical perturbations [32]. In addition, attacks and defenses 

should be further addressed on other DNNs unrelated to computer vision. 

3.2.3. Considerations on the Threat of Adversarial Attacks 

The security of these models is a significant issue and is closely tied to cybersecurity. In one 

instance, attackers could determine the white box structure of a CNN model by exploiting a GPU 

side-channel [33]. Between this capability and the fact that adversarial examples can be 

transferred effectively between models [16] [24] [25], it is clear that assuming that the model 

structure is secret is not an effective method of defending against adversarial attacks. That 

assumption would violate the cybersecurity principle that security through obscurity is 

inadequate. 

There are also concerns about publicly generated data sets. The theory is that an exploit can be 

introduced to the publicly available data set, and all models trained with this dataset can be 

exploited later through a backdoor attack [34]. These concerns are related to poisoning attacks, 

not evasion attacks, and are therefore outside the scope of consideration for this work. 



3.2.4. The Effects of Adversarial Attacks 

Knowing that adversarial attacks exist, it only takes creativity and imagination to determine the 

possible effects and dangers of using these attacks. In the medical domain, experts have 

considered the following possibilities [20]: 

• In terms of textual data, if the insurance agency uses a DL model to make decisions, 

medical codes can be manipulated to result in a fraudulently low payment for the 

patient or increased payment for the doctors. 

• In the computer vision domain, it has been suggested that future systems that 

potentially use patient images to validate doctor diagnoses can be manipulated to 

validate the results that the doctor decides on. 

In both of the above cases, since the input to the DL model is provided by a human, it is easy to 

insert malicious content in that no “hacking” of the system has to occur. However, a new attack 

surface for accessing these models is developed, with Graphical Processing Units (GPUs) being 

offered as a cloud service for consumers to run their DNNs on [35]. 

3.3. Adversarial Defenses 

Researchers have developed and tested a wide range of defenses against adversarial attacks. 

These defenses have been tested and are effective against some adversarial attacks. As experts 

suggest, following the best defense practices is essential in using DNNs. For example, like much 

of the cybersecurity domain, it is more difficult to fully defend a system than to find one attack 

that works [20]. 



3.3.1. Detecting Adversarial Images 

The first category of adversarial defenses focuses solely on detecting the presence of adversarial 

attacks. 

Some models use classifiers trained separately to detect adversarial attacks [36] [37] [38] [39]. 

Attempts to look at the scale of the feature attribution scores are effective, if inefficient, to scale 

to more complex models [39]. Autoencoders can be used to detect anomalies in images that are 

caused by adversarial attacks [40] [41]. Open-set recognition can be adapted to allow adversarial 

examples to be considered a part of the open set [42]. 

Recently, a technique was developed to detect adversarial attacks using random perturbations 

[43]. It was discovered that adding random noise within a small magnitude would not affect non-

adversarial images but could cause adversarial images to revert to the original classification. 

With that, the change of classification after the noise was added could also be used to alert to an 

adversarial attack. 

A modern defense technique, DeepFense, uses a varying number of defenders to watch various 

layers of the DNN. These defenders look for uncommon node activations characteristic of an 

adversarial attack [19]. The number of defenders used in a model can be adjusted based on 

resource and performance time constraints. In establishing that adversarial attacks activate 

different node patterns than non-adversarial input, this work contributed significantly to the 

theory surrounding this research process. 

Researchers are evaluating ensemble approaches that are adaptable to include new detection 

methods as they are developed [44]. Once detection occurs, the model must decide how to 

handle it. Some models reject adversarial attacks rather than classifying them [41]. Alternatively, 



denoising can be used on the image so that it can still be processed and classified [42]. Other 

methods of handling adversarial attacks once they are detected are described in the following 

sections. 

3.3.2. “Fixing” Adversarial Images 

The second category of defenses looks to return adversarial inputs to the original, non-

adversarial input, at least to the extent that the model does not misclassify the images. 

Some defenses look at ways to remove the adversarial attack from the image. One method 

involves removing noise from images [45]. Further work uses GANs to remove the perturbations 

[46] [47], a solution that is most effective on trivial perturbations [46]. In other work, CNNs 

detect adversarial examples and remove the noise before it is provided as input to the 

classification model- allowing the defense to work universally with any classification model 

[48]. After the detection technique, Magnet uses a detector to determine if the input is 

adversarial. If adversarial input is found, an autoencoder reduces noise and ideally removes the 

perturbation [37]. 

Research has determined that image transformations can be used against adversarial attacks, 

showing that the adversarial attacks (FGSM, Deepfool, and Carlini & Wagner) were no longer 

effective when the input underwent image transformations before being fed to the model [49]. 

The most successful image transformations were total variation minimization and image quilting, 

as the adversary cannot use them during their attack due to the random property of both 

transformations. 



3.3.3. Alternate Model Structures 

Another category of defenses involves making architectural changes to a DNN to be more robust 

against attacks [50]. Structural changes to the model, such as bounding the ReLU activations in 

the architecture, are used so that the effects of small perturbations cannot propagate and grow 

throughout the network layers [51]. Alternatively, the model structure can be changed to learn 

more robust features as a method of adversarial defense [52]. 

One strategy of defense against adversarial attacks is defensive distillation [53]. Derived from a 

technique to reduce the computational complexity of DNNs [54], defensive distillation uses two 

models to predict instead of one. The first model is trained as expected, but the last layer (a 

softmax layer) is then fed into a second DNN, from which the classification predictions are 

derived. Since this technique reduces overfitting and allows models to generalize to new inputs, 

the models are also less sensitive to adversarial attacks. 

3.3.3.1. Adversarial Training 

Adversarial training is a method of increasing the robustness of the model by using adversarial 

inputs during model training. It is a method that changes the structure of the model because it 

changes the training data used.   

The concept began when it was realized that geometric transformations can affect model 

performance, and it was discovered that CNNs should be trained on data augmented by these 

transformations [55]. This discovery has expanded to recommendations for adversarial 

perturbations on a subset of the training data [9]. It is found that training with Gaussian noise can 

increase the robustness of a model and requires less work than training model-specific 

adversarial examples [51]. 



Physical perturbations or perturbations implemented in the natural world rather than digitally 

have not been analyzed to a great extent in terms of adversarial training [56]. This exposure is 

essential because models are only robust against these physical perturbations when similar 

examples have been found during training. 

Adversarial training has been found to have drawbacks. It has been found that adversarial 

training can decrease the model's performance on non-adversarial images, an effect that is 

amplified if adversarial perturbations are too excessive [9]. Excessive adversarial training can 

reduce the overall robustness of the model [9]. Special care should be taken when determining 

the adversarial attacks and perturbations to use during training. 

3.3.4. Effectiveness of Defenses 

Not all defenses work as cleanly as the original researchers would hope. Rebuttals [57] [8] show 

that claims of robustness [51]  [37] [46] did not hold when alternative perturbations and 

adversarial strategies were used. Much like when dealing with software bugs, it is impossible to 

guarantee that a model is fully robust against adversarial attacks, as novel adversarial attacks are 

being developed regularly [7]. 

Even on the MNIST dataset, actual robustness is an unsolved problem. That highlights that we 

may be even further off than we think from making other, more complex images resistant to 

adversarial attacks [58]. The lack of robustness means deep learning is inappropriate for safety-

critical operations [59]. New detection methods must be determined until robustness can be 

guaranteed. 



3.4. Model Performance Metrics 

Other work has established categories for what performance metrics matter when dealing with 

deep learning models. From work on training these deep learning models, the following 

categories for performance metrics have been established: CPU utilization, GPU utilization, peak 

memory consumption, energy consumption, and throughput [60] 

The TensorFlow Profiler [61] is an assortment of tools that characterize hardware usage when 

doing deep learning. The abilities of this tool allow the developer to view profiles of the 

computing operations and an overview of the model training process [62]. The TensorFlow 

Profiler and similar tools are most commonly used to identify bottlenecks during the model 

training process [63]. Inference performance is when the model is given data to categorize and 

occurs in real-world situations when the model is used as a part of a system. 

The Profiler is one of the best tools available, as it integrates with existing frameworks and 

models using TensorFlow to get performance data. However, other techniques are possible to 

measure the duration and occurrence of (1) reading model parameters into the CPU, (2) copying 

model parameters into the GPU, and (3) executing the neural network in the GPU kernels [64]. 

The CPU, GPU, and throughput performance metrics are identified as the variables to monitor 

during the proposed defense technique. CPUs and GPUs are involved in the DNN process [65], 

and the usage of these metrics reflects the complexity of the computation they perform [66]. The 

timing of these operations has been exploited in other attacks and has revealed details about the 

operations occurring [67] [68]. Throughput, or the speed at which the DNN can process input, is 

related to the performance and speed of the CPU and GPU. 



4. Related Work 

Among the wide variation of defenses for adversarial attacks, few directly address the concept of 

node pathways and system performance. Despite this, the work that has been done supports the 

hypothesis proposed in this work. 

4.1. Detecting Adversarial Attacks 

As discussed in Section 3.3, detecting adversarial attacks is essential in ensuring security. 

Without detection, there is no chance of recovering from the attack. Work has been done to train 

a separate neural network to classify whether the data is accurate or contains adversarial 

perturbations [69] [70]. Other work relies on other objects in the scene to verify if a detection is 

legitimate or potentially the consequence of an adversarial attack [71]. People are researching 

new model architectures that are more robust when presented with adversarial examples [72]. K-

nearest neighbor models are used post-classification to see if objects fit with other exemplary 

images in their class [73]. The preprocessing of images uses genetic algorithms to filter out 

adversarial images [74]. Image transformation successfully detects the presence of adversarial 

examples [75]. 

It has been established that adversarial examples tend to activate a different, less commonly used 

pattern of nodes during inference [19]. This was found through the work in developing 

DeepFense, a detection algorithm that utilizes patterns of node activation to detect adversarial 

attacks at runtime [19]. It utilizes a variable number of defense models that look at various layers 

within the model, allowing the detectors to detect suspicious input based on the activation space 

without touching the model itself, thus making it much harder for attackers to find perturbations 

that will not trigger the defense modules. 



The DeepFense algorithm is the closest to the defense method proposed in this work. However, 

this proposed method will be a black-box method. Assuming that when non-commonly used 

nodes are activated, the model may have a higher memory consumption or a slower throughput, 

the proposed defense mechanism uses the performance at inference time to make the same 

conclusions about adversarial attacks taking novel pathways as DeepFense. 

4.2. Performance Metrics for DL 

The only example of work found that looked at hardware state to detect adversarial methods was 

in an analysis of adversarial attacks on autonomous driving models [76]. This work proposes a 

more detailed look at resource utilization to detect and classify adversarial attacks of all 

techniques. Other work has established categories for what performance metrics matter when 

dealing with deep learning models. From work on training these deep learning models, the 

following categories for performance metrics have been established: CPU utilization, GPU 

utilization, peak memory consumption, energy consumption, and throughput [60] 

4.3. Alignment  

This study is meant to contribute to existing research and protocols for the defense against 

evasion adversarial attacks via discussion. 

The importance of performance metrics in deep learning [76] [60], along with supporting work 

that the pattern of node activation differs between adversarial and non-adversarial examples [18] 

[19] and supporting research that shows that both the CPU and GPU have different utilization 

under different operations all support the theory that the system performance metrics will reflect 

the presence of adversarial input due to the pathways activated by the adversarial input in the 

CNNs. 



5. Experiment Design 

The method detailed in this work is depicted in Figure 5.1. Image data from the MNIST and 

CIFAR-10 datasets were used to train separate TensorFlow CNNs. The image data subsets set 

aside for testing underwent transformations according to the FGSM, PGD, CW, and DF 

adversarial attacks. Repeated tests were done, and system performance metrics were collected. 

The system performance metrics were analyzed to determine if there is a statistically significant 

and practical difference in the system metrics between adversarial and non-adversarial input. 



 

Figure 5.1 The proposed overarching method for detecting adversarial images 

5.1. Environment 

All experimentation was conducted via the Google Colab platform [77]. Google Colab was 

selected as the computational environment for several reasons. The first reason was the prospect 

of using multiple runtime environments, including CPUs, GPUs, and TPUs. Though this 

experiment uses a GPU environment, further work on this subject will include various 



environments. Additionally, this environment supported the development and testing of 

TensorFlow models, which were chosen as a standard model configuration to run this 

experiment. Using Google Colab allows future experiments to be run in the same environment, 

and results are not bound to the researcher's machine. 

5.2. Image Datasets 

Two different image classification datasets were used to test the performance metrics of models 

on various perturbations. These datasets are the MNIST dataset and the CIFAR-10 dataset. The 

MNIST dataset contains grayscale images of handwritten digits. It is a simple classification 

dataset and is, therefore, helpful in demonstrating fundamental principles related to computer 

vision [4]. The CIFAR-10 dataset, consisting of 32x32 color images, was an example of a 

slightly more complex dataset [5]. Though the images are still small, they contain realistic 

scenarios and provide a slightly higher level of complexity. These datasets are recognized as 

benchmark datasets for the research community, allowing this work to be compared against 

others in the domain. 

5.3. Model Selection 

For each data set chosen, a CNN model was trained until the accuracy on the dataset was 90% 

accurate and any increase in accuracy on the validation dataset had plateaued. The CNN model 

used multiple convolutional, max-pooling, and fully connected layers. The model architecture 

was the same for each dataset, and the only difference was the training data used and the amount 

of training provided until each model reached the appropriate accuracy. 



5.4. Attack Methods 

This study used a diverse set of adversarial attack methods to test the proposed defensive 

technique. The details of these attacks are described in Section 3.2.2.  

The FGSM is a more straightforward method that does not necessarily find the minimum 

perturbation but is a benchmark attack and is used to show the model's vulnerability. The PGD 

attack is an iterative attack that assesses the white-box structure of a model to a deeper extent 

than the FGSM attack. The CW attack was incorporated into our evaluation due to its 

optimization-driven approach, which generates more subtle and tailored adversarial inputs. 

Lastly, the DeepFool attack was due to its ability to find a minimal and subtle perturbation using 

iterative techniques. These techniques mark a set of the most commonly used attacks. Each 

attack is easily implemented, showing how the threat of adversarial attacks is easily accessible to 

the would-be attacker. 

The general structure of the adversarial attack remained the same on each dataset. Some 

parameters were altered so that each attack showed a notable drop in accuracy when possible. 

The accuracy of each attack on the CNN model was measured. The model's accuracy when 

facing adversarial attacks is a valuable metric for showing the robustness of the model. 

Therefore, if an attack decreases the model's accuracy, it is a threat that needs to be detected.  

5.5. Adversarial Detection 

The novel detection method proposed in this paper focuses on using the model's performance 

metrics at inference time. A description of the various performance metrics available is discussed 

in Section 3.4.  



Resource utilization was analyzed for the Central Processing Unit (CPU) and the Graphics 

Processing Unit (GPU). For each test, the average and peak memory usage for both the CPU and 

GPU were observed. These metrics were gathered using the psutil tool [78].  

Throughput, or the capacity of the model to infer a given number of samples within a 

standardized unit of time, was used to indicate the speed and efficiency of the model's 

performance. This metric was measured in terms of the number of samples or batches per 

second.  

A performance metric commonly used yet not implemented in this study is energy consumption 

due to logistical constraints. As discussed in Section 5.1, the experiments were conducted using 

the cloud resources provided by Google Colab. This environment prevented the collection of 

energy consumption data, but the benefits of using the Google Colab platform outweighed the 

limitations. Nevertheless, future research should consider using energy consumption as a 

potentially valuable performance metric when calculating this performance metric. 

5.5.1. Analysis Methods 

The performance metrics were first analyzed using the ANOVA test to determine statistical 

significance among the various adversarial inputs. The Tukey’s Honestly Significand Difference 

test was then used to determine which groups had a significant difference and to what extent. 

The ANOVA (Analysis of Variance) statistical test is a method used to analyze differences 

among group means in a sample. It was chosen because it can compare the means of three or 

more groups, making it an extension of the t-test typically used for comparing two means. This 

was relevant for the five categories of adversarial input that were tested. If ANOVA indicates 

that at least one group is different from the others, it does not specify which groups are different.  



The post-hoc test, Tukey’s Honestly Significant Difference (HSD), was used to pinpoint the 

specific groups that differ from each other. Tukey's HSD is designed to control for the type I 

error rate (false positive occurrence of significance) and provide pairwise comparisons between 

group means to determine which specific groups have significantly different means. This test 

determined what adversarial perturbations had a difference in system performance metrics 

compared to non-adversarial input. 

5.5.2. Experiment 1: Comparing Adversarial and Non-Adversarial Images 

In the first experiment, the batches of adversarial and non-adversarial methods were handled 

separately. The separation allowed us to analyze the performance metrics of inference without 

considering how and when adversarial examples may be introduced during real-time operation. 

The inference performance metrics and accuracy were collected and analyzed to determine the 

significance of the results. 

5.5.3. Experiment 2: Mixing  

In the second experiment, a more realistic scenario was performed. In this experiment, the 

adversarial attacks were given to the model amongst original, non-adversarial images. This 

approach aimed to mimic a real-life scenario where the adversarial attack is only likely to occur 

on some of the images. The inference performance metrics and accuracy were collected and 

analyzed to determine the significance of the results. 

  



6. Results 

Though each test had slightly differing results, this section details the contributing factors to the 

conclusion that system performance metrics do not reflect the presence of adversarial input. 

6.1. Adversarial Attacks 

The difference between the adversarial attacks and the original image can be seen in Figure 6.1. 

With both the model trained on MNIST data and the model trained on CIFAR data, they were 

each trained until they had at least 90% training accuracy. The training resulted in 99% testing 

accuracy for the MNIST model and 63% accuracy for the CIFAR data. The four adversarial 

attacks were applied to the testing images to degrade the accuracy of those images. The accuracy 

was degraded for all attacks except the Carlini Wagner attack on the MNIST dataset. 

 

Figure 6.1 shows the accuracy of the trained models on original data compared to the four 

described adversarial attacks.  



The high accuracy of the Carlini Wagner attacks may be due to the models' simplicity. The 

simplicity, therefore, prevented the method from finding an optimum perturbation. Despite this, 

this range of accuracies gives a variety of situations to test the hypothesis. 

6.2. Experiment 1 Results 

In experiment 1, adversarial and non-adversarial inputs were tested separately to get a baseline. 

In this experiment, for both the MNIST and CIFAR datasets, the images were inferred in batches 

by the model and in a singular, one-by-one inference setting. 

The results shown in Figure 6.2 show the difference in inference performance metric between the 

adversarial and non-adversarial images during the experiment where MNIST images were 

provided in batches to the model. The difference between the throughput on original images 

when compared with FGSM and PGD attacks is statistically significant. The GPU usage was 

consistent across all inputs. In this test, the original images’ throughput was slightly lower than 

the FGSM and the PGD attacks. The difference in the mean CPU memory between the original 

images and the four adversarial attacks is slight but statistically significant.  



 

Figure 6.2 shows the performance metrics of adversarial attacks compared to the non-adversarial 

attacks when MNIST images were sent to the model in batches. 

The results shown in Figure 6.3 show the difference in inference performance metric between the 

adversarial and non-adversarial images during the experiment where MNIST images were 

provided individually to the model for inference. The difference between the throughput on the 



original images and those exposed to the FGSM attack significantly differed from all other 

throughputs. However, there was not enough variation to be statistically significant for either the 

GPU or the CPU usage. The original images had a slightly lower throughput than all adversarial 

attacks except for FGSM. 

 



Figure 6.3 shows the performance metrics of adversarial attacks compared to the non-adversarial 

attacks when MNIST images were sent to the model individually. 

The results shown in  Figure 6.4 show the difference in inference performance metric between 

the adversarial and non-adversarial images during the experiment where CIFAR-10 images were 

provided in batches to the model. The throughput for the original images compared to all 

adversarial images was statistically significant, though the GPU and CPU memory usage showed 

no differences. The mean throughput for the original images was slightly lower than all the 

adversarial images. 



 

 Figure 6.4 shows the performance metrics of adversarial attacks compared to the non-adversarial 

attacks when CIFAR images were sent to the model in batches. 

The results shown in Figure 6.5 show the difference in inference performance metric between the 

adversarial and non-adversarial images during the experiment where CIFAR-10 images were 

provided individually to the model. There was no difference in the CPU or GPU memory usage.  



For the throughput, all averages were statistically significant in their difference except for the 

original images compared to the images that the CW attack had transformed. However, the mean 

of the original images throughput was slightly higher than the FGSM and DF throughputs and 

slightly lower than the PGD throughputs. 

 



Figure 6.5 shows the performance metrics of adversarial attacks compared to the non-adversarial 

attacks when CIFAR images were sent to the model individually. 

6.3. Experiment 2 Results 

Experiment 2 replicates Experiment 1, except for the way samples were taken. Experiment 1 

measured all values in standalone sessions for each adversarial category. In Experiment 2, the 

model was fed the original images with interspersed batches or instances of adversarial 

examples. 

The results shown in Figure 6.6 show the difference in inference performance metric between the 

adversarial and non-adversarial images during the experiment where MNIST images were 

provided in batches to the model, with adversarial examples sprinkled amongst the original 

image batches. None of the system metrics measured showed differences with statistical 

significance. 



 

Figure 6.6 shows the performance metrics of adversarial attacks compared to the non-adversarial 

attacks when MNIST images were sent to the model in batches. 

The results shown in Figure 6.7 show the difference in inference performance metric between the 

adversarial and non-adversarial images during the experiment where MNIST images were 

provided in batches to the model, with adversarial examples sprinkled amongst the original 



image batches. In this scenario, the throughput of original images was statistically significant 

compared to the CW and PGD throughputs, with the original throughput slightly higher than the 

CW input and slightly lower than the PDG input. Neither the GPU nor CPU memory usage 

showed any statistical significance.  

 



Figure 6.7 shows the performance metrics of adversarial attacks compared to the non-adversarial 

attacks when MNIST images were sent to the model individually. 

The results shown in Figure 6.8 show the difference in inference performance metric between the 

adversarial and non-adversarial images during the experiment where CIFAR images were 

provided in batches to the model, with adversarial examples sprinkled amongst the original 

image batches. In this scenario, the throughput of original images was lower than the throughput 

of the PGD images in a statistically significant way. Neither the CPU nor the GPU memory 

usage was statistically significant. 



 

 Figure 6.8 shows the performance metrics of adversarial attacks compared to the non-adversarial 

attacks when CIFAR images were sent to the model in batches. 

The results shown in Figure 6.9 show the difference in inference performance metric between the 

adversarial and non-adversarial images during the experiment where CIFAR images were 

provided in batches to the model, with adversarial examples sprinkled amongst the original 



image batches. The throughput of the original images was higher than the throughput of the CW 

images in a statistically significant way. None of the other metrics were statistically significant. 

 

Figure 6.9 shows the performance metrics of adversarial attacks compared to the non-adversarial 

attacks when CIFAR images were sent to the model individually. 



7. Discussion 

When comparing adversarial to non-adversarial input, the results showed no statistical 

significance to CPU and GPU usage during the model's inference. In most of the tests, the 

throughput of the original images differed from at least one of the adversarial attacks statistically 

significantly. However, the difference in throughput is not practically significant for two reasons. 

First, the throughput of the original images was not consistently higher or lower than the 

throughput of adversarial attacks. Secondly, the difference in average was so slight that a clear 

threshold cannot be applied to differentiate between adversarial and non-adversarial input. 

Therefore, the hypothesis was disproven that external measures of system performance metrics 

during model inference can detect adversarial attacks. 

7.1. Future Work 

Despite the initial hypothesis not being supported — that system performance metrics could 

effectively function as an external-to-the-model measure for detecting adversarial attacks — the 

foundational theory of this research still shows significant promise. Future explorations in this 

area will first focus on a more nuanced measurement of system performance, particularly 

emphasizing enhanced control over key hardware components such as CPUs, GPUs, and 

memory caches. This refined approach is expected to enable a more sensitive detection of 

anomalies indicative of adversarial attacks. 

The key to this approach is the granular monitoring of hardware components. Enhanced control 

over CPUs, for instance, involves tracking metrics like clock speed and cache misses, offering 

insights into how these components respond under different computational loads, including those 

induced by adversarial attacks. Similarly, for GPUs, monitoring core utilization and memory 



bandwidth usage can provide indications of atypical patterns during attacks. Close observation of 

memory cache behavior is also vital, as variations in cache hits and misses could signify attack 

manipulations. 

Another potentially promising direction for this research is the exploration of conditional neural 

networks. These networks are tailored to activate specific pathways based on predetermined 

conditions, optimizing computational efficiency and focus. This ensures that the system only 

processes pathways relevant to adversarial attack detection, reducing unnecessary computational 

loads and boosting overall system performance. 

Incorporating conditional neural networks allows for a dynamic, responsive system that adapts to 

varying scenarios and focuses computational resources effectively. This improves detection 

efficiency and reduces the likelihood of missing subtle adversarial manipulations. These 

networks can be fine-tuned to identify specific adversarial attack patterns, enhancing the system's 

ability to differentiate between legitimate and malicious inputs. 

This research acknowledges the ongoing challenge of developing effective defenses for DNNs 

against adversarial attacks, a task that requires continuous innovation and adaptation. When a 

successful detection method is developed, it should not be isolated but integrated with other 

defensive strategies, as discussed in Section 3.3. This comprehensive approach is crucial, 

recognizing the complexity and evolving nature of adversarial threats in AI and machine 

learning. By merging various defensive techniques and refining them continually, the field 

progresses towards more secure and resilient DNNs, capable of withstanding the sophisticated 

adversarial attacks expected in the future. 



8. Conclusion 

This work investigated the possibility of using system performance metrics, specifically CPU 

usage, GPU usage, and threshold, to determine whether or not a CNN was processing adversarial 

input. The hypothesis that system performance metrics would reflect an adversarial attack was 

tested using a TensorFlow CNN, the MNIST and CIFAR-10 datasets, and four different 

adversarial attacks (FGSM, PGD, CW, and DF). These tests were performed in the Google Colab 

environment.  

The experiments revealed no significant indicators in the system performance metrics that 

adversarial input was present. Despite this setback, future work will continue to evaluate possible 

ways to use the system performance metrics to detect and defend against adversarial attacks. 
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