
Doctoral Dissertations and Master's Theses

Fall 2023

A System for the Detection of Adversarial Attacks in Computer A System for the Detection of Adversarial Attacks in Computer

Vision via Performance Metrics Vision via Performance Metrics

Sarah Reynolds
Embry-Riddle Aeronautical University, reynos23@my.erau.edu

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Artificial Intelligence and Robotics Commons

Scholarly Commons Citation Scholarly Commons Citation
Reynolds, Sarah, "A System for the Detection of Adversarial Attacks in Computer Vision via Performance
Metrics" (2023). Doctoral Dissertations and Master's Theses. 776.
https://commons.erau.edu/edt/776

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons.
For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=commons.erau.edu%2Fedt%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/776?utm_source=commons.erau.edu%2Fedt%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

A System for the Detection of Adversarial

Attacks in Computer Vision via

Performance Metrics

Sarah Reynolds

Department of Electrical Engineering and Computer Science

Embry-Riddle Aeronautical University

Daytona Beach, FL

reynos23@my.erau.edu

Master’s Thesis

Fall 2023

Table of Contents
1. Abstract .. 5

2. Introduction ... 6

3. Background .. 9

3.1. Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) 9

3.2. Adversarial Attacks .. 11

3.2.1. Adversarial Attack Types ... 12

3.2.2. Known/Published Adversarial Attacks ... 13

3.2.3. Considerations on the Threat of Adversarial Attacks ... 17

3.2.4. The Effects of Adversarial Attacks ... 18

3.3. Adversarial Defenses.. 18

3.3.1. Detecting Adversarial Images ... 19

3.3.2. “Fixing” Adversarial Images .. 20

3.3.3. Alternate Model Structures ... 21

3.3.4. Effectiveness of Defenses ... 22

3.4. Model Performance Metrics ... 23

4. Related Work ... 24

4.1. Detecting Adversarial Attacks ... 24

4.2. Performance Metrics for DL .. 25

4.3. Alignment ... 25

5. Experiment Design .. 26

5.1. Environment ... 27

5.2. Image Datasets ... 28

5.3. Model Selection.. 28

5.4. Attack Methods .. 29

5.5. Adversarial Detection ... 29

5.5.1. Analysis Methods.. 30

5.5.2. Experiment 1: Comparing Adversarial and Non-Adversarial Images 31

5.5.3. Experiment 2: Mixing ... 31

6. Results ... 32

6.1. Adversarial Attacks .. 32

6.2. Experiment 1 Results ... 33

6.3. Experiment 2 Results ... 39

7. Discussion .. 45

7.1. Future Work ... 45

8. Conclusion ... 47

Table of Figures
FIGURE 3.1. SHOWS THE CONNECTIONS AND REPRESENTATION OF A DEEP NEURAL NETWORK

(DNN) [14] .. 10

FIGURE 3.2. SHOWS HOW CONVOLUTIONAL LAYERS COMPARE TO FULLY CONNECTED (FC)

NETWORKS USED IN TRADITIONAL DEEP LEARNING [10] .. 10

FIGURE 3.3. THE CARLINI-WAGNER ADVERSARIAL ATTACK IS SHOWN ON THE MNIST DATASET.

THE THREE ATTACKS, 𝐿0, 𝐿2, AND 𝐿∞, ARE SHOWN UNDER THE “ADVERSARIAL” HEADING

FROM LEFT TO RIGHT. THIS IMAGE IS ADAPTED FROM [8]. .. 15

FIGURE 3.4. THE DIFFERENCE BETWEEN NOISE NEEDED FOR DEEPFOOL’S PERTURBATION (TOP)

COMPARED TO AN FGSM PERTURBATION (BOTTOM). ADAPTED FROM [9]. 16

FIGURE 5.1 THE PROPOSED OVERARCHING METHOD FOR DETECTING ADVERSARIAL IMAGES 27

FIGURE 6.1 SHOWS THE ACCURACY OF THE TRAINED MODELS ON ORIGINAL DATA COMPARED TO

THE FOUR DESCRIBED ADVERSARIAL ATTACKS. ... 32

FIGURE 6.6 SHOWS THE PERFORMANCE METRICS OF ADVERSARIAL ATTACKS COMPARED TO THE

NON-ADVERSARIAL ATTACKS WHEN MNIST IMAGES WERE SENT TO THE MODEL IN BATCHES.

... 34

FIGURE 6.7 SHOWS THE PERFORMANCE METRICS OF ADVERSARIAL ATTACKS COMPARED TO THE

NON-ADVERSARIAL ATTACKS WHEN MNIST IMAGES WERE SENT TO THE MODEL

INDIVIDUALLY. .. 36

FIGURE 6.8 SHOWS THE PERFORMANCE METRICS OF ADVERSARIAL ATTACKS COMPARED TO THE

NON-ADVERSARIAL ATTACKS WHEN CIFAR IMAGES WERE SENT TO THE MODEL IN BATCHES.

... 37

FIGURE 6.9 SHOWS THE PERFORMANCE METRICS OF ADVERSARIAL ATTACKS COMPARED TO THE

NON-ADVERSARIAL ATTACKS WHEN CIFAR IMAGES WERE SENT TO THE MODEL

INDIVIDUALLY. .. 39

FIGURE 6.10 SHOWS THE PERFORMANCE METRICS OF ADVERSARIAL ATTACKS COMPARED TO THE

NON-ADVERSARIAL ATTACKS WHEN MNIST IMAGES WERE SENT TO THE MODEL IN BATCHES.

... 40

FIGURE 6.11 SHOWS THE PERFORMANCE METRICS OF ADVERSARIAL ATTACKS COMPARED TO THE

NON-ADVERSARIAL ATTACKS WHEN MNIST IMAGES WERE SENT TO THE MODEL

INDIVIDUALLY. .. 42

FIGURE 6.12 SHOWS THE PERFORMANCE METRICS OF ADVERSARIAL ATTACKS COMPARED TO THE

NON-ADVERSARIAL ATTACKS WHEN CIFAR IMAGES WERE SENT TO THE MODEL IN BATCHES.

... 43

FIGURE 6.13 SHOWS THE PERFORMANCE METRICS OF ADVERSARIAL ATTACKS COMPARED TO THE

NON-ADVERSARIAL ATTACKS WHEN CIFAR IMAGES WERE SENT TO THE MODEL

INDIVIDUALLY. .. 44

1. Abstract

Adversarial attacks, or attacks committed by an adversary to hijack a system, are prevalent in the

deep learning tasks of computer vision and are one of the greatest threats to these models' safe

and accurate use. These attacks force the trained model to misclassify an image, using pixel-level

changes undetectable to the human eye. Various defenses against these attacks exist and are

detailed in this work. The work of previous researchers has established that when adversarial

attacks occur, different node patterns in a Deep Neural Network (DNN) are activated within the

model. Additionally, it is known that CPU and GPU metrics look different when different

computations are occurring. This work builds upon that knowledge to hypothesize that the

system performance metrics, in the form of CPUs, GPUs, and throughput, will reflect the

presence of adversarial input in a DNN. This experiment found that external measurements of

system performance metrics did not reflect the presence of adversarial input. This work

establishes the beginning stages of using system performance metrics to detect and defend

against adversarial attacks. Using performance metrics to defend against adversarial attacks can

increase the model's safety, improving the robustness and trustworthiness of DNNs.

Keywords: adversarial defenses, DNNs, CNNs, neural networks, adversarial attacks, system

performance metrics

2. Introduction

The field of computer vision has developed rapidly in recent years, with computer vision models

able to decipher images with an incredibly high level of accuracy [1]. The current success would

not have been possible without the architectural development of Deep Neural Networks (DNNs)

and Convolutional Neural Networks (CNNs). Despite the incredible performance of these

computer vision models, which have been researched and adapted across domains, DNNs remain

susceptible to adversarial attacks [2].

Adversarial attacks perturb images, or make minimal changes to an image's composition,

resulting in a DNN making incorrect predictions even though these perturbations are practically

undetectable to humans [2]. There are a variety of defenses against adversarial attacks that exist,

which are described in Section 3. However, these defenses are not comprehensive, and there is

no guarantee that a model is safe against adversarial attacks, as new attack methods are

frequently developed. Until these deep learning models show appropriate robustness against

adversarial attacks, they must be used cautiously and not with safety critical systems [3].

In a world where the power of computer vision holds so much potential, these Deep Learning

(DL) models are rising in popularity. The general public can use them without regulation and

with minimal policy guidance, which causes the safety risk of adversarial attacks to be

significant. This problem, as it is related to the structure of DNNs and not just computer vision,

threatens a wide range of state-of-the-art Artificial Intelligence (AI) practices. In order to

counteract the threat of adversarial attacks, this work proposes a novel strategy for detecting the

presence of an adversarial attack, with the hopes that it can be used to prevent adversarial attacks

in the future. This work fits into a wide array of mitigations against adversarial attacks, from

building robust models to detecting the occurrence of attacks to recovering from these attacks

with various methods.

The purpose of this experiment is to test the theory that adversarial attacks cause a significant

effect on the system performance metrics during inference. Specifically, four adversarial attack

techniques will be studied on two different benchmark data sets to determine the significance of

this difference and the potential to use it as an adversarial defense mechanism. This work

attempts to answer the following questions:

RQ1. To what extent does the presence of an adversarial attack reflect in the system

performance metrics?

RQ2. How effective is monitoring the system performance metrics in stopping an

adversarial attack in real-time?

The approach presented in this work analyzes the system performance metrics in order to detect

adversarial attacks. Two benchmark image datasets, MNIST [4] and CIFAR-10 [5], are used to

train and test a CNN model. These datasets are used to train a CNN made with Tensorflow, and

then the testing dataset is tested using a variety of adversarial attack methods (Fast Gradient Sign

Method [6], Projected Gradient Descent [7], Carlini-Wagner [8], and DeepFool [9]). These

adversarial attacks were tested and compared against non-adversarial images to determine if an

adversarial attack affected the system performance metrics during inference.

This study provides a preliminary study into a potential defense for adversarial attacks. This

experiment was structured within a specific environment with a limited number of models and

datasets. Therefore, the findings of this study may not hold for alternate model structures.

Despite these limitations, this study addresses the potential of discovering a new method for

detecting adversarial input into Deep Neural Networks (DNNs). Exploring novel defense

solutions like the one presented in this work is a step towards making deep learning, and

therefore artificial intelligence, safer and more trustworthy for the general public and safety-

critical systems.

3. Background

This work addresses the impact of adversarial attacks on DNNs. Though existing defenses can

protect against some adversarial attacks, the current state of DNNs is that they are not robust

against adversarial attacks. Specific properties of the DNNs and prior knowledge about system

performance metrics form the theory that suggests that system performance metrics can be used

to detect the presence of an adversarial attack.

3.1. Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs)

Computer vision is a series of tasks built with the concepts of deep learning and neural networks.

CNNs are a version of DNNs that have been researched and developed since the 1980s [10].

DNNs, as depicted in Figure 3.1, have multiple hidden layers between the input and the output

layers [11]. In computer vision, the input represents the pixels that make up a visual image; the

output is the conclusions drawn based on that image. The neurons process that input based on

various weights and activations determined in the training process.

Unlike traditional DNNs, CNNs make use of limited connections between neurons in what are

called convolutional layers [12]. Having fewer connections limits the number of parameters for

the model to calculate, allowing the CNNs to process and make predictions on larger images

more effectively. The difference between the convolutional layers and the fully connected layers

can be seen in Figure 3.2. CNNs and the variations of CNNs are the standard for computer vision

tasks due to their high level of performance [12].

DNNs, CNNs, and their derivatives form the basis for most state-of-the-art computer vision

tasks. Within that, a wide variety of specific architectures have been developed and tested against

each other to improve the performance and accuracy of the models [13]. Most of these

algorithms have incredibly high levels of accuracy.

Figure 3.1. shows the connections and representation of a Deep Neural Network (DNN) [14]

Figure 3.2. shows how convolutional layers compare to fully connected (FC) networks used in

traditional deep learning [10]

The complexity that allows these models to interpret complex data accurately comes with the

drawback of being difficult to interpret black boxes [15]. This lack of explainability of these

models makes their outputs challenging to trust, a feeling compounded by their vulnerability to

adversarial attacks [16].

Some traits of these neural networks have been discovered. The conception of node-pruning

showed that some nodes within the DNN are either redundant or have little influence over

accurate prediction [17]. These less valuable nodes, however, do tend to be affected more by

adversarial inputs [18] [19].

3.2. Adversarial Attacks

Adversarial attacks are not a new threat to AI but rather an ongoing danger. Other researchers

have determined [20] that the first description of an adversary purposefully changing data to

affect the results of a system was in a 2004 paper on the result of using adversarial manipulations

to bypass a textual spam filter [21].

Adversarial attacks occur in computer vision when an input image is distorted, perturbed, or

changed so that it is misclassified by the model [22]. These changes are usually indistinguishable

to the human eye, yet are one of the significant risks for implementing computer vision tasks in

safety-critical environments [23]. These attacks have been a concern for applying deep neural

networks over the last decade [16]. Adversarial attacks pose an even greater danger because an

attack that works effectively on one model can be effective on a different model, even if the

attack was not created for that model [16] [24] [25]. This concept is known as transferability.

There are many variations of adversarial attacks [23]. Some techniques allow for general

misclassification, while others target a specific misclassification to occur and cause change to a

particular category. Some techniques require access to the model, thus specifically generating

adversarial images for a particular model. Other attacks are more general and can be applied to

images regardless of the method used for detection and classification.

Improving adversarial attacks has been a popular research topic, as researchers attempt to find

the most minimal perturbation that can fool a model, which is also the most dangerous and

effective attack [9]. Perturbation size can be used as a measure of robustness, as a model

vulnerable to more minor perturbations is considered less robust than a model that only

misclassifies when presented with more significant perturbations.

In addition to the adversarial attack strategies described above (which address the alteration of

pixels and other digital changes to the images), there is also a concern that there are natural

perturbations or physical objects that change the results from computer vision models [26]. In

some cases, these issues naturally occur in the world and exist without malicious intent. In other

cases, objects in the physical world are manipulated to no longer be classified by existing

models. For example, small black and white stickers can be added to stop signs, and while a

human can still read these, computer vision models fail to perform [27]. These contribute to

various adversarial attacks that can affect computer vision models.

Most frustratingly to researchers, it is unclear why adversarial examples exist [28]. Part of the

complexity in determining the cause of adversarial examples is due to the black-box nature of

DNNs. The lack of understanding surrounding adversarial examples is closely tied to the lack of

explainability surrounding DNNs. Nevertheless, it signals that DNNs cannot mimic the human

decision and learning process as closely as researchers would like.

3.2.1. Adversarial Attack Types

The focus of this work is to detect evasion attacks. In evasion attacks, the model is already

trained, and the attack occurs at run time [28]. However, in the field of adversarial attacks, there

are more opportunities to attack the model. For example, poisoning attacks, where adversarial

data is mixed with the training data to create exploitation paths for future attacks, occur during

the model's training [28].

Another distinction between attack types is the goal of the misclassification. If the adversary

wants to change the classification to a specific target, the attack is a targeted attack [28].

Alternatively, the attack is untargeted if the only goal is wrong input without a specific class in

mind.

If the attacker knows the model’s structure and uses the knowledge of that structure to fine-tune

the attack, that is considered a white-box attack [28]. If the attacker lacks the structural

knowledge of the model and can only access the input and output of the model, the attack is a

black-box attack.

The goal of the defense mechanism defined in this work is to defend existing DNNs, unlike other

defenses that involve changing the structure of the model from the beginning. Therefore, this

work is concerned with detecting evasion attacks. Within the evasion attacks, untargeted and

white-box adversarial methods represent typical attacks. Details regarding the attacks replicated

in this study can be seen in Section 3.2.2.

3.2.2. Known/Published Adversarial Attacks

This section describes a series of modern and effective adversarial attacks. These adversarial

attacks are all replicated in this work to test and evaluate the proposed defense method.

3.2.2.1. Fast Gradient Sign Method (FGSM)

The Fast Gradient Sign Method (FGSM) was introduced in 2014 [6]. This adversarial attack is an

example of an untargeted white-box attack [29]. The perturbations are considered small, yet

further minimal perturbations have been determined, as shown in Figure 3.4. In this method, a

gradient of the loss is used to determine how much each pixel in the input contributes to the loss,

which is used to determine what pixels to change in an input image to generate an adversarial

attack.

3.2.2.2. Projected Gradient Descent (PGD)

Projected Gradient Descent [7] is another example of an untargeted, white-box attack [29]

published in 2017. This attack is iterative, unlike the one-step method seen in FGSM. The

iterations make this method slower, as it calculates a gradient of the loss and uses the gradient to

create a perturbation that is projected on an image. However, the iterative nature aims to fine-

tune the perturbation to be more effective.

3.2.2.3. Carlini-Wagner (CW)

The Carlini-Wagner (CW) is an adversarial attack published in 2017 [8]. This attack, like the two

previous, is a white box attack, but it can be used as a targeted approach [29]. This approach

treats finding the slightest perturbation as an optimization problem. Three algorithms (𝐿0, 𝐿2,

and 𝐿∞) were developed and compared in the original publication. The most robust attack is the

𝐿2 attack, the version implemented in this paper.

Figure 3.3. The Carlini-Wagner adversarial attack is shown on the MNIST dataset. The three

attacks, 𝐿0, 𝐿2, and 𝐿∞, are shown under the “Adversarial” heading from left to right. This image

is adapted from [8].

3.2.2.4. DeepFool (DF)

DeepFool [9] is a method for adversarial perturbations published in 2016. This attack is an

advanced example of an untargeted white box attack [29]. The algorithm of DeepFool addresses

that previous adversarial perturbations were not finding the minimal change needed for an attack.

The difference in perturbation found by DeepFool and FGSM is shown in Figure 3.4. Using a

smaller perturbation makes the adversarial attack more subtle and, therefore, more challenging to

detect.

Figure 3.4. The difference between noise needed for DeepFool’s perturbation (top) compared to

an FGSM perturbation (bottom). Adapted from [9].

3.2.2.5. Other Attacks

A wide variety of attacks exist in the literature but are not replicated in this work. This work

selected some of the most popularly discussed and modern adversarial attack techniques. An

example of an attack not replicated in this study is the HopSkipJump (HSJ) attack [30], which is

an example of a black box attack that can be either targeted or untargeted [29]. This attack only

has access to the model's output but uses changes in the classification to estimate the gradient

descent and then optimize the perturbation. This attack is valuable in showing how black box

attacks can work, but as discussed in Section Error! Reference source not found., relying on

hiding a model to prevent white box attacks from occurring is not a viable strategy.

Further work on this subject should consider other adversarial attack strategies such as HSJ,

universal perturbations [31], and physical perturbations [32]. In addition, attacks and defenses

should be further addressed on other DNNs unrelated to computer vision.

3.2.3. Considerations on the Threat of Adversarial Attacks

The security of these models is a significant issue and is closely tied to cybersecurity. In one

instance, attackers could determine the white box structure of a CNN model by exploiting a GPU

side-channel [33]. Between this capability and the fact that adversarial examples can be

transferred effectively between models [16] [24] [25], it is clear that assuming that the model

structure is secret is not an effective method of defending against adversarial attacks. That

assumption would violate the cybersecurity principle that security through obscurity is

inadequate.

There are also concerns about publicly generated data sets. The theory is that an exploit can be

introduced to the publicly available data set, and all models trained with this dataset can be

exploited later through a backdoor attack [34]. These concerns are related to poisoning attacks,

not evasion attacks, and are therefore outside the scope of consideration for this work.

3.2.4. The Effects of Adversarial Attacks

Knowing that adversarial attacks exist, it only takes creativity and imagination to determine the

possible effects and dangers of using these attacks. In the medical domain, experts have

considered the following possibilities [20]:

• In terms of textual data, if the insurance agency uses a DL model to make decisions,

medical codes can be manipulated to result in a fraudulently low payment for the

patient or increased payment for the doctors.

• In the computer vision domain, it has been suggested that future systems that

potentially use patient images to validate doctor diagnoses can be manipulated to

validate the results that the doctor decides on.

In both of the above cases, since the input to the DL model is provided by a human, it is easy to

insert malicious content in that no “hacking” of the system has to occur. However, a new attack

surface for accessing these models is developed, with Graphical Processing Units (GPUs) being

offered as a cloud service for consumers to run their DNNs on [35].

3.3. Adversarial Defenses

Researchers have developed and tested a wide range of defenses against adversarial attacks.

These defenses have been tested and are effective against some adversarial attacks. As experts

suggest, following the best defense practices is essential in using DNNs. For example, like much

of the cybersecurity domain, it is more difficult to fully defend a system than to find one attack

that works [20].

3.3.1. Detecting Adversarial Images

The first category of adversarial defenses focuses solely on detecting the presence of adversarial

attacks.

Some models use classifiers trained separately to detect adversarial attacks [36] [37] [38] [39].

Attempts to look at the scale of the feature attribution scores are effective, if inefficient, to scale

to more complex models [39]. Autoencoders can be used to detect anomalies in images that are

caused by adversarial attacks [40] [41]. Open-set recognition can be adapted to allow adversarial

examples to be considered a part of the open set [42].

Recently, a technique was developed to detect adversarial attacks using random perturbations

[43]. It was discovered that adding random noise within a small magnitude would not affect non-

adversarial images but could cause adversarial images to revert to the original classification.

With that, the change of classification after the noise was added could also be used to alert to an

adversarial attack.

A modern defense technique, DeepFense, uses a varying number of defenders to watch various

layers of the DNN. These defenders look for uncommon node activations characteristic of an

adversarial attack [19]. The number of defenders used in a model can be adjusted based on

resource and performance time constraints. In establishing that adversarial attacks activate

different node patterns than non-adversarial input, this work contributed significantly to the

theory surrounding this research process.

Researchers are evaluating ensemble approaches that are adaptable to include new detection

methods as they are developed [44]. Once detection occurs, the model must decide how to

handle it. Some models reject adversarial attacks rather than classifying them [41]. Alternatively,

denoising can be used on the image so that it can still be processed and classified [42]. Other

methods of handling adversarial attacks once they are detected are described in the following

sections.

3.3.2. “Fixing” Adversarial Images

The second category of defenses looks to return adversarial inputs to the original, non-

adversarial input, at least to the extent that the model does not misclassify the images.

Some defenses look at ways to remove the adversarial attack from the image. One method

involves removing noise from images [45]. Further work uses GANs to remove the perturbations

[46] [47], a solution that is most effective on trivial perturbations [46]. In other work, CNNs

detect adversarial examples and remove the noise before it is provided as input to the

classification model- allowing the defense to work universally with any classification model

[48]. After the detection technique, Magnet uses a detector to determine if the input is

adversarial. If adversarial input is found, an autoencoder reduces noise and ideally removes the

perturbation [37].

Research has determined that image transformations can be used against adversarial attacks,

showing that the adversarial attacks (FGSM, Deepfool, and Carlini & Wagner) were no longer

effective when the input underwent image transformations before being fed to the model [49].

The most successful image transformations were total variation minimization and image quilting,

as the adversary cannot use them during their attack due to the random property of both

transformations.

3.3.3. Alternate Model Structures

Another category of defenses involves making architectural changes to a DNN to be more robust

against attacks [50]. Structural changes to the model, such as bounding the ReLU activations in

the architecture, are used so that the effects of small perturbations cannot propagate and grow

throughout the network layers [51]. Alternatively, the model structure can be changed to learn

more robust features as a method of adversarial defense [52].

One strategy of defense against adversarial attacks is defensive distillation [53]. Derived from a

technique to reduce the computational complexity of DNNs [54], defensive distillation uses two

models to predict instead of one. The first model is trained as expected, but the last layer (a

softmax layer) is then fed into a second DNN, from which the classification predictions are

derived. Since this technique reduces overfitting and allows models to generalize to new inputs,

the models are also less sensitive to adversarial attacks.

3.3.3.1. Adversarial Training

Adversarial training is a method of increasing the robustness of the model by using adversarial

inputs during model training. It is a method that changes the structure of the model because it

changes the training data used.

The concept began when it was realized that geometric transformations can affect model

performance, and it was discovered that CNNs should be trained on data augmented by these

transformations [55]. This discovery has expanded to recommendations for adversarial

perturbations on a subset of the training data [9]. It is found that training with Gaussian noise can

increase the robustness of a model and requires less work than training model-specific

adversarial examples [51].

Physical perturbations or perturbations implemented in the natural world rather than digitally

have not been analyzed to a great extent in terms of adversarial training [56]. This exposure is

essential because models are only robust against these physical perturbations when similar

examples have been found during training.

Adversarial training has been found to have drawbacks. It has been found that adversarial

training can decrease the model's performance on non-adversarial images, an effect that is

amplified if adversarial perturbations are too excessive [9]. Excessive adversarial training can

reduce the overall robustness of the model [9]. Special care should be taken when determining

the adversarial attacks and perturbations to use during training.

3.3.4. Effectiveness of Defenses

Not all defenses work as cleanly as the original researchers would hope. Rebuttals [57] [8] show

that claims of robustness [51] [37] [46] did not hold when alternative perturbations and

adversarial strategies were used. Much like when dealing with software bugs, it is impossible to

guarantee that a model is fully robust against adversarial attacks, as novel adversarial attacks are

being developed regularly [7].

Even on the MNIST dataset, actual robustness is an unsolved problem. That highlights that we

may be even further off than we think from making other, more complex images resistant to

adversarial attacks [58]. The lack of robustness means deep learning is inappropriate for safety-

critical operations [59]. New detection methods must be determined until robustness can be

guaranteed.

3.4. Model Performance Metrics

Other work has established categories for what performance metrics matter when dealing with

deep learning models. From work on training these deep learning models, the following

categories for performance metrics have been established: CPU utilization, GPU utilization, peak

memory consumption, energy consumption, and throughput [60]

The TensorFlow Profiler [61] is an assortment of tools that characterize hardware usage when

doing deep learning. The abilities of this tool allow the developer to view profiles of the

computing operations and an overview of the model training process [62]. The TensorFlow

Profiler and similar tools are most commonly used to identify bottlenecks during the model

training process [63]. Inference performance is when the model is given data to categorize and

occurs in real-world situations when the model is used as a part of a system.

The Profiler is one of the best tools available, as it integrates with existing frameworks and

models using TensorFlow to get performance data. However, other techniques are possible to

measure the duration and occurrence of (1) reading model parameters into the CPU, (2) copying

model parameters into the GPU, and (3) executing the neural network in the GPU kernels [64].

The CPU, GPU, and throughput performance metrics are identified as the variables to monitor

during the proposed defense technique. CPUs and GPUs are involved in the DNN process [65],

and the usage of these metrics reflects the complexity of the computation they perform [66]. The

timing of these operations has been exploited in other attacks and has revealed details about the

operations occurring [67] [68]. Throughput, or the speed at which the DNN can process input, is

related to the performance and speed of the CPU and GPU.

4. Related Work

Among the wide variation of defenses for adversarial attacks, few directly address the concept of

node pathways and system performance. Despite this, the work that has been done supports the

hypothesis proposed in this work.

4.1. Detecting Adversarial Attacks

As discussed in Section 3.3, detecting adversarial attacks is essential in ensuring security.

Without detection, there is no chance of recovering from the attack. Work has been done to train

a separate neural network to classify whether the data is accurate or contains adversarial

perturbations [69] [70]. Other work relies on other objects in the scene to verify if a detection is

legitimate or potentially the consequence of an adversarial attack [71]. People are researching

new model architectures that are more robust when presented with adversarial examples [72]. K-

nearest neighbor models are used post-classification to see if objects fit with other exemplary

images in their class [73]. The preprocessing of images uses genetic algorithms to filter out

adversarial images [74]. Image transformation successfully detects the presence of adversarial

examples [75].

It has been established that adversarial examples tend to activate a different, less commonly used

pattern of nodes during inference [19]. This was found through the work in developing

DeepFense, a detection algorithm that utilizes patterns of node activation to detect adversarial

attacks at runtime [19]. It utilizes a variable number of defense models that look at various layers

within the model, allowing the detectors to detect suspicious input based on the activation space

without touching the model itself, thus making it much harder for attackers to find perturbations

that will not trigger the defense modules.

The DeepFense algorithm is the closest to the defense method proposed in this work. However,

this proposed method will be a black-box method. Assuming that when non-commonly used

nodes are activated, the model may have a higher memory consumption or a slower throughput,

the proposed defense mechanism uses the performance at inference time to make the same

conclusions about adversarial attacks taking novel pathways as DeepFense.

4.2. Performance Metrics for DL

The only example of work found that looked at hardware state to detect adversarial methods was

in an analysis of adversarial attacks on autonomous driving models [76]. This work proposes a

more detailed look at resource utilization to detect and classify adversarial attacks of all

techniques. Other work has established categories for what performance metrics matter when

dealing with deep learning models. From work on training these deep learning models, the

following categories for performance metrics have been established: CPU utilization, GPU

utilization, peak memory consumption, energy consumption, and throughput [60]

4.3. Alignment

This study is meant to contribute to existing research and protocols for the defense against

evasion adversarial attacks via discussion.

The importance of performance metrics in deep learning [76] [60], along with supporting work

that the pattern of node activation differs between adversarial and non-adversarial examples [18]

[19] and supporting research that shows that both the CPU and GPU have different utilization

under different operations all support the theory that the system performance metrics will reflect

the presence of adversarial input due to the pathways activated by the adversarial input in the

CNNs.

5. Experiment Design

The method detailed in this work is depicted in Figure 5.1. Image data from the MNIST and

CIFAR-10 datasets were used to train separate TensorFlow CNNs. The image data subsets set

aside for testing underwent transformations according to the FGSM, PGD, CW, and DF

adversarial attacks. Repeated tests were done, and system performance metrics were collected.

The system performance metrics were analyzed to determine if there is a statistically significant

and practical difference in the system metrics between adversarial and non-adversarial input.

Figure 5.1 The proposed overarching method for detecting adversarial images

5.1. Environment

All experimentation was conducted via the Google Colab platform [77]. Google Colab was

selected as the computational environment for several reasons. The first reason was the prospect

of using multiple runtime environments, including CPUs, GPUs, and TPUs. Though this

experiment uses a GPU environment, further work on this subject will include various

environments. Additionally, this environment supported the development and testing of

TensorFlow models, which were chosen as a standard model configuration to run this

experiment. Using Google Colab allows future experiments to be run in the same environment,

and results are not bound to the researcher's machine.

5.2. Image Datasets

Two different image classification datasets were used to test the performance metrics of models

on various perturbations. These datasets are the MNIST dataset and the CIFAR-10 dataset. The

MNIST dataset contains grayscale images of handwritten digits. It is a simple classification

dataset and is, therefore, helpful in demonstrating fundamental principles related to computer

vision [4]. The CIFAR-10 dataset, consisting of 32x32 color images, was an example of a

slightly more complex dataset [5]. Though the images are still small, they contain realistic

scenarios and provide a slightly higher level of complexity. These datasets are recognized as

benchmark datasets for the research community, allowing this work to be compared against

others in the domain.

5.3. Model Selection

For each data set chosen, a CNN model was trained until the accuracy on the dataset was 90%

accurate and any increase in accuracy on the validation dataset had plateaued. The CNN model

used multiple convolutional, max-pooling, and fully connected layers. The model architecture

was the same for each dataset, and the only difference was the training data used and the amount

of training provided until each model reached the appropriate accuracy.

5.4. Attack Methods

This study used a diverse set of adversarial attack methods to test the proposed defensive

technique. The details of these attacks are described in Section 3.2.2.

The FGSM is a more straightforward method that does not necessarily find the minimum

perturbation but is a benchmark attack and is used to show the model's vulnerability. The PGD

attack is an iterative attack that assesses the white-box structure of a model to a deeper extent

than the FGSM attack. The CW attack was incorporated into our evaluation due to its

optimization-driven approach, which generates more subtle and tailored adversarial inputs.

Lastly, the DeepFool attack was due to its ability to find a minimal and subtle perturbation using

iterative techniques. These techniques mark a set of the most commonly used attacks. Each

attack is easily implemented, showing how the threat of adversarial attacks is easily accessible to

the would-be attacker.

The general structure of the adversarial attack remained the same on each dataset. Some

parameters were altered so that each attack showed a notable drop in accuracy when possible.

The accuracy of each attack on the CNN model was measured. The model's accuracy when

facing adversarial attacks is a valuable metric for showing the robustness of the model.

Therefore, if an attack decreases the model's accuracy, it is a threat that needs to be detected.

5.5. Adversarial Detection

The novel detection method proposed in this paper focuses on using the model's performance

metrics at inference time. A description of the various performance metrics available is discussed

in Section 3.4.

Resource utilization was analyzed for the Central Processing Unit (CPU) and the Graphics

Processing Unit (GPU). For each test, the average and peak memory usage for both the CPU and

GPU were observed. These metrics were gathered using the psutil tool [78].

Throughput, or the capacity of the model to infer a given number of samples within a

standardized unit of time, was used to indicate the speed and efficiency of the model's

performance. This metric was measured in terms of the number of samples or batches per

second.

A performance metric commonly used yet not implemented in this study is energy consumption

due to logistical constraints. As discussed in Section 5.1, the experiments were conducted using

the cloud resources provided by Google Colab. This environment prevented the collection of

energy consumption data, but the benefits of using the Google Colab platform outweighed the

limitations. Nevertheless, future research should consider using energy consumption as a

potentially valuable performance metric when calculating this performance metric.

5.5.1. Analysis Methods

The performance metrics were first analyzed using the ANOVA test to determine statistical

significance among the various adversarial inputs. The Tukey’s Honestly Significand Difference

test was then used to determine which groups had a significant difference and to what extent.

The ANOVA (Analysis of Variance) statistical test is a method used to analyze differences

among group means in a sample. It was chosen because it can compare the means of three or

more groups, making it an extension of the t-test typically used for comparing two means. This

was relevant for the five categories of adversarial input that were tested. If ANOVA indicates

that at least one group is different from the others, it does not specify which groups are different.

The post-hoc test, Tukey’s Honestly Significant Difference (HSD), was used to pinpoint the

specific groups that differ from each other. Tukey's HSD is designed to control for the type I

error rate (false positive occurrence of significance) and provide pairwise comparisons between

group means to determine which specific groups have significantly different means. This test

determined what adversarial perturbations had a difference in system performance metrics

compared to non-adversarial input.

5.5.2. Experiment 1: Comparing Adversarial and Non-Adversarial Images

In the first experiment, the batches of adversarial and non-adversarial methods were handled

separately. The separation allowed us to analyze the performance metrics of inference without

considering how and when adversarial examples may be introduced during real-time operation.

The inference performance metrics and accuracy were collected and analyzed to determine the

significance of the results.

5.5.3. Experiment 2: Mixing

In the second experiment, a more realistic scenario was performed. In this experiment, the

adversarial attacks were given to the model amongst original, non-adversarial images. This

approach aimed to mimic a real-life scenario where the adversarial attack is only likely to occur

on some of the images. The inference performance metrics and accuracy were collected and

analyzed to determine the significance of the results.

6. Results

Though each test had slightly differing results, this section details the contributing factors to the

conclusion that system performance metrics do not reflect the presence of adversarial input.

6.1. Adversarial Attacks

The difference between the adversarial attacks and the original image can be seen in Figure 6.1.

With both the model trained on MNIST data and the model trained on CIFAR data, they were

each trained until they had at least 90% training accuracy. The training resulted in 99% testing

accuracy for the MNIST model and 63% accuracy for the CIFAR data. The four adversarial

attacks were applied to the testing images to degrade the accuracy of those images. The accuracy

was degraded for all attacks except the Carlini Wagner attack on the MNIST dataset.

Figure 6.1 shows the accuracy of the trained models on original data compared to the four

described adversarial attacks.

The high accuracy of the Carlini Wagner attacks may be due to the models' simplicity. The

simplicity, therefore, prevented the method from finding an optimum perturbation. Despite this,

this range of accuracies gives a variety of situations to test the hypothesis.

6.2. Experiment 1 Results

In experiment 1, adversarial and non-adversarial inputs were tested separately to get a baseline.

In this experiment, for both the MNIST and CIFAR datasets, the images were inferred in batches

by the model and in a singular, one-by-one inference setting.

The results shown in Figure 6.2 show the difference in inference performance metric between the

adversarial and non-adversarial images during the experiment where MNIST images were

provided in batches to the model. The difference between the throughput on original images

when compared with FGSM and PGD attacks is statistically significant. The GPU usage was

consistent across all inputs. In this test, the original images’ throughput was slightly lower than

the FGSM and the PGD attacks. The difference in the mean CPU memory between the original

images and the four adversarial attacks is slight but statistically significant.

Figure 6.2 shows the performance metrics of adversarial attacks compared to the non-adversarial

attacks when MNIST images were sent to the model in batches.

The results shown in Figure 6.3 show the difference in inference performance metric between the

adversarial and non-adversarial images during the experiment where MNIST images were

provided individually to the model for inference. The difference between the throughput on the

original images and those exposed to the FGSM attack significantly differed from all other

throughputs. However, there was not enough variation to be statistically significant for either the

GPU or the CPU usage. The original images had a slightly lower throughput than all adversarial

attacks except for FGSM.

Figure 6.3 shows the performance metrics of adversarial attacks compared to the non-adversarial

attacks when MNIST images were sent to the model individually.

The results shown in Figure 6.4 show the difference in inference performance metric between

the adversarial and non-adversarial images during the experiment where CIFAR-10 images were

provided in batches to the model. The throughput for the original images compared to all

adversarial images was statistically significant, though the GPU and CPU memory usage showed

no differences. The mean throughput for the original images was slightly lower than all the

adversarial images.

 Figure 6.4 shows the performance metrics of adversarial attacks compared to the non-adversarial

attacks when CIFAR images were sent to the model in batches.

The results shown in Figure 6.5 show the difference in inference performance metric between the

adversarial and non-adversarial images during the experiment where CIFAR-10 images were

provided individually to the model. There was no difference in the CPU or GPU memory usage.

For the throughput, all averages were statistically significant in their difference except for the

original images compared to the images that the CW attack had transformed. However, the mean

of the original images throughput was slightly higher than the FGSM and DF throughputs and

slightly lower than the PGD throughputs.

Figure 6.5 shows the performance metrics of adversarial attacks compared to the non-adversarial

attacks when CIFAR images were sent to the model individually.

6.3. Experiment 2 Results

Experiment 2 replicates Experiment 1, except for the way samples were taken. Experiment 1

measured all values in standalone sessions for each adversarial category. In Experiment 2, the

model was fed the original images with interspersed batches or instances of adversarial

examples.

The results shown in Figure 6.6 show the difference in inference performance metric between the

adversarial and non-adversarial images during the experiment where MNIST images were

provided in batches to the model, with adversarial examples sprinkled amongst the original

image batches. None of the system metrics measured showed differences with statistical

significance.

Figure 6.6 shows the performance metrics of adversarial attacks compared to the non-adversarial

attacks when MNIST images were sent to the model in batches.

The results shown in Figure 6.7 show the difference in inference performance metric between the

adversarial and non-adversarial images during the experiment where MNIST images were

provided in batches to the model, with adversarial examples sprinkled amongst the original

image batches. In this scenario, the throughput of original images was statistically significant

compared to the CW and PGD throughputs, with the original throughput slightly higher than the

CW input and slightly lower than the PDG input. Neither the GPU nor CPU memory usage

showed any statistical significance.

Figure 6.7 shows the performance metrics of adversarial attacks compared to the non-adversarial

attacks when MNIST images were sent to the model individually.

The results shown in Figure 6.8 show the difference in inference performance metric between the

adversarial and non-adversarial images during the experiment where CIFAR images were

provided in batches to the model, with adversarial examples sprinkled amongst the original

image batches. In this scenario, the throughput of original images was lower than the throughput

of the PGD images in a statistically significant way. Neither the CPU nor the GPU memory

usage was statistically significant.

 Figure 6.8 shows the performance metrics of adversarial attacks compared to the non-adversarial

attacks when CIFAR images were sent to the model in batches.

The results shown in Figure 6.9 show the difference in inference performance metric between the

adversarial and non-adversarial images during the experiment where CIFAR images were

provided in batches to the model, with adversarial examples sprinkled amongst the original

image batches. The throughput of the original images was higher than the throughput of the CW

images in a statistically significant way. None of the other metrics were statistically significant.

Figure 6.9 shows the performance metrics of adversarial attacks compared to the non-adversarial

attacks when CIFAR images were sent to the model individually.

7. Discussion

When comparing adversarial to non-adversarial input, the results showed no statistical

significance to CPU and GPU usage during the model's inference. In most of the tests, the

throughput of the original images differed from at least one of the adversarial attacks statistically

significantly. However, the difference in throughput is not practically significant for two reasons.

First, the throughput of the original images was not consistently higher or lower than the

throughput of adversarial attacks. Secondly, the difference in average was so slight that a clear

threshold cannot be applied to differentiate between adversarial and non-adversarial input.

Therefore, the hypothesis was disproven that external measures of system performance metrics

during model inference can detect adversarial attacks.

7.1. Future Work

Despite the initial hypothesis not being supported — that system performance metrics could

effectively function as an external-to-the-model measure for detecting adversarial attacks — the

foundational theory of this research still shows significant promise. Future explorations in this

area will first focus on a more nuanced measurement of system performance, particularly

emphasizing enhanced control over key hardware components such as CPUs, GPUs, and

memory caches. This refined approach is expected to enable a more sensitive detection of

anomalies indicative of adversarial attacks.

The key to this approach is the granular monitoring of hardware components. Enhanced control

over CPUs, for instance, involves tracking metrics like clock speed and cache misses, offering

insights into how these components respond under different computational loads, including those

induced by adversarial attacks. Similarly, for GPUs, monitoring core utilization and memory

bandwidth usage can provide indications of atypical patterns during attacks. Close observation of

memory cache behavior is also vital, as variations in cache hits and misses could signify attack

manipulations.

Another potentially promising direction for this research is the exploration of conditional neural

networks. These networks are tailored to activate specific pathways based on predetermined

conditions, optimizing computational efficiency and focus. This ensures that the system only

processes pathways relevant to adversarial attack detection, reducing unnecessary computational

loads and boosting overall system performance.

Incorporating conditional neural networks allows for a dynamic, responsive system that adapts to

varying scenarios and focuses computational resources effectively. This improves detection

efficiency and reduces the likelihood of missing subtle adversarial manipulations. These

networks can be fine-tuned to identify specific adversarial attack patterns, enhancing the system's

ability to differentiate between legitimate and malicious inputs.

This research acknowledges the ongoing challenge of developing effective defenses for DNNs

against adversarial attacks, a task that requires continuous innovation and adaptation. When a

successful detection method is developed, it should not be isolated but integrated with other

defensive strategies, as discussed in Section 3.3. This comprehensive approach is crucial,

recognizing the complexity and evolving nature of adversarial threats in AI and machine

learning. By merging various defensive techniques and refining them continually, the field

progresses towards more secure and resilient DNNs, capable of withstanding the sophisticated

adversarial attacks expected in the future.

8. Conclusion

This work investigated the possibility of using system performance metrics, specifically CPU

usage, GPU usage, and threshold, to determine whether or not a CNN was processing adversarial

input. The hypothesis that system performance metrics would reflect an adversarial attack was

tested using a TensorFlow CNN, the MNIST and CIFAR-10 datasets, and four different

adversarial attacks (FGSM, PGD, CW, and DF). These tests were performed in the Google Colab

environment.

The experiments revealed no significant indicators in the system performance metrics that

adversarial input was present. Despite this setback, future work will continue to evaluate possible

ways to use the system performance metrics to detect and defend against adversarial attacks.

References

[1] T. Diwan, G. Anirudh and J. V. Tembhurne, "Object detection using YOLO: Challenges,

architectural successors, datasets and applications," multimedia Tools and Applications,

vol. 82, no. 6, pp. 9243-9275, 2023.

[2] N. Akhtar and A. Mian, "Threat of Adversarial Attacks on Deep Learning in Computer

Vision: A Survey," IEEE Access, vol. 6, pp. 14410-14430, 2018.

[3] European Union Aviation Safety Agency, "Artificial Intelligence Roadmap 2.0: Human-

centric approach to AI in aviation," 2023.

[4] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to

document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278--2324, 1998.

[5] A. Krizhevsky, G. Hinton and others, "Learning multiple layers of features from tiny

images," 2009.

[6] I. J. Goodfellow, J. Shlens and C. Szegedy, "Explaining and harnessing adversarial

examples," arXiv preprint arXiv:1412.6572, 2014.

[7] A. Mądry, A. Makelov, L. Schmidt, D. Tsipras and A. Vladu, "Towards deep learning

models resistant to adversarial attacks," stat, vol. 1050, p. 9, 2017.

[8] N. Carlini and D. Wagner, "Towards Evaluating the Robustness of Neural Networks," in

2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 2017.

[9] S.-M. Moosavi-Dezfooli, A. Fawzi and P. Frossard, "Deepfool: a simple and accurate

method to fool deep neural networks," in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016.

[10] Z. Li, F. Liu, W. Yang, S. Peng and J. Zhou, "A Survey of Convolutional Neural

Networks: Analysis, Applications, and Prospects," IEEE Transactions on Neural Networks

and Learning Systems, vol. 33, no. 12, pp. 6999-7019, 2022.

[11] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd

Edition, O'Reilly Media, Inc., 2019.

[12] X. Feng, Y. Jiang, X. Yang, M. Du and X. Li, "Computer vision algorithms and hardware

implementations: A survey," Integration, vol. 69, no. C, pp. 309-320, 2019.

[13] Z.-Q. Zhao, P. Zheng, S.-T. Xu and X. Wu, "Object Detection With Deep Learning: A

Review," IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 11,

pp. 3212-3232, 2019.

[14] W. Abbass, Z. Bakraouy, A. Baina and M. Bellafkih, "Classifying IoT security risks using

Deep Learning algorithms," in 2018 6th International Conference on Wireless Networks

and Mobile Communications (WINCOM), Marrakesh, Morocco, 2018.

[15] G. Joshi, R. Walambe and K. Kotecha, "A Review on Explainability in Multimodal Deep

Neural Nets," IEEE Access, vol. 9, pp. 59800-59821, 2021.

[16] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow and R. Fergus,

"Intriguing properties of neural networks," arXiv preprint arXiv:1312.6199, 2013.

[17] T. He, Y. Fan, Y. Qian, T. Tan and K. Yu, "Reshaping deep neural network for fast

decoding by node-pruning," in 2014 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Florence, Italy, 2014.

[18] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su, L. Li and Y. Liu,

"Deepgauge: Multi-granularity testing criteria for deep learning systems," Proceedings of

the 33rd ACM/IEEE international conference on automated software engineering, pp. 120-

131, 2018.

[19] B. D. Rouhani, M. Samragh, M. Javaheripi, T. Javidi and F. Koushanfar, "Deepfense:

Online accelerated defense against adversarial deep learning," in 2018 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), 2018.

[20] S. G. Finlayson, J. D. Bowers, J. Ito, J. L. Zittrain, A. L. Beam and I. S. Kohane,

"Adversarial attacks on medical machine learning," Science, vol. 363, no. 6433, pp. 1287-

1289, 2019.

[21] N. Dalvi, P. Domingos, Mausam, S. Sanghai and D. Verma, "Adversarial Classification,"

in Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Seattle, WA, USA, 2004.

[22] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu and X. Yi, "A

survey of safety and trustworthiness of deep neural networks: Verification, testing,

adversarial attack and defence, and interpretability," Computer Science Review, vol. 37, p.

100270, 2020.

[23] X. Yuan, P. He, Q. Zhu and X. Li, "Adversarial examples: Attacks and defenses for deep

learning," IEEE transactions on neural networks and learning systems, vol. 30, no. 9, pp.

2805--2824, 2019.

[24] F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh and P. McDaniel, "The space of

transferable adversarial examples," arXiv preprint arXiv:1704.03453, 2017.

[25] X. Wei, S. Liang, N. Chen and X. Cao, "Transferable adversarial attacks for image and

video object detection," arXiv preprint arXiv:1811.12641, 2018.

[26] V. Shankar, A. Dave, R. Roelofs, D. Ramanan, B. Recht and L. Schmidt, "A systematic

framework for natural perturbations from videos," in ICML 2019 Workshop on Identifying

and Understanding Deep Learning Phenomena, 2019.

[27] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno

and D. Song, "Robust physical-world attacks on deep learning visual classification," in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2018.

[28] S. Zhou, C. Liu, D. Ye, T. Zhu, W. Zhou and P. S. Yu, "Adversarial attacks and defenses in

deep learning: From a perspective of cybersecurity," ACM Computing Surveys, vol. 55, no.

8, pp. 1-39, 2022.

[29] S. Y. Khamaiseh, D. Bagagem, A. Al-Alaj, M. Mancino and H. W. Alomari, "Adversarial

deep learning: A survey on adversarial attacks and defense mechanisms on image

classification," IEEE Access, 2022.

[30] J. Chen, M. I. Jordan and M. J. Wainwright, "Hopskipjumpattack: A query-efficient

decision-based attack," in 2020 ieee symposium on security and privacy (sp), 2020.

[31] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi and P. Frossard, "Universal adversarial

perturbations," in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2017.

[32] D. Song, K. Eykholt, I. Evtimov, E. a. L. B. Fernandes, A. Rahmati, F. Tramer, A. Prakash

and T. Kohno, "Physical adversarial examples for object detectors," in 12th USENIX

workshop on offensive technologies (WOOT 18), 2018.

[33] J. Wei, Y. Zhang, Z. Zhou, Z. Li and M. A. Al Faruque, "Leaky dnn: Stealing deep-

learning model secret with gpu context-switching side-channel," in 2020 50th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2020.

[34] M. Goldblum, D. Tsipras, C. Xie, X. Chen, A. Schwarzschild, D. Song, A. Mądry, B. Li

and T. Goldstein, "Dataset Security for Machine Learning: Data Poisoning, Backdoor

Attacks, and Defenses," IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 45, no. 2, pp. 1563-1580, 2023.

[35] S. Iserte, F. J. Clemente-Castelló, A. Castelló, R. Mayo and E. S. Quintana-Ortí, "Enabling

GPU Virtualization in Cloud Environments.," in CLOSER (2), 249-256.

[36] J. H. Metzen, T. Genewein, V. Fischer and B. Bischoff, "On Detecting Adversarial

Perturbations," in International Conference on Learning Representations, 2016.

[37] D. Meng and H. Chen, "Magnet: a two-pronged defense against adversarial examples," in

Proceedings of the 2017 ACM SIGSAC conference on computer and communications

security, 2017.

[38] G. Goswami, N. Ratha, A. Agarwal and R. a. V. M. Singh, "Unravelling robustness of deep

learning based face recognition against adversarial attacks," in Proceedings of the AAAI

Conference on Artificial Intelligence, 2018.

[39] P. Yang, J. Chen, C.-J. Hsieh, J.-L. Wang and M. Jordan, "Ml-loo: Detecting adversarial

examples with feature attribution," in Proceedings of the AAAI Conference on Artificial

Intelligence, 2020.

[40] C. Cintas, S. Speakman, V. Akinwande, W. Ogallo, K. Weldemariam, S. Sridharan and E.

McFowland, "Detecting adversarial attacks via subset scanning of autoencoder activations

and reconstruction error," in Proceedings of the Twenty-Ninth International Conference on

International Joint Conferences on Artificial Intelligence, 2021.

[41] P. Ghosh, A. Losalka and M. J. Black, "Resisting adversarial attacks using gaussian

mixture variational autoencoders," in Proceedings of the AAAI conference on artificial

intelligence, 2019.

[42] R. Shao, P. Perera, P. C. Yuen and V. M. Patel, "Open-set adversarial defense with clean-

adversarial mutual learning," International Journal of Computer Vision, vol. 130, no. 4, pp.

1070-1087, 2022.

[43] B. Huang, Y. Wang and W. Wang, "Model-Agnostic Adversarial Detection by Random

Perturbations," in IJCAI, 2019.

[44] F. Craighero, F. Angaroni, F. Stella, C. Damiani, M. Antoniotti and A. Graudenzi, "Unity

is strength: Improving the detection of adversarial examples with ensemble approaches,"

Neurocomputing, vol. 554, p. 126576, 2023.

[45] S. Gu and L. Rigazio, "Towards deep neural network architectures robust to adversarial

examples," arXiv preprint arXiv:1412.5068, 2014.

[46] G. Jin, S. Shen, D. Zhang, F. Dai and Y. Zhang, "Ape-gan: Adversarial perturbation

elimination with gan," in ICASSP 2019-2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2019.

[47] P. Samangouei, M. Kabkab and R. Chellappa, "Defense-gan: Protecting classifiers against

adversarial attacks using generative models," arXiv preprint arXiv:1805.06605, 2018.

[48] Y. Song, T. Kim, S. Nowozin, S. Ermon and N. Kushman, "Pixeldefend: Leveraging

generative models to understand and defend against adversarial examples," arXiv preprint

arXiv:1710.10766, 2017.

[49] C. Guo, M. Rana, M. Cisse and L. Van Der Maaten, "Countering adversarial images using

input transformations," arXiv preprint arXiv:1711.00117, 2017.

[50] H. Qian and M. N. Wegman, "L2-nonexpansive neural networks," in International

Conference on Learning Representations, 2019.

[51] V. Zantedeschi, M.-I. Nicolae and A. Rawat, "Efficient defenses against adversarial

attacks," in Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,

2017.

[52] T. Dai, Y. Feng, B. Chen, J. Lu and S.-T. Xia, "Deep image prior based defense against

adversarial examples," Pattern Recognition, vol. 122, p. 108249, 2022.

[53] N. Papernot, P. McDaniel, X. Wu, S. Jha and A. Swami, "Distillation as a defense to

adversarial perturbations against deep neural networks," in 2016 IEEE symposium on

security and privacy (SP), San Jose, CA, USA, 2016.

[54] G. Hinton, O. Vinyals and J. Dean, "Distilling the knowledge in a neural network," arXiv

preprint arXiv:1503.02531, 2015.

[55] A. Fawzi and P. Frossard, "Manitest: Are classifiers really invariant?," arXiv preprint

arXiv:1507.06535, 2015.

[56] O. Ojaswee, A. Agarwal and N. Ratha, "Benchmarking Image Classifiers for Physical Out-

of-Distribution Examples Detection," in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2023.

[57] N. Carlini and D. Wagner, "Magnet and" efficient defenses against adversarial attacks" are

not robust to adversarial examples," arXiv preprint arXiv:1711.08478, 2017.

[58] L. Schott, J. Rauber, M. Bethge and W. Brendel, "Towards the first adversarially robust

neural network model on MNIST," arXiv preprint arXiv:1805.09190, 2018.

[59] C. Meyers, T. Löfstedt and E. Elmroth, "Safety-critical computer vision: an empirical

survey of adversarial evasion attacks and defenses on computer vision systems," Artificial

Intelligence Review, pp. 1-35, 2023.

[60] J. Liu, J. Liu, W. Du and D. Li, "Performance analysis and characterization of training deep

learning models on mobile device," in 2019 IEEE 25th International Conference on

Parallel and Distributed Systems (ICPADS), 2019.

[61] TensorFlow, "A profiling and performance analysis tool for TensorFlow," 2021. [Online].

Available: https://github.com/tensorflow/profiler.

[62] S. W. D. Chien, A. Podobas, I. B. Peng and S. Markidis, "tf-Darshan: Understanding Fine-

grained I/O Performance in Machine Learning Workloads," in 2020 IEEE International

Conference on Cluster Computing (CLUSTER), Kobe, Japan, 2020.

[63] TensorFlow, "Profile Inference Requests with TensorBoard," [Online]. Available:

https://www.tensorflow.org/tfx/serving/tensorboard.

[64] M. Ji, S. Yi, C. Koo, S. Ahn, D. Seo, N. Dutt and J.-C. Kim, "Demand Layering for Real-

Time DNN Inference with Minimized Memory Usage," in 2022 IEEE Real-Time Systems

Symposium (RTSS), 2022.

[65] A. A. Awan, H. Subramoni and D. K. Panda, "An in-depth performance characterization of

CPU-and GPU-based DNN training on modern architectures," in Proceedings of the

Machine Learning on HPC Environments, 2017.

[66] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M.

Smelyanskiy, S. Chennupaty, P. Hammarlund and others, "Debunking the 100X GPU vs.

CPU myth: an evaluation of throughput computing on CPU and GPU," in Proceedings of

the 37th annual international symposium on Computer architecture, 2010.

[67] G. Zaid, L. Bossuet, A. Habrard and A. Venelli, "Methodology for efficient CNN

architectures in profiling attacks," in IACR Transactions on Cryptographic Hardware and

Embedded Systems, 2020.

[68] Z. Chen, M. Tang, J. Li and others, "Inversion attacks against CNN models based on

timing attack," Security and Communication Networks, vol. 2022, 2022.

[69] J. H. Metzen, T. Genewein, V. Fischer and B. Bischoff, "On detecting adversarial

perturbations," arXiv preprint arXiv:1702.04267, 2017.

[70] F. Carrara, F. Falchi, R. Caldelli, G. Amato, R. Fumarola and R. Becarelli, "Detecting

Adversarial Example Attacks to Deep Neural Networks," in Proceedings of the 15th

International Workshop on Content-Based Multimedia Indexing, Florence, Italy, 2017.

[71] M. Yin, S. Li, Z. Cai, C. Song, M. S. Asif, A. K. Roy-Chowdhury and S. V.

Krishnamurthy, "Exploiting multi-object relationships for detecting adversarial attacks in

complex scenes," in proceedings of the IEEE/CVF international conference on computer

vision, 2021.

[72] P. Harder, F.-J. Pfreundt, M. Keuper and J. Keuper, "SpectralDefense: Detecting

Adversarial Attacks on CNNs in the Fourier Domain," in 2021 International Joint

Conference on Neural Networks (IJCNN), Shenzhen, China, 2021.

[73] G. Cohen, G. Sapiro and R. Giryes, "Detecting adversarial samples using influence

functions and nearest neighbors," in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, 2020.

[74] K. D. Gupta, D. Dasgupta and Z. Akhtar, "Determining sequence of image processing

technique (ipt) to detect adversarial attacks," SN Computer Science, vol. 2, pp. 1-20, 2021.

[75] S. Tian, G. Yang and Y. Cai, "Detecting adversarial examples through image

transformation," in Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[76] Y. Deng, X. Zheng, T. Zhang, C. Chen, G. Lou and M. Kim, "An Analysis of Adversarial

Attacks and Defenses on Autonomous Driving Models," in 2020 IEEE International

Conference on Pervasive Computing and Communications (PerCom), Austin, TX, USA,

2020.

[77] Google, "Google Colaboratory," [Online]. Available: https://colab.research.google.com/.

[78] G. Rodola, "psutil," [Online]. Available: https://github.com/giampaolo/psutil.

[79] A. Yeboah-Ofori, U. M. Ismail, T. Swidurski and F. Opoku-Boateng, "Cyber Threat

Ontology and Adversarial Machine Learning Attacks: Analysis and Prediction

Perturbance," in 2021 International Conference on Computing, Computational Modelling

and Applications (ICCMA), Brest, France, 2021.

[80] V. Mavroeidis and S. Bromander, "Cyber Threat Intelligence Model: An Evaluation of

Taxonomies, Sharing Standards, and Ontologies within Cyber Threat Intelligence," in 2017

European Intelligence and Security Informatics Conference (EISIC), Athens, Greece, 2017.

[81] X. Hu, D. Cheng, J. Chen, X. Jin and B. Wu, "Multiontology Construction and Application

of Threat Model Based on Adversarial Attack and Defense Under ISO/IEC 27032," IEEE

Access, vol. 10, pp. 117955-117972, 2022.

[82] D. P. Pereira, C. Hirata and S. Nadjm-Tehrani, "A STAMP-based ontology approach to

support safety and security analyses," Journal of Information Security and Applications,

vol. 47, pp. 302--319, 2019.

[83] S. Kotyan and D. V. Vargas, "Adversarial Robustness Assessment: Why both L0 and L8

Attacks Are Necessary," arXiv preprint arXiv:1906.06026, 2019.

	A System for the Detection of Adversarial Attacks in Computer Vision via Performance Metrics
	Scholarly Commons Citation

	tmp.1700501915.pdf.2yk0e

