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Numerical Simulations of Snake Dissipative Solitons in Complex Cubic-Quintic
Ginzburg-Landau Equation
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and
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Embry-Riddle Aeronautical University, Daytona Beach, USA

mancass@erau.edu
khana66a@erau.edu

Numerical simulations of the complex cubic-quintic Ginzburg-Landau equation (CCQGLE), a
canonical equation governing the weakly nonlinear behavior of dissipative systems in a wide variety
of disciplines, reveal five entirely novel classes of pulse or solitary waves solutions, viz. pulsating,
creeping, snaking, erupting, and chaotical solitons [9]. Here, we develop a theoretical framework
for analyzing the full spatio-temporal structure of one class of dissipative solution (snaking soliton)
of the CCQGLE using the variational approximation technique and the dynamical systems theory.
The qualitative behavior of the snaking soliton is investigated using the numerical simulations of (a)
the full nonlinear complex partial differential equation and (b) a system of three ordinary differential
equations resulting from the variational approximation.

I. INTRODUCTION

The complex cubic-quintic Ginzburg-Landau equation (CCQGLE) is one of the most widely studied non-
linear equations. In fluid mechanics, it is also often referred to as the Newell-Whitehead equation after the
authors who derived it in the context of Bénard convection. Many basic properties of the equation and its
solutions are reviewed in [2], together with applications to a vast variety of phenomena including nonlinear
waves, second-order phase transitions, superconductivity, superfluidity, Bose-Einstein condensation, liquid
crystals and string theory.

Due to the highly nonlinear nature of the CCQGLE, analytic solutions have been limited to special cases.
Thus, its numerical approximations have become valuable tools in order to better understand the theoretical
insight into the problem. Numerical simulations in [9] identify five entirely novel classes of pulse or solitary
waves solutions, viz. pulsating, creeping, snaking, erupting, and chaotical solitons of the CCQGLE. In
contrast to the regular solitary waves investigated in numerous integrable and non-integrable systems over
the last three decades, these dissipative solitons are not stationary in time. Rather, they are spatially
confined pulse-type structures whose envelopes exhibit complicated temporal dynamics.

In this paper we describe a theoretical framework for analyzing the full spatiotemporal structure of one
class of solitary waves (snaking soliton) of the CCQGLE, and present numerical simulations resulting from
the full nonlinear partial differential equation, as well as systems of ODEs from the variational approximation
technique.

First, we develop and discuss a variational formalism within which to explore the various classes of dissipa-
tive solitons. We find a suitable Lagrangian based on ansatz. Then the resulting Euler-Lagrange equations
are treated in a completely novel way. Rather than considering on the stable fixed points which correspond
to the well-known stationary solitons or plain pulses, we use dynamical systems theory to focus on more
complex attractors viz. periodic, quasiperiodic, and chaotic ones. Periodic evolution of the trial function
parameters on a stable periodic attractor would yield solitons whose amplitudes are non-stationary or time
dependent. In particular, pulsating, snaking (and less easily, creeping) dissipative solitons may be treated
using stable periodic attractors of various trial function parameters. Chaotic evolution of the trial function
parameters would yield to chaotic solitary waves. In the language of the Los Alamos school, the fully spa-
tiotemporal approach followed here may be said to be the “collective coordinates” formulation. In other
words, we consider a pulse or solitary wave at any time as a coherent collective entity (or coordinate). This
solitary wave is then temporally modulated. The spatial approach proposed, and explored, in this paper
is the variational method. However, the method is very significantly and non-trivially generalized from all
earlier applications to deal with our novel classes of dissipative solitary waves.

Next, we solve (a) the initial boundary value problem of the CCQGLE and (b) the initial value problem of
the Euler-Lagrange system resulting from the variational approximation numerically. The numerical scheme



2for the PDE is based on a Finite Difference discretization of the partial differential equation with a low
storage varient explicit Runge-Kutta third order method. The Euler-Lagrange system of ODEs is solved
numerically using the MATLAB’s built-in function ode45.

The remainder of this paper is organized as follows. Section §2 describes briefly the CCQGLE as well as
the classes of its soliton solutions. An ODE system resulting from the generalized variational formulation of
the CCQGLE and Hopf bifurcation theory are also presented here. In section §3 numerical methods for the
IVP and BVP are discussed. Sections §4 and §5 deal with the simulation results from previous section using
the PDE and the variational formulation. Finally, in section §5 we summarize the results and conclude the
paper outlining some further research directions.

II. DESCRIPTION OF CCQGLE

An important element in the long time dynamics of pattern forming systems is a class of solutions which
we call “coherent structures” or solitons. These structure could be a profile of light intensity, temperature,
magnetic field, etc. A dissipative soliton is localized and exists for an extended period of time. Its parts
are experiencing gain/loss of energy or mass with the medium. Thus, energy and matter can flow into the
system through its boundaries. As long as the parameters in the system stay constant, the structure that
could evolve by changing shape exists indefinitely in time. The structure disappears when the source is
switched off, or if the parameters are moved outside the range of existence of the soliton solutions. Since
these dissipative systems include energy exchange with external sources, they are no longer Hamiltonian,
and the solitons solutions in these systems are also qualitatively different from those in Hamiltonian systems.
In Hamiltonian systems, soliton solutions appear as a result of balance between diffraction (dispersion) and
nonlinearity. Diffraction spreads a beam while nonlinearity will focus it and make it narrower. The balance
between the two results in stationary solitary wave solutions, which usually form a one parameter family. In
dissipative systems with gain and loss, in order to have stationary solutions, the gain and loss must be also
balanced. This additional balance results in solutions which are fixed. Then the shape, amplitude and the
width are all completely fixed by the parameters of the dissipative equation. However, the solitons, when
they exist, can again be considered as “modes” of dissipative systems just as for non-dissipative ones.

Recent perturbative treatments based on expressions about the nonlinear Schrödinger equations are gen-
eralized to perturbations of the cubic-quintic and derivative Schrödinger equations. The cubic Ginzburg-
Landau admits a selected range of exact soliton solutions [7]. These exist when certain relations between
parameters are satisfied. However, this certainly does not imply that the equations are integrable. Dissipa-
tive systems, as it is the case with Burger’s equation are integrable. In reality, general dissipative nonlinear
PDEs cannot be reduced to linear equations in any known way, therefore an insight to the type of solutions
that the equation has may be based on numerical simulations.

The simplest mode that can account for this type of behavior is the Ginzburg-Landau model, with the
corresponding cubic-quintic equations in the form [13]

∂tA = εA+ (b1 + ic1)∂2xA− (b3 − ic3)|A|2A− (b5 − ic5)|A|4A. (II.1)

The present study will confine itself to spatially infinite systems in one dimension and will focus primarily
on a spatio-temporal behavior of dissipative solitons. One way to approach this problem and to arrive at
(II.1) is to start with the well known modified Schrödinger equation

∂tA = ic1∂
2
xA+ ic3|A|2A+ ic5|A|4A+ ∂x[(s0 + s2|A|2)A], (II.2)

and to perturb with a dissipative term [6] in special parameter regimes, with terms on the rhs. of (II.2) of
the form f(A) = εA+ b1∂

2
xA− b3|A|2A− b5|A|4A.

The unperturbed system (II.2) leads to an integrable dynamical system whose orbits can be calculated
analytically [4].

The interpretation of the system’s parameters in (II.1) depends on the particular field of work. For
example, in optics, t is the propagation distance or the cavity number, x is the transverse variable, the
angular spectral gain or loss is identified by b1, c1 is the second-order diffraction or linear dispersion, b3
is the nonlinear gain or 2-photon absorption if negative, c3 is the nonlinear dispersion, ε is the difference
between linear gain and loss, b5 represents the saturation of the nonlinear gain, and c5 the saturation of the
nonlinear refractive index. In physical problems, the quintic nonlinearity is even of higher importance than
the cubic one, as it is responsible for stability of localized solutions.



3A special case of (II.1) is the nonlinear Schrödinger equation (ε = b1 = b3 = b5 = c5 = 0, c1 = 1)

∂tA = i∂2xA+ ic3|A|2A (II.3)

which is both Hamiltonian and integrable. Its extension, the quintic-cubic Scrödinger equation (ε = b1 =
b3 = b5 = 0, c1 = 1)

∂tA = i∂2xA+ ic3|A|2A+ ic5|A|4A (II.4)

is Hamiltonian but non-integrable. Other interesting cases are the derivative nonlinear Schrödinger equation

∂tA = i∂2xA+ s0∂xA+ s2∂x(|A|2A) (II.5)

and the combinations of last two, which is the quintic derivative Scrödinger equation

∂tA = i∂2xA+ s0∂xA+ s2∂x(|A|2A) + ic3|A|2A+ ic5|A|4A. (II.6)

A. Euler-Lagrange Equations

Employing the generalized variational formulations and proceeding as in [8], the Lagrangian for the CC-
QGLE (II.1) may be written as [10]

L = r∗
[
∂tA− εA− (b1 + ic1)∂2xA+ (b3 − ic3)|A|2A+ (b5 − ic5)|A|4A

]
+ r
[
∂tA

∗ − εA∗ − (b1 − ic1)∂2xA
∗ + (b3 + ic3)|A|2A∗ + (b5 + ic5)|A|4A∗

]
. (II.7)

Here r is the usual auxiliary equation employed in [8] and it satisfies a perturbative evolution equation
dual to the CCQGLE with all non-Hamiltonian terms reversed in sign. Choosing the single-humped trial
functions of the form:

A(x, t) = A1(t)e−σ1(t)
2[x−φ1(t)]

2

eiα1(t)eiψ(t)
2x2

(II.8)

r(x, t) = e−σ2(t)
2[x−φ2(t)]

2

eiα2(t) (II.9)

where the A1(t) is the amplitude, the σi(t)’s are the inverse widths, φi(t)’s are the positions (with φ̇i(t)

the speed), eiψ(t)
2x2

represents the chirp, αi(t)’s are the phases of the solitons and are all allowed to vary
arbitrarily in time. For now, the chirp terms are omitted for simplicity. Substituting (II.8)/(II.9) in (II.7)



4the effective or averaged Lagrangian is

LEFF =

∫ ∞
−∞

Ldx = 2
√
π

{
− e
−σ1(t)2σ2(t)2[φ1(t)−φ2(t)]2

σ1(t)2+σ2(t)2

[σ1(t)2 + σ2(t)2]
1
2

εA1(t) cos[α1(t)− α2(t)]

+
e
− 3σ1(t)2σ2(t)2[φ1(t)−φ2(t)]2

3σ1(t)2+σ2(t)2[
3σ1(t)2 + σ2(t)2

] 1
2

A1(t)3

[
b3 cos[α1(t)− α2(t)] + c3 sin[α1(t)− α2(t)]

]

+
e
− 5σ1(t)2σ2(t)2[φ1(t)−φ2(t)]2

5σ1(t)2+σ2(t)2[
5σ1(t)2 + σ2(t)2

] 1
2

A1(t)5

[
b5 cos[α1(t)− α2(t)] + c5 sin[α1(t)− α2(t)]

]

+
e
−σ1(t)2σ2(t)2[φ1(t)−φ2(t)]2

σ1(t)2+σ2(t)2[
σ1(t)2 + σ2(t)2

] 5
2

[
cos[α1(t)− α2(t)][σ1(t)2 + σ2(t)2]2Ȧ1(t)

+ A1(t)

(
− 2σ1(t)2σ2(t)2

[
b1 cos[α1(t)− α2(t)]− c1 sin[α1(t)− α2(t)]

][
− σ2(t)2

+ σ1(t)2[−1 + 2σ2(t)2[φ1(t)− φ2(t)]2]
]
− α̇1(t) sin[α1(t)− α2(t)][σ1(t)2 + σ2(t)2]2

− σ1(t)σ̇1(t) cos[α1(t)− α2(t)]
[
σ1(t)2 + σ2(t)2 + 2σ2(t)4[φ1(t)− φ2(t)]2

]
− 2φ̇1(t)σ1(t)2σ2(t)2[φ1(t)− φ2(t)][σ1(t)2 + σ2(t)2] cos[α1(t)− α2(t)]

)]}
. (II.10)

Since (II.10) reveals that only the relative phase α(t) = α1(t)−α2(t), and relative velocity φ(t) = φ1(t)−φ2(t)
of A(x, t) and r(x, t) are relevant, we henceforth rescale them according to

α1(t) = α(t), α2(t) = 0; φ1(t) = φ(t), φ2(t) = 0. (II.11)

Also, for algebraic tractability, we have found it necessary to assume

σ2(t) = σ1(t) ≡ σ(t). (II.12)

While this ties the widths of the A(x, t) and r(x, t) fields together, the loss of generality is acceptable since
the field r(x, t) has no real physical significance. Moreover, for the snaking soliton solutions, we choose
σ(t) = 2/φ(t). By using all these assumptions, the trial functions (II.8)-(II.9) become

A(x, t) = A1(t)e
− 4
φ(t)2

[x−φ(t)]2
eiα(t) (II.13)

r(x, t) = e
− 4
φ(t)2

x2

. (II.14)

Substituting the last two equations into (II.10), the effective Lagrangian becomes

LEFF =

√
π

12e
10
3 φ(t)

[
6e

1
3A1(t)3φ(t)2

(
b3 cosα(t) + c3 sinα(t)

)
+ 2
√

6A1(t)5φ(t)2
(
b5 cosα(t) + c5 sinα(t)

)
− 3
√

2e−
4
3

(
− 2A1(t) sinα(t)

(
− 12c1 + φ(t)2 ˙α(t)

)
+ cosα(t)

(
− 2φ2(t)α̇(t) +A1(t)(24b1 + 2εφ2(t) + 3φ(t)φ̇(t))

))]
. (II.15)



5We are left with three parameters A1(t), φ(t) and α(t) in LEFF . Varying these parameters by using calculus
of variations, we obtain

∂LEFF
∂ ? (t)

− d

dt

(∂LEFF
∂?̇(t)

)
= 0, (II.16)

where ? refers to A1, α, or φ. Solving for ?̇(t), we obtain the following system of three ordinary differential
equations,

Ȧ1(t) = f1[A1(t), α(t), φ(t)]

α̇(t) = f2[A1(t), α(t), φ(t)]

φ̇(t) = f3[A1(t), α(t), φ(t)] (II.17)

where the right hand side f1, f2, f3 of (II.17) are given by

f1 =
1

5
A1(t) secα(t)(3456c1e

8/3 sinα(t)(−b1 cosα(t) + c1 sinα(t))

+A1(t)2φ(t)2(2
√

6e1/3A1(t)4(5b3b5 + 17c3c5 + (3b3b5 − 19c3c5) cos(2α(t))

+(−2b3b5 + 2c3c5) cos(4α(t)) + (b5c3 + b3c5)(11 sin(2α(t))− 2 sin(4α(t))))φ(t)2

+4A1(t)6(4b25 + 13c25 + (2b25 − 15c25) cos(2α(t)) + 2(−b25 + c25) cos(4α(t))

+17b5c5 sin(2α(t))− 4b5c5 sin(4α(t)))φ(t)2 + 3e2/3A1(t)2(3b23 + 11c23
+2(b23 − 6c23) cos(2α(t)) + (−b23 + c23) cos(4α(t))− 2b3c3(−7 sin(2α(t))

+ sin(4α(t))))φ(t)2 + 6
√

2e5/3(6b1b3 − 18c1c3 + 6(b1b3 + c1c3)(2 cos(2α(t))

+ cos(4α(t)))− 48(b3c1 − b1c3) cosα(t)3 sinα(t)− 2ε cosα(t)(b3 cosα(t)

+3c3 sinα(t))φ(t)2) + 4
√

3e4/3A1(t)2(12b1b5 − 36c1c5

+12(b1b5 + c1c5)(2 cos(2α(t)) + cos(4α(t)))− 96(b5c1 − b1c5) cosα(t)3 sinα(t)

−2ε cosα(t)(2b5 cosα(t) + 5c5 sinα(t))φ(t)2)))e−4/3/φ(t)2/(144c1e
4/3 sinα(t)

+A1(t)2(−3
√

2e1/3(−3b3 cosα(t) + b3 cos(3α(t))− 11c3 sinα(t) + c3 sin(3α(t)))

+4
√

3A1(t)2(4b5 cosα(t)− 2b5 cos(3α(t)) + 13c5 sinα(t)

−2c5 sin(3α(t))))φ(t)2) (II.18)

f2 =
1

15
(−72e4/3(b1 − c1 tanα(t)) + (−6e4/3ε+ 9

√
2e1/3A1(t)2(b3 + c3 tanα(t))

+10
√

3A1(t)4(b5 + c5 tanα(t)))φ(t)2)e−4/3/φ(t) (II.19)

f3 =
2

5
(−144c1e

7/3ε cosα(t)−
√

6A1(t)6((b5c3 − 3b3c5) cosα(t)

+(b5c3 + b3c5) cos(3α(t))− 2(b3b5 + c3c5 + (b3b5 − c3c5) cos(2α(t))) sinα(t))φ(t)2

+6
√

2e4/3A1(t)2(12(b3c1 + 3b1c3) cosα(t) + 12(b3c1 − b1c3) cos(3α(t))

+12(b1b3 − 3c1c3) sinα(t) + 12(b1b3 + c1c3) sin(3α(t)) + ε cosα(t)(c3(−2

+ cos(2α(t)))− b3 sin(2α(t)))φ(t)2) + 8
√

3eA1(t)4(36b1c5 cosα(t)

+18(b5c1 − b1c5) cos(3α(t)) + 18(b1b5 − 3c1c5) sinα(t) + 18(b1b5 + c1c5) sin(3α(t))

+ε cosα(t)(−3c5 + 2c5 cos(2α(t))− 2b5 sin(2α(t)))φ(t)2))e−1/(144c1e
4/3 sinα(t)

+A1(t)2(−4
√

2e1/3(−3b3 cosα(t) + b3 cos(3α(t))− 11c3 sinα(t)

+c3 sin(3α(t))) + 4
√

3A1(t)2(4b5 cosα(t)− 2b5 cos(3α(t)) + 13c5 sinα(t)

−2c5 sin(3α(t))))φ(t)2) (II.20)



6B. Hopf Bifurcations

The Euler-Lagrange equations (II.17) are treated in a completely novel way. Rather than considering
the stable fixed points which correspond to the well-known stationary solitons or plain pulses, we use Hopf
bifurcation theory to focus on periodic attractors. Periodic evolution of the trial function parameters on
stable periodic attractors yields the pulsating soliton whose amplitude is non-stationary or time dependent.

We derive the conditions for the temporal Hopf bifurcations of the fixed points. The conditions for super-
critical temporal Hopf bifurcations, leading to stable periodic orbits of A1(t), φ(t), and α(t) can be evaluated
using the method of Multiple Scales, as in [11]. These are the conditions or parameter regimes which exhibit
stable periodic oscillations, and hence stable pulsating solitons will exist within our variational formulation.
Note that, it is easy to verify numerically, periodic oscillations of A1(t), φ(t), and α(t), correspond to a
spatiotemporal pulsating soliton structure of the |A(x, t)| given by (II.8).

The fixed points of (II.17) are given by a complicated system of transcendental equations. These are
solved numerically to obtain results for each particular case.

For a typical fixed point, the characteristic polynomial of the Jacobian matrix of a fixed point of (II.17)
may be expressed as

λ3 + δ1λ
2 + δ2λ+ δ3 = 0 (II.21)

where δi with i = 1...3 depend on the system parameters and the fixed points. Since these are extremely
involved, we omit the actual expressions, and evaluate them numerically where needed.

To be a stable fixed point within the linearized analysis, all the eigenvalues must have negative real parts.
Using the Routh-Hurwitz criterion, the necessary and sufficient conditions for (II.21) to have Re(λ1,2,3) < 0
are:

δ1 > 0, δ3 > 0, δ1δ2 − δ3 > 0. (II.22)

On the contrary, one may have the onset of instability of the plane wave solution occurring in one of the
two ways. In the first, one root of (II.17) (or one eigenvalue of the Jacobian) becomes non-hyperbolic by
going through zero for

δ3 = 0. (II.23)

Equation (II.23) is thus the condition for the onset of “static” instability of the plane wave. Whether this
bifurcation is a pitchfork or transcritical one, and its subcritical or supercritical nature, may be readily
determined by deriving an appropriate canonical system in the vicinity of (II.23) using any of a variety of
normal form or perturbation methods.

One may also have the onset of dynamic instability (“flutter” in the language of Applied Mechanics) when
a pair of eigenvalues of the Jacobian become purely imaginary. The consequent Hopf bifurcation at

δ1δ2 − δ3 = 0 (II.24)

leads to the onset of periodic solutions of (II.17) (dynamic instability or ”flutter”).

III. NUMERICAL METHODS

A. The Initial Boundary Value Problem of the CCQGLE

To obtain the snaking soliton solutions that are periodic and exponentially decaying at infinity, we develop
numerical schemes for the IBVP of (II.1) with A(a, ·) = A(b, ·), and A(0, ·) = A0(·) based on the finite
difference method as described below.

Let h = (b − a)/n be the grid spacing and xj = a + jh, j = 0, 1, · · · , n be the grid points. De-
fine Aj(t) as an approximation to A(xj , t), j = 0, 1, · · · , n, A(t) = (A1(t), · · · , An−1(t))T and A0(x) =
(A0(x1), · · · , A0(xn−1))T . Let F (Aj(t)) = εAj(t) − (b3 − ic3)|Aj(t)|2Aj(t) − (b5 − ic5)|Aj(t)|4Aj(t). Using
the central difference approximation to ∂2xA(xj , t), we write the semi-discretization of the IBVP of (II.1) as



7the following system of ODEs

Ȧ(t) = BA(t) + F(A(t)), ∀t > 0, (III.1)

A(0) = A0, (III.2)

where F(A(t)) = (F (A1(t)), · · · , F (An(t)))
T

. The upper dot in (III.1) indicates derivative with respect
to t and B is the finite difference matrix. To construct an integration scheme to solve the ODE system
(III.1)-(III.2), let tn+1 = tn + ∆t, and let An denote the value of the variable A at time tn. Employing a
low storage varient third-order Runge-Kutta scheme [14], we write the fully discrete system as

Q1 = ∆tG(An), A1 = An + 1
3Q1,

Q2 = ∆tG(A1)− 5
9Q1, A2 = A1 + 15

16Q2,
Q3 = ∆tG(A2)− 153

128Q2, An+1 = A2 + 8
15Q3,

(III.3)

where G(An) = BAn + F(An). The numerical code is parallelized for distributed memory clusters of
processors or heterogeneous networked computers using the MPI (Message Passing Interface) library and
implemented in FORTRAN.

Computations were performed on a Linux cluster (zeus.db.erau.edu: 256 Intel Xeon 3.2GHz 1024 KB
cache 4GB with Myrinet MX, GNU Linux) at Embry-Riddle Aeronautical University.

B. The Initial Value Problem of Euler-Lagrange System

The system of ODEs (II.17) resulting from the variational approximation to the PDE is solved numeri-
cally using the MATLAB’s built-in function ode45 (adaptive fourth- and fifth-order Runge-Kutta-Fehlberg
method). We use equilibrium solution A1(0) = A0

1, α(0) = α0, φ(0) = φ0 of the system (II.17) as the initial
conditions. The numerical solutions An1 , αn, φn giving the approximations to A1(tn), α(tn), φ(tn) are used
to evaluate A(xj , tn), approximation to the snaking soliton solution to the CCQGLE, in the spatial grids xj
at time tn using the following formula

A(xj , tn) = An1 e
−σ2(xj−φn)2eiα

n

,

where σ = 2/φn.

IV. RESULTS AND DISCUSSION

A. Simulations of Snake Solitons using the PDE

The numerical scheme for the PDE described in section §3 is implemented with the following initial
amplitude profile

A(x, 0) = A1e
−σ2(x−φ)2eiα. (IV.1)

We use A1 = 0.583236, φ = 1.05969, α = 0.185515 and σ = 1.8873 as the typical values of the parameters in
(IV.1). These are the values of the fixed point as we will see in the next section. For the system parameters
of the PDE (II.1), initially we use the values listed in Table 1 (see the row for snaking soliton). In [9] five
novel classes of dissipative soliton solutions viz. pulsating, creeping, snaking, exploding and chaotical were
obtained by numerical simulations of the CCQGLE (II.1). Here we present a theoretical formulation to one
class of the solutions, the snake, we perform independent simulations on the full PDE from the ones shown
previously in [1], and we also compare the result with the simulations from the variational approximation.
First, for the simulations on the PDE, we fix a set of system parameters ε, b1, b3, b5, c1, c3, c5 for the
snake soliton from the Table 1. Then, we study the qualitative behavior of the snaking soliton by varying
one parameter at a time. Then, we present the spatio-temporal structure of the snaking soliton in detail
using the numerical simulations of the variational approximation to CCQGLE in the next section. The
spatiotemporal structure of the solitons obtained from the simulations of the partial differential equation
(CCQGLE) is shown in Figs. 1-4. In each of the solitons presented in Figs. 1-4 one of the parameters is
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FIG. 1: Numerical simulation of snaking soliton using the PDE: unperturbed case

TABLE I: Parameters of the CCQGLE

Solitons ε b1 c1 b3 c3 b5 c5

Pulsating -0.1 0.080 0.5 -0.660 1 0.10 -0.100
Creeping -0.1 0.101 0.5 -1.300 1 0.30 -0.101
Snaking -0.1 0.080 0.5 -0.835 1 0.11 -0.080

Exploding -0.1 0.125 0.5 -1.000 1 0.10 -0.600
Chaotical -0.1 0.125 0.5 -0.300 1 0.10 -1.000

perturbed while all the other remaining parameters are chosen from the Table 1 (see the row for the snake
soliton, which is the unperturbed case). Thus, only the perturbed parameter is indicated in the captions to
the figures while the other ones stay unchanged.

FIG. 2: Perturbed snaking soliton using the PDE: Left b3 = −0.8, Right b5 = 0.15

V. SNAKE SOLITONS USING VARIATIONAL APPROXIMATION

In our previous work [10], we looked at stationary soliton solutions of the CCQGLE in the parameter
regimes where they exist. However, these are not the only possible type of solutions. Pulsating solutions
are another example of localized structures. They arise naturally from the stationary ones when the latter
become unstable. Pulsating solitons might have several frequencies in their motions and the solutions will
be quasiperiodic. A relative simpler case is when the motion has two frequencies. Then, we will have a
pulsating soliton [11], which instead of having a zero velocity will move back and forward around a fixed
point. Obviously, there are two frequencies involved in this motion which usually are incommensurate. We
call this type of solitons with more than one frequency a snaking soliton. To capture this, we will use
dynamical systems theory to construct solitons with quasiperiodic behavior.

Stable fixed points of the Euler-Lagrange system (II.17) corresponds to the well-known stationary solitons
or plain pulses. The periodic evolution of A1(t), φ(t), α(t) on stable periodic attractors yields solitons whose
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FIG. 3: Perturbed snaking soliton using the PDE: Left c1 = 0.55, Right c3 = 1.135

FIG. 4: Perturbed snaking soliton using the PDE: Left c5 = −0.06, Right ε = −0.08

amplitude is non-stationary. To derive the conditions for occurrence of stable periodic orbits of A1(t), φ(t),
and α(t), we proceed as follows.

First, we fix a set of system parameters b1 = 0.08, b5 = 0.11, c1 = 0.5, c3 = 1, c5 = −0.08 as in the
case of the full PDE presented in the Table 1. Then, we solve numerically the system of transcendental
equations (II.17), which are the equations of the fixed points. By the Ruth-Hurwitz conditions, the Hopf
curve is defined as δ1δ2 − δ3 = 0. This condition, along with the equations of the fixed points leads to
onset of periodic solutions of (II.17) as we will see next. On the Hopf bifurcation curve we obtain that

FIG. 5: Numerical simulation using the variational approximation: periodic time series of the amplitude A1(t), the
phase α(t) and the position φ(t) on the Hopf curve (Left), spatiotemporal structure of the amplitude |A(x, t)| =

An1 e
−σ2(xj−φn)2 on the Hopf curve (Right).

b3Hopf = −1.89646, and εHopf = −0.297393, while the fixed points are A1(0) = 0.583236, φ(0) = 1.05969,
and α(0) = 0.185515. For these values of b3Hopf and εHopf , which are two free bifurcation parameters,
we integrate numerically the systems of 3 ODEs (II.17), using as initial conditions the three values of the
fixed points, to find the trial function’s periodic functions. Hopf bifurcations occur in this system leading
to periodic orbits. These are the conditions which exhibit periodic oscillations, and hence stable snaking
solitons will exist within our variational formulation.



10Next, we plot the time series for the amplitude A1(t), the phase α(t) and the position φ(t) on the Hopf
curve and the results are presented in Fig. 5 (Left). As expected, we noticed that the amplitude is small,
since the maximum height of the snaking soliton is proportional to the square root of the distance from the

Hopf curve. The corresponding spatio-temporal structure of the ansatz |A(x, t)| = An1 e
−σ2(xj−φn)2 on the

Hopf curve is shown in Fig. 5 (Right). Notice in the figure very small undulations in amplitude.
To construct snake solitons with amplitudes large enough, we had to move away from the Hopf curve,

as much as possible, but at the same time to be sure not to be outside of the parameters ranges for the
existence of the snaking soliton. That could be achieved by varying one or more of the system parameters.
First, we varied the first bifurcation parameter ε, slowly away from the Hopf curve where b3 = b3Hopf , and
ε = εHopf , and we noticed that the snaking soliton had very small amplitude of A1(t). Since the soliton in
this case had only a magnitude of only 10−4, we decided to vary the second bifurcation parameter b3, which
stands for the cubic gain when negative. We found that the domain of existence for the snaking soliton as a
function of b3 was [−2.25234,−0.143456], passing through the Hopf curve value of b3Hopf = −1.89646. For
the unperturbed values of b3 = −0.835, and ε = −0.1, we numerically integrate the Euler-Lagrange system
of ODEs (II.17) using the Matlab’s built-in function ode45 and we plot the periodic orbit, which is shown in
Fig. 6 (Left), while the resulting periodic time series for A1(t), α(t), and φ(t) are shown in Fig. 6 (Right).
The resulting time series are then substituted back in the ansatz (II.13) and the spatiotemporal structure
|A(x, t)| of the snaking soliton obtained by the variational formulation is presented in Fig. 7. As the various
system parameters c1, c3, c5, b1, b3, b5, and ε within the stable regime are varied, the effects of the amplitude,
position, width (and, less importantly, phase) may also be studied, and this is discussed subsequently. As

FIG. 6: Numerical simulation using the variational approximation for the snake of Fig. 1: periodic orbit or limit
cycle (Left), periodic time series for A1(t), α(t), and φ(t) (Right)

FIG. 7: Snake soliton using the ODEs (variational approximation): unperturbed case

observed from the simulations of the full PDE and ODEs system, the snaking soliton obtained from the
ODE system (II.17) qualitatively agree for a short time to the solution of the complex nonlinear PDE (II.1).
Let us take a closer look to the snake solitons shown in Figs. 7–10. The soliton now “snakes” or wiggles as



11its position varies periodically in time. Note that the amplitude |A(t)| varies periodically as A1(t) varies,
but there would be additional amplitude modulation due to the periodic variation of φ(t). Next, we shall
consider the effect of all the various parameters in the CCQGLE (II.1) on the shape (amplitude, position,
phase, period) and stability of the snake.

In considering the parameter effects on snake shape and period, note that the wave is a spatially coherent
structure (or a “collective coordinate” given by the trial function) whose parameters oscillate in time. Hence,
the temporal period of the snake is the same as the period T of the oscillations of A1(t), φ(t), and α(t) on
their limit cycle. As for the peak amplitude and peak position of the snake, these are determined by the
peak amplitude A1p of A1(t), and the peak position φp of φ(t) respectively. Notice that from (II.13) we
can regard the width and the amplitude of the snake as being inversely proportional to position φ(t) for the
snake i.e., at any time t when the amplitude is minimum, the width will be minimum, so the position is
maximum and vice versa. So, maximum deflection from the horizontal position x = const. is obtained when
the position of the snake is maximum, and hence the width and amplitude are minimum.

Keeping the above in mind, we vary the parameters of the CCQGLE in turn and we observe the resulting
effects on A1p (the peak amplitude), φp (the position), and T (the temporal period) of the snake soliton:

(i) For increased b1, the values of A1p, φp, and T all increase.

(ii) Increasing b3 augments all of A1p, φp, and T .

(iii) Increasing b5 increases all of A1p, φp, and T .

(iv) Raising c1 increases A1p, φp, but decreases T .

(v) Incrementing c3 decreases all of A1p, φp, and T .

(vi) Augmenting c5 causes a decrease in A1p, φp, and increases T .

(vii) Raising ε causes A1p, σp to rise, but T to fall.

FIG. 8: Snake soliton using the ODEs (variational approximation): Left b3 = −0.6, Right b5 = 0.62

The above constitute our detailed predictions of the various parameters in the CCQGLE on the amplitude,
position, and temporal width of the snake solitons. We have verified that each set of predictions (i)-(vii)
above agree when the corresponding parameter is varied in the solitary wave simulation for the full PDE.
Note also that A1(t) and φ(t) are always in phase, so that A1p and φp occur simultaneously. Thus, the
snaking solitons are tallest where they have the greatest width. This is completely consistent with our
simulation, as well as those in [3].
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FIG. 9: Snake soliton using the ODEs (variational approximation): Left c1 = 0.55, Right c3 = 2

FIG. 10: Snake soliton using the ODEs (variational approximation): Left c5 = 0.8, Right ε = −0.08

VI. CONCLUSION

In this paper we discussed a brief theoretical framework for analyzing the full spatiotemporal structure of
one class of solitary waves (snaking soliton) in the CCQGLE and presented some numerical simulations of
dissipative snaking soliton solutions to the CCQGLE. The results obtained analytically using the variational
approximation for the snaking soliton is compared with the numerical simulations of the CCQGLE. The
specific theoretical modeling includes the use of a recent variational formulation and significantly generalized
trial function for the solitary waves solutions. In addition, the resulting Euler-Lagrange equations are
treated in an entirely different way by looking at their stable periodic solutions (or limit cycles) resulting
from supercritical Hopf bifurcations. Oscillations of their trial function parameters on these limit cycles
provide the pulsations of the amplitude, width/position, and phase of the solitons. The model also allows
for detailed predictions regarding the other types of solitons i.e., pulsating, chaotical and creeping.

In the future, we will explore on the (2D) solutions called spinning solitons as well as the (3D) solutions
called optical bullets. These depict a confined spatiotemporal soliton in which the balance between the
focusing nonlinearity and the spreading while propagating through medium provides the shape of a bullet
[5, 12].

[1] N. Akhmediev, J. M. Soto-Crespo, and G. Town. Pulsating solitons, chaotic solitons, period doubling, and pulse
coexistence in mode–locked laser: CGLE approach. Phys. Rev.E, 63:56602, 2001.

[2] I.S. Aranson and L.Kramer. The world of the Complex Ginzburg–Landau equation. Rev. Mod. Phys., 74:99,
2002.

[3] D. Artigas, L. Torner, and N. Akhmediev. Robust heteroclinic cycles in the one-dimension CGLE. Opt. Comm.,
143:322, 1997.

[4] F. Cariello and M. Tabor. Painlev expansions for non–integrable evolution equations. Physica D, 39:77, 1989.



13[5] L. Crasovan, B. Malomed, and D. Mihalache. Spinning solitons in cubic–quintic nonlinear media. Pramana
J.Phys., 57:1041, 2001.

[6] S. Fauve and O. Thual. Solitary waves generated by subcritical instabilities in dissipative systems. Phys. Rev.
Lett., 64:282, 1990.

[7] N. Akhmediev K. Maruno, A. Ankiewicz. Exact soliton solutions of the one–dimensional complex Swift-
Hohenberg equation. Physica D, 176:44, 2003.

[8] D.J. Kaup and B.A. Malomed. The variational principle for nonlinear waves in dissipative systems. Physica D,
87:155, 1995.

[9] H. Khanal and S. Mancas. Numerical Simulations of Five Novel Classes of Dissipative Solitons. Proceedings
of the 2008 International Conference on Computational and Mathematical Methods in Science and Engineering,
2:354, 2008.

[10] S.C. Mancas. Dissipative solitons in the cubic–quintic complex Ginzburg–Landau equation: bifurcations and
spatiotemporal structure. PhD thesis, University of Central Florida, 2007.

[11] S.C. Mancas and S. R. Choudhury. A novel variational approach to pulsating solitons in the cubic–quintic
Ginzburg–Landau equation. Teoreticheskaya i Matematicheskaya Fizika, 152:339, 2007.

[12] J.M. Soto-Crespo, N. Akhmediev, and P. Grelu. Optical bullets and double bullet complexes in dissipative
systems. Phys.Rev.E, 74:046612, 2006.

[13] W. van Saarloos and P.C. Hohenberg. Fronts, pulses, sources and sinks in generalized complex Ginzburg–Landau
equation. Phys.D, 56:303, 1992.

[14] J. Williamson. Low-storage Runge-Kutta schemes. J. Comp. Phys., 35:48, 1980.


	Numerical Simulations of Snake Dissipative Solitons in Complex Cubic-Quintic Ginzburg-Landau Equation
	Scholarly Commons Citation

	I Introduction
	II Description of CCQGLE
	A Euler-Lagrange Equations
	B Hopf Bifurcations

	III Numerical Methods
	A The Initial Boundary Value Problem of the CCQGLE
	B The Initial Value Problem of Euler-Lagrange System

	IV Results and Discussion
	A Simulations of Snake Solitons using the PDE

	V Snake Solitons using Variational Approximation
	VI Conclusion
	 References

