
Doctoral Dissertations and Master's Theses

Fall 2023

Online Aircraft System Identification Using a Novel Parameter Online Aircraft System Identification Using a Novel Parameter

Informed Reinforcement Learning Method Informed Reinforcement Learning Method

Nathan Schaff
Embry-Riddle Aeronautical University, schaffn@my.erau.edu

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Artificial Intelligence and Robotics Commons, Navigation, Guidance, Control and Dynamics

Commons, and the Theory and Algorithms Commons

Scholarly Commons Citation Scholarly Commons Citation
Schaff, Nathan, "Online Aircraft System Identification Using a Novel Parameter Informed Reinforcement
Learning Method" (2023). Doctoral Dissertations and Master's Theses. 779.
https://commons.erau.edu/edt/779

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons.
For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=commons.erau.edu%2Fedt%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/226?utm_source=commons.erau.edu%2Fedt%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/226?utm_source=commons.erau.edu%2Fedt%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=commons.erau.edu%2Fedt%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/779?utm_source=commons.erau.edu%2Fedt%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

By

A Thesis Submitted to the Faculty of Embry-Riddle Aeronautical University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Aerospace Engineering

Embry-Riddle Aeronautical University

Daytona Beach, Florida

By

THESIS COMMITTEE

Graduate Program Coordinator,
Dr. Daewon Kim

Date

Dean of the College of Engineering,
Dr. James W. Gregory

Date

Associate Provost of Academic Support,
Dr. Christopher Grant

Date

To my cats, Sean and Athena, who forced me to take breaks when I truly needed them

ACKNOWLEDGMENTS

Words cannot express the debt I owe to all those that have helped me through this thesis and

its associated degree. I want to thank my incredible family and friends for giving me the love and

confidence I needed to press through when I was sure there was not enough time left to finish this

thesis. I have to thank my mother for leading by example both as a respected academic but also

as a kind and loving person. To my father, who inspired me to become an engineer by taking me

to every engineering museum in the area, wherever we were, I am forever grateful for the sense of

fascination you gave me when looking at the world around me. I must also thank my sibling Chloe;

without your encouragement, support, and curiosity I would not be where I am today. I must as

well thank my incredible girlfriend who supported me through this thesis from beginning to end,

through the ups and downs, and whose faith in me never wavered even when mine did.

Finally, I have to thank my advisor Dr Richard Prazenica who this thesis would not have been

possible without. He allowed me to grow and learn independently when I could and gave me the

support and guidance I needed when I could not. I also must thank Dr. K. Merve Dogan and Dr.

Hever Moncayo, my committee members who provided valuable guidance and feedback.

i

ABSTRACT

This thesis presents the development and analysis of a novel method for training reinforcement

learning neural networks for online aircraft system identification of multiple similar linear systems,

such as all fixed wing aircraft. This approach, termed Parameter Informed Reinforcement Learning

(PIRL), dictates that reinforcement learning neural networks should be trained using input and

output trajectory/history data as is convention; however, the PIRL method also includes any known

and relevant aircraft parameters, such as airspeed, altitude, center of gravity location and/or others.

Through this, the PIRL Agent is better suited to identify novel/test-set aircraft.

First, the PIRL method is applied to mass-spring-damper systems with differing mass, spring

constants, and damper constants. The reinforcement learning agent is trained using a random value

for each constant within a fixed range. It is then tested over that same range as well as constants

with a variation of three times the trained range. The effect of varying hyperparameters for the

reinforcement learning agent was observed as well as the performance of the agent with added

sensor noise and with reduced PIRL parameters. These initial studies show that PIRL is able to

create accurate models within a short timeframe. They additionally demonstrate robustness to

significant sensor noise.

Second, a linear fixed wing aircraft longitudinal flight model is used to evaluate the effectiveness

of PIRL in the context of aircraft system identification. The reinforcement learning agent is provided

with simulated flight test data generated using stability and control parameters obtained using the

United States Air Force’s Stability and Control Digital DATCOM. Nine aircraft are selected as

training aircraft and one for testing. The agent is trained with each training episode comprising a

randomly chosen aircraft from the set and its dynamics model is used to generate artificial online

flight data. PIRL was evaluated with respect to its accuracy and speed of convergence and was found

to generate models that are more accurate than those obtained using conventional reinforcement

learning and extended Kalman filters.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . i

ABSTRACT . ii

TABLE OF CONTENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . xi

NOMENCLATURE . xiii

1 Introduction . 1

1.1 System Identification . 1

1.2 Reinforcement Learning . 2

1.3 Objectives and Methodology . 2

1.4 Parameter Informed Reinforcement Learning (PIRL) 3

1.5 Organization of Thesis . 3

2 Literature Review . 4

2.1 State of System Identification . 4

2.1.1 Extended Kalman Filter . 5

2.1.2 Recursive Least Squares Filter . 5

2.1.3 Frequency Domain System Identification 6

2.2 Reinforcement Learning . 6

2.2.1 Use of Reinforcement Learning in the Aerospace Industry 7

2.2.2 Use of Reinforcement Learning in System Identification 8

3 Environment 1: Mass-Spring-Damper . 9

iii

3.1 System Model . 9

3.2 Implementation of Reinforcement Learning . 11

3.2.1 RL Agent Type (DDPG) . 11

3.2.2 Network Architecture . 12

3.2.3 Implementation of PIRL . 12

3.2.4 RL Agent Inputs . 12

3.2.5 RL Agent Outputs . 14

3.2.6 Reward Function . 14

3.2.7 Other Hyperparameters . 15

3.2.8 Simulink Implementation . 16

3.2.9 Training and Testing Method . 23

3.3 Results . 25

3.3.1 Performance Comparison of PIRL to Existing Systems 25

3.3.2 Effect of Hyperparameters . 48

3.3.3 Effect of Environmental Variables . 83

3.4 Conclusion . 89

4 Environment 2: Longitudinal Aircraft Model . 91

4.1 System Model . 91

4.2 Training and Testing Data . 92

4.3 Implementation of Reinforcement Learning . 94

4.3.1 Learning Method (DDPG) . 94

4.3.2 Network Architecture . 94

iv

4.3.3 Implementation of PIRL . 95

4.3.4 RL Agent Inputs . 95

4.3.5 RL Agent Outputs . 96

4.3.6 Reward Function . 97

4.3.7 Other Hyperparameters . 99

4.3.8 Simulink Implementation . 100

4.3.9 Training and Testing Method . 106

4.4 Results . 106

4.4.1 RL Agent Training Curve . 107

4.4.2 Performance on a Random System . 108

4.4.3 Performance on 100 Systems . 111

4.4.4 Comparison to Existing Systems . 113

4.5 Conclusion . 119

5 Conclusions and Future Research . 121

5.1 Conclusions . 121

5.1.1 Environment 1: Mass-Spring-Damper . 122

5.1.2 Environment 2: Longitudinal Flight Model 122

5.2 Future Research . 123

REFERENCES . 125

A Programs Used For Environments . 129

A.1 Mass Spring Damper Code . 129

A.1.1 One-Time Training of Fixed Reward . 129

A.1.2 One-Time Execution RL Agent . 134

v

A.1.3 Optimal RL Agent Training . 137

A.1.4 Optimal RL Agent Training - Range of Variation 147

A.1.5 Extended Kalman Filter Implementation 157

A.2 Longitudinal Flight Model Code . 161

A.2.1 DATCOM Data Generation and Storage Code 161

A.2.2 RL Agent Training Code . 185

A.2.3 RL Agent Testing Code . 195

B DATCOM Files . 200

B.1 Training . 200

B.1.1 Beechcraft B99 . 200

B.1.2 Boeing 737 . 202

B.1.3 Beechcraft T34C . 204

B.1.4 Cessna 182 . 206

B.1.5 Cessna Citation I . 208

B.1.6 Cessna Citation II 550 . 210

B.1.7 Ryan Navion . 212

B.1.8 North American P51 . 214

B.1.9 Northrop T38 . 216

B.2 Testing . 218

B.2.1 Learjet 35 . 218

vi

LIST OF FIGURES

Figure Page

Figure 1.1 Reinforcement Learning Cycle [6] . 2

Figure 3.1 Mass-Spring-Damper . 9

Figure 3.2 Error Calculation Method . 13

Figure 3.3 RL Agent’s Observation . 13

Figure 3.4 RL Agent’s Reward Function . 15

Figure 3.5 Overall Implementation of PIRL . 18

Figure 3.6 Unknown Parameter Extractor Subsystem . 19

Figure 3.7 State Space Model Subsystem . 20

Figure 3.8 Exciter Subsystem . 20

Figure 3.9 Observation Window Subsystem . 21

Figure 3.10 Constructing Trial Matrices Subsystem . 22

Figure 3.11 Reward Function Subsystem . 23

Figure 3.12 Training Curve Threshold and its Impact on Performance 24

Figure 3.13 PIRL - Training Curve . 26

Figure 3.14 PIRL - Random Sample - Sum of Errors of A21, A22, and B21 27

Figure 3.15 PIRL - Random Sample - Input Signals to RL Agent 28

Figure 3.16 PIRL - Random Sample - History of True States and RL Agent Trial States . . . 29

Figure 3.17 PIRL - Random Sample - Percentage Error of Trial and True Values in System

Model . 31

Figure 3.18 PIRL - Upper Limit - Sum of Errors of A21, A22, and B21 33

Figure 3.19 PIRL - Upper Limit - Input Signals to RL Agent 34

Figure 3.20 PIRL - Upper Limit - State History of True States and RL Agent Trial States . . 34

Figure 3.21 PIRL - Upper Limit - Percentage Error of Trial and True Values in System Model 35

vii

Figure Page

Figure 3.22 PIRL - Lower Limit - Sum of Errors of A21, A22, and B21 36

Figure 3.23 PIRL - Lower Limit - Input Signals to RL Agent 37

Figure 3.24 PIRL - Lower Limit - State History of True States and RL Agent Trial States . . 37

Figure 3.25 PIRL - Lower Limit - Percentage Error of Trial and True Values in System Model 38

Figure 3.26 PIRL - Triple Range - Upper Limit - Sum of Errors of A21, A22, and B21 . . . 39

Figure 3.27 PIRL - Triple Range - Upper Limit - State History of True States and RL Agent

Trial States . 40

Figure 3.28 PIRL - Triple Range - Upper Limit - Percentage Error of Trial and True Values

in System Model . 40

Figure 3.29 PIRL - Triple Range - Lower Limit - State History of True States and RL Agent

Trial States . 42

Figure 3.30 PIRL - Triple Range - Lower Limit - Percentage Error of Trial and True Values

in System Model . 42

Figure 3.31 Extended Kalman Filter State Estimation Example 46

Figure 3.32 Extended Kalman Filter System Identification Example 47

Figure 3.33 Episode Reward Threshold and Performance 51

Figure 3.34 Episode Reward Threshold and Required Training Episodes 51

Figure 3.35 Average Reward and Episode Reward Threshold Performance 53

Figure 3.36 Average Reward and Episode Reward Threshold Required Training Episodes . . 54

Figure 3.37 0.1 Second Sample Time Training Curve . 56

Figure 3.38 0.5 Second Sample Time Training Curve . 56

Figure 3.39 0.1 Second Sum of Errors . 57

Figure 3.40 0.5 Second Sum of Errors . 58

Figure 3.41 0.1 Second Reward Function . 59

Figure 3.42 0.5 Second Reward Function . 59

viii

Figure Page

Figure 3.43 Modified Reward Function . 60

Figure 3.44 0.1 Second Sum of Errors (Modified Reward Function) 62

Figure 3.45 0.5 Second Sum of Errors (Modified Reward Function) 63

Figure 3.46 0.1 Second Sum of Errors (Modified Reward Function, Low Constant Values) . 63

Figure 3.47 0.5 Second Sum of Errors (Modified Reward Function, Low Constant Values) . 64

Figure 3.48 0.1 Second Sum of Errors (Modified Reward Function, High Constant Values) . 64

Figure 3.49 0.5 Second Sum of Errors (Modified Reward Function, High Constant Values) . 65

Figure 3.50 0.1 Second Sum of Errors (Modified Reward Function, Triple Low Constant

Values) . 65

Figure 3.51 0.5 Second Sum of Errors (Modified Reward Function, Triple Low Constant

Values) . 66

Figure 3.52 0.1 Second Sum of Errors (Modified Reward Function, Triple High Constant

Values) . 66

Figure 3.53 0.5 Second Sum of Errors (Modified Reward Function, Triple High Constant

Values) . 67

Figure 3.54 Effect of Neuron Count Per Layer on Performance 70

Figure 3.55 Effect of Neuron Count Per Layer on Performance - Reduced Axes 70

Figure 3.56 Effect of Discount Factor on Performance . 72

Figure 3.57 Noise Variance: Impact on Performance . 74

Figure 3.58 Effect of Noise Decay Rate on Performance 76

Figure 3.59 Original Observation Window . 77

Figure 3.60 64 Length Augmented Observation Window 78

Figure 3.61 Original Observation Window Input Data . 79

Figure 3.62 64 Length Augmented Observation Window Input Data 79

Figure 3.63 Effect of Observation Window Length on Accuracy 81

ix

Figure Page

Figure 3.64 Simulink for 0.5 s Interval . 82

Figure 3.65 0.5 s Interval Observation Window Input Data 83

Figure 3.66 SNR 40dB . 86

Figure 3.67 SNR 10dB . 87

Figure 4.1 Error Calculation Method . 95

Figure 4.2 RL Agent’s Observation . 96

Figure 4.3 RL Agent’s Reward Function . 99

Figure 4.4 Overall Implementation of PIRL . 100

Figure 4.5 Unknown Parameter Extractor Subsystem . 101

Figure 4.6 State Space Model Subsystem . 102

Figure 4.7 Observation Generation Subsystem . 103

Figure 4.8 Constructing Trial Matrices Subsystem . 104

Figure 4.9 Reward Function Subsystem . 105

Figure 4.10 Divergence Break Subsystem . 106

Figure 4.11 PIRL - Training Curve . 108

Figure 4.12 Random Flight Condition - Trial A Values . 110

Figure 4.13 Random Flight Condition - Trial B Values . 111

Figure 4.14 Conventional Reinforcement Learning Training Curve 114

Figure 4.15 Error Trajectories of Non-PIRL Agent on a Randomly Selected Test Database

System (A Matrix Values) . 115

Figure 4.16 Error Trajectories of Non-PIRL Agent on a Randomly Selected Test Database

System (B Matrix Values) . 116

x

LIST OF TABLES

Table Page

Table 3.1 Effect of Parameter Range on A and B Matrices 11

Table 3.2 Effect of Parameter Range on Natural Frequency and Damping Ratio 11

Table 3.3 Hyperparameters used for RL Agent Training 16

Table 3.4 Sample Constants for MSD . 27

Table 3.5 PIRL Agent Performance of 100 Systems Within Training Range 32

Table 3.6 PIRL RL Agent Performance at Maximum Parameter Values 32

Table 3.7 PIRL Agent Performance at Minimum Parameter Values 36

Table 3.8 PIRL Agent Performance at Triple Max Parameter Values 39

Table 3.9 PIRL Agent Performance at Triple Minimum Parameter Values 41

Table 3.10 PIRL Agent Vs. Conventional RL Agent . 43

Table 3.11 EKF Average Error Example . 47

Table 3.12 EKF Average Error (Converged) Example . 48

Table 3.13 Comparison of EKF to PIRL . 48

Table 3.14 Effect of Episode Reward Threshold . 49

Table 3.15 Effect of Average Reward Threshold . 52

Table 3.16 Effect of Sample Time . 55

Table 3.17 Effect of Sample Time with Modified Reward Function 61

Table 3.18 Effect of Sample Time with Maximum Performance Test 61

Table 3.19 Effect of Neuron Architecture . 69

Table 3.20 Discount Factor . 72

Table 3.21 Effect of Noise Variance . 74

Table 3.22 Effect of Noise Decay Rate . 75

Table 3.23 Effect of Observation Window Length . 80

xi

Table Page

Table 3.24 Effect of Observation Window Interval . 83

Table 3.25 Effect of Greater Variation in Parameters . 84

Table 3.26 Effect of Greater Variation in Parameters - Conventional RL 85

Table 3.27 Effect of Sensor Noise . 88

Table 3.28 Effect of Reduced Parameters for PIRL . 88

Table 4.1 Training and Testing Aircraft - General Information 93

Table 4.2 Hyperparameters used for RL Agent Training 99

Table 4.3 Random Sample Flight Condition . 109

Table 4.4 PIRL RL Agent Percentage Accuracy Across 100 Randomly Selected Flight

Conditions . 112

Table 4.5 Coefficients of Variance in Testing and Training Data 112

Table 4.6 PIRL Agent Vs. Conventional RL Agent . 114

Table 4.7 PIRL RL Agent Vs. Extended Kalman Filter 119

xii

NOMENCLATURE

ω0 MSD Natural Frequency

ζ MSD Damping Ratio

δe Change in Elevator Deflection (From Trim)

δt Change in Throttle Input (From Trim)

θ Pitch (From Trim)

θ∗ Longitudinal Pitch Trim Angle

A System Matrix

AT Trial System Matrix

Ahat Trial System Matrix (Label in Simulink)

B Input Matrix

b Damping Constant in MSD

BT Trial Input Matrix

Bhat Trial Input Matrix (Label in Simulink)

C Output Matrix

D Feedthrough Matrix

dt EKF Time Step Interval

EN Final Episode Number

F Jacobian of A Matrix With Respect to X

g Acceleration Due to Gravity

xiii

h Altitude (From Trim)

I Identity Matrix

K Kalman Gain

k EKF Time Step

k Spring Constant in MSD

m Mass of Mass in MSD

Mδe Aircraft Input Derivative

Mq Aircraft Stability Derivative

Mu Aircraft Stability Derivative

Mw Aircraft Stability Derivative

MPV Maximum Possible Value

P Error Covariance Matrix

Q Process Noise Covariance Matrix

q Pitch Rate

R Reward Value

R Sensor Noise Covariance Matrix

RLO Reinforcement Learning Agent Output

Tf Episode Length/Final Time

Ts Sample Time of RL Agent

U Control Input Vector

xiv

u Control Input Force in MSD

u Horizontal Speed (From Trim) in LFM

u∗ Horizontal Trim Speed in LFM

UMV Unknown Matrix Value

w Vertical Speed (From Trim) in LFM

w∗ Vertical Trim Speed in LFM

X State Vector

x Position of Mass in MSD

Xδe Aircraft Input Derivative

Xδt Aircraft Input Derivative

Xq Aircraft Stability Derivative

Xu Aircraft Stability Derivative

Xw Aircraft Stability Derivative

Y Output Vector

Zδe Aircraft Input Derivative

Zq Aircraft Stability Derivative

Zu Aircraft Stability Derivative

Zw Aircraft Stability Derivative

AI Artificial Intelligence

CG Center of Gravity

xv

DDPG Deep Deterministic Policy Gradient

EKF Extended Kalman Filter

LFM Longitudinal Flight Model

MSD Mass-Spring-Damper

PINN Physics Informed Neural Network

PIRL Parameter Informed Reinforcement Learning

ReLU Rectified Linear Unit

RL Reinforcement Learning

RLS Recursive Least Squares

SYSID System Identification

xvi

1 Introduction

In the field of aviation, there exist scenarios in which generating a mathematical model of the

aircraft quickly and accurately while the aircraft is currently flying is of significant value. This

problem is known as Online Aircraft System Identification and its solutions have relevance in flight

testing and fault tolerance. An aircraft being evaluated and tested must have its exact performance

and abilities documented across a spectrum of flight conditions. This involves generating a number

of environment-specific flight models, and the quicker these can be generated, the more time and

cost efficient the flight testing is. If an aircraft were to suffer a fault of some kind, it may be of

significant value to be able to generate a replacement model that more accurately represents the

dynamics of the post-fault system. This problem of how to best generate quick and accurate flight

models has motivated, in this thesis, the development of a novel implementation of reinforcement

learning known as Parameter Informed Reinforcement Learning (PIRL)1. This algorithm differs

from conventional reinforcement learning in that it augments the reinforcement learning agent’s

inputs with additional readily available relevant aircraft parameters, thereby enabling the agent

to be applied to novel aircraft without retraining. It should be noted that while, theoretically

this algorithm could be applied to online learning, this thesis concerns online application of the

algorithm following offline training.

1.1 System Identification

System identification (SYSID) refers to the algorithms and methods developed to generate

mathematical models for an unknown system based on information regarding the system’s inputs

and outputs. The field traces its origins to Lagrange’s Harmonic analysis of planetary motion,

wherein a more accurate understanding of planetary motion was sought [1]. SYSID plays a

significant role in the aerospace industry, where specifically online identification of aircraft system

parameters can reduce flight test costs as well as provide the ability to update the system model in

response to changing flight conditions [2], fuel or payload expenditure [3], or failures [4].

1This is not to be confused with the related Physics Informed Reinforcement Learning

1

1.2 Reinforcement Learning

Reinforcement Learning (RL) refers to a subset of artificial intelligence (AI) and machine

learning in which algorithms attempt to complete tasks and learn through rewards based on their

performances. Development of RL can be traced to developments in optimal control as well

as artificial intelligence, and the field was established as it is known today in the 1980s [5].

Reinforcement Learning functions by creating an Agent that receives input data relating to a given

Environment. This Agent takes an action of some kind and is rewarded based on the effect of this

action. This cycle can be seen in Figure 1.1. RL differs from supervised learning in that there is no

correct answer for the Agent to find; rather, it must try different actions with the goal of maximizing

its total reward. This makes RL a different type of artificial intelligence compared to most existing

AI algorithms [5].

Figure 1.1 Reinforcement Learning Cycle [6]

1.3 Objectives and Methodology

The purpose of this thesis is to develop and investigate a novel implementation of Reinforcement

Learning named Parameter Informed Reinforcement Learning (PIRL) and evaluate its effectiveness

at rapid online SYSID. The PIRL algorithm is implemented and optimized using two different sys-

tems, a mass-spring-damper and a longitudinal flight model, and in each is tasked with determining

system parameters. It is the purpose of this investigation to determine the effectiveness of PIRL

2

and how it compares to other existing algorithms, namely, conventional reinforcement learning and

extended Kalman filters.

1.4 Parameter Informed Reinforcement Learning (PIRL)

Parameter Informed Reinforcement Learning (PIRL) was developed from the hypothesis that

an RL Agent trained for SYSID on a variety of systems that are similar to each other should be able

to develop a general model of the parameters therein. This would allow an AI system to perform

SYSID faster and more accurately than conventional methods. The performance of this system

could theoretically then be improved if the AI was informed by any known system parameters

that may be relevant. For example, knowledge of an aircraft’s wingspan may allow the RL Agent

to better identify parameters relating to control force and roll damping. This task can be solved

using supervised as well as reinforcement learning; however, reinforcement learning was ultimately

selected due to its ability to learn online.

1.5 Organization of Thesis

This thesis is organized into five sections, beginning with the introduction. Chapter Two

provides a review of the literature related to this work. This includes existing SYSID methods

as well as others’ implementation of RL for SYSID. Chapter Three includes a detailed analysis

of PIRL’s effectiveness on a Mass-Spring-Damper system. This includes discussion of system

dynamics, methods of RL implementation, effectiveness of the method, as well as an analysis of

the effect of variations of hyperparameters. Chapter Four includes a similar discussion as Chapter

Three, but the system used is a fixed wing longitudinal aircraft model. Chapter Five will summarize

the conclusions of the results of PIRL applied to both systems as well as recommendations for future

work.

3

2 Literature Review

The purpose of this chapter is to examine the current research into system identification methods

and specifically reinforcement learning for the purpose of system identification.

2.1 State of System Identification

The concept of system identification refers to the creation of mathematical models of dynamical

systems using the inputs and observed outputs of a given system [7]. The motivation for these

methods is that, while mathematical models of dynamical systems can often be theoretically

obtained through an understanding of the underlying physical relationships, this is often difficult

for complex systems such as the dynamics of an aircraft, and as a result, these models often

have a degree of error. An aircraft’s dynamics are determined by the aircraft geometry, loading

and aerodynamic environment, all of which make the task of developing simple mathematical

relationships between the vehicle and its dynamics without test data difficult, if not impossible.

While only formally established in the 1950s, using data to create models of motion has

been in practice since the 1770s when Lagrange sought models of planetary motion [1]. System

identification can be performed with a number of different methods including the Extended Kalman

Filter [8], Least Mean Square Methods [9], Model Reference Methods [10], Frequency-Based

Methods [11], and Reinforcement Learning (RL) [12–15]. Each method possesses advantages and

certain disadvantages over its counterparts.

This thesis concerns the development of algorithms that apply to a variety of similar systems

and are able to perform system identification to a satisfactory extent on this collection of systems.

For example, such an algorithm could be applied on all fixed wing aircraft, given their similar

dynamics, instead of one aircraft alone. In the process of conducting this literature review, to

the best of the author’s knowledge, no research concerning the development or implementation of

these algorithms was found in terms of performing SYSID on multiple related systems. Thus, this

literature review concerns the application of system identification algorithms to single systems.

4

2.1.1 Extended Kalman Filter

One common method for performing SYSID is the Extended Kalman Filter (EKF). The EKF

was originally designed for the state estimation of nonlinear systems, but it can be extended to

system identification by expanding the dynamics of the system to include the unknown parameters

as states themselves. These parameter states are then propagated via the EKF algorithm and the

system is progressively identified. While the extension from a Kalman Filter to an Extended

Kalman Filter no longer guarantees optimal state estimation, EKFs have been shown to be effective

for system identification by a number of authors. For example, Bauer and Andrisani used the EKF

to identify a short period aircraft system [8]. Nonomura, Shibata, and Takaki used an EKF both

to denoise the data as well as perform system identification [16]. Abas et al. found the EKF to

be a computationally effective and cost effective solution for identifying a quadcopter UAV model

[17]. Extended Kalman Filters have some limitations in their implementations. Basappa and

Jategaonkar found that, when using an EKF to estimate aircraft longitudinal and lateral dynamics,

the EKF performs poorly with imperfect tuning information, specifically with regard to its noise

covariances [18].

2.1.2 Recursive Least Squares Filter

Another common method for system identification is applying the Recursive Least Squares

(RLS) Filter. RLS Filtering works by minimizing a weighted linear least squares cost function.

The RLS Filter has been shown to be effective in performing system identification in a number

of different environments. Choi et al. found that a linearized RLS was effective in identifying

road-friction coefficients quickly and accurately [19]. RLS Filters can be modified or combined

with other methods to suit specific applications. For instance, they can be modified and applied to

identifying nonlinear systems. In their 2017 paper, Ding et al. reported that their implementation

of an RLS Filter was effective at identifying nonlinear industrial systems and that their proposed

implementation of the algorithm was more accurate than the generalized RLS method [20]. Ad-

ditionally, the RLS method can be combined with a Kalman Filter to increase its accuracy as was

done by De Souza et al. in their 2021 paper [21]. They found that using a Kalman Filter to

5

determine the regressor matrix and parameter vector improved its performance over a conventional

RLS . RLS methods can also be combined with artificial intelligence as was used by Li et al. when

they combined RLS and neural networks to better refine vehicle-trajectory prediction to support

autonomous vehicle operation [22].

RLS methods have been shown to be accurate in aerospace applications. Kamali, Pashilkar,

and Raol, found in their 2006 study, that their implementation of RLS was accurate and, in

contrast to the Kalman filter, did not require tuning. Additionally, their RLS algorithm was able

to identify longitudinal and lateral parameters without calibrated angle of attack or sideslip angle

measurements, making their implementation fault-tolerant [23].

2.1.3 Frequency Domain System Identification

While methods such as the Extended Kalman Filter typically are implemented with time domain

data, system identification is often performed using frequency domain methods. Guo and Kareem

found that frequency domain methods were effective in modeling the changing behavior of bridges

and buildings when subjected to different environments [24]. In the aerospace field, frequency

domain methods have been used to estimate the flight models of various aircraft. Morelli compared

the use of frequency domain methods to other time domain methods and found that the frequency

methods had improved prediction capability when applied to the Tu-144LL Supersonic Transport

Aircraft [25]. Morelli’s later 2020 paper Practical Aspects of Frequency-Domain Approaches for

Aircraft System Identification demonstrated how using frequency domain solutions can reduce the

dimensionality of the data analyzed and allow for simpler noise rejection and online parameter

identification [26].

2.2 Reinforcement Learning

Reinforcement Learning is a method of problem solving derived from trial and error. It traces

its roots to the fields of optimal control as well as artificial intelligence, and reinforcement learning

was established as it is known today in the late 1980s [5]. RL works by having an ’Agent’ that

interacts with a given environment through actions. Based on the outcome of these actions, a

reward of some kind is given to the Agent. This reward is defined by a mathematical function, and

6

the RL Agent seeks to maximize this by performing better and better actions. Through this process,

the RL Agent learns which actions, or series of actions, produce the highest reward and thus can

solve complex problems. This makes RL a different type of artificial intelligence compared to most

existing AI algorithms, and makes it uniquely suited to problems where a ’correct answer’ cannot

be easily defined [5].

Reinforcement learning, due to its general applicability, has seen new developments, especially

in recent years. The type of RL Agent implemented in this thesis, Deep Deterministic Policy

Gradient (DDPG), was created by Lilicrap et al. in 2015 [27]. This type of RL Agent allows for

a continuous action space. Without this, RL algorithms would instead select their actions based

on a number of discrete choices. This is sufficient for a number of common AI problems and

allows reinforcement learning to be applied to classification or recommendation problems but it is

unsuitable for system identification and other continuous problems.

DDPGs have since been applied to a number of different fields, including energy management

[28], stock-trading/finance [29], path-planning [30], and system identification [31]. They have been

shown to be accurate, robust to environmental disturbances, and to perform well with real-world

systems and data.

2.2.1 Use of Reinforcement Learning in the Aerospace Industry

While not as ubiquitous as conventional supervised learning, reinforcement learning has been

implemented in a number of aerospace industry applications. In Aoun’s 2021 thesis, he demon-

strated that reinforcement learning could be applied to the problem of fault-tolerance in quadcopter

platforms [32]. The RL Agent was able to reject disturbances successfully if applied to a stable

or stabilized environment. Reinforcement Learning has also been applied as a higher level control

law selector and optimal launch time estimator in target-missile-defender problems. Shalumov

demonstrated that reinforcement learning methods were shown to be close to optimal in this appli-

cation based on the selected cost function [33]. Reinforcement Learning was shown in this paper

to be especially effective against more difficult missiles that changed their control law to avoid

interception. When combined with online applicability, this made reinforcement learning a useful

7

asset for missile interception.

2.2.2 Use of Reinforcement Learning in System Identification

Reinforcement learning in general has often been used for system identification with much

success; however, much of this research focuses exclusively on using the input and output histories

of the system [12, 34]. Less research, if any, has been conducted on using RL for SYSID where the

agent is informed by the system inputs and outputs as well as any parameters known to influence the

dynamics of the system. In a mass-spring-damper, this could be the mass, spring constant, and/or

damping constants. In an aircraft’s short period (pitch) mode, this could be the Center of Gravity

(CG) expressed in Per Cent Mean Aerodynamic Chord (MAC), or the aircraft’s mass moment of

inertia about the Y axis. These parameters help determine the dynamics of the system, and thus

it is hypothesized that this Parameter Informed Reinforcement Learning (PIRL) method will allow

the agent to rapidly create an accurate system model. Furthermore, no research appears to have

been conducted regarding the use of AI or RL to a broad class of similar systems.

8

3 Environment 1: Mass-Spring-Damper

The Mass-Spring-Damper (MSD) is a physical representation of a linear damped oscillator.

Given this fact, it is analogous to a number of simple one degree of freedom systems. For this

reason, it has been chosen as the first system in which PIRL will be trialed. A simple system

such as this is used to allow for the development and optimization of PIRL. While the algorithm is

explicitly defined, many of the RL Agent’s hyperparameters must be tuned for ideal results.

3.1 System Model

The physical MSD system can be seen in Figure 3.1.

Figure 3.1 Mass-Spring-Damper

The associated dynamics of the mass-spring-damper system are given in Equation 3.1:

m
d2 x

dt2
+ b

dx

dt
+ kx = u (3.1)

where x is the position of the mass (in meters), k refers to the spring constant (in newtons/meter),

b refers to the damping constant (in newton-seconds/meter), m refers to the mass (in kilograms),

and u refers to the control input force (in Newtons). It should be noted that this does not refer to a

9

specific system but rather the family of systems created by altering the mass, spring constant, and

damper constant. Equation 3.1 can be written in state-space form in Equations 3.2 and 3.3:

Ẋ = AX +BU (3.2)

Y = CX +DU (3.3)

where X is the state vector composed of the position and velocity, U refers to the control input

vector, and Y refers to the measured output vector, which in this case corresponds to the position

and velocity. A, B, C, and D are arbitrary matrices that determine the specific system. For this

experiment, they are defined as follows in Equation 3.4:

A =

 0 1

−k/m −b/m

 , B =

 0

1/m

 , C =

1 0

0 1

 , D =

0
0

 (3.4)

The RL Agent is tasked with finding the A and B matrices and does this by generating trial A and

B matrices with specific values assigned as unknowns to be estimated. This implementation makes

the PIRL Agent a physics-informed neural network. The trial system is defined in Equation 3.5:

AT =

 0 1

A21 A22

 , BT =

 0

B21

 , C =

1 0

0 1

 , D =

0
0

 (3.5)

where A21, A22, and B21 are unknowns in the system dynamics.

The three parameters of the true system (m, k, b) are chosen at random within a predetermined

range. PIRL is based on the idea that an RL Agent can take an ’informed guess’ at the parameters of

the system as it has seen similar ones in the past. To represent this concept, each value is assigned

as a random number between 0.9 and 1.1. These values remain consistent through each training

episode and change between episodes. The effect this range has on the A and B matrices can be

10

seen in Table 3.1. It should be noted that minimum and maximum values are with respect to their

magnitudes. The effect of the parameter range on the system’s natural frequency and damping ratio

is shown in Table 3.2. These values were calculated with Equations 3.6 and 3.7.

Table 3.1 Effect of Parameter Range on A and B Matrices
Matrix Minimum Maximum Minimum Possible Maximum Possible
Entry Possible Value Possible Value Per Cent Change Per Cent Change
A21 -0.8182 -1.2222 -18.18% +22.22%
A22 -0.8182 -1.2222 -18.18% +22.22%
B21 0.9091 1.1111 -9.09% +11.11%

Table 3.2 Effect of Parameter Range on Natural Frequency and Damping Ratio
Natural Frequency Damping Ratio

No Variation Value 1 0.5
Minimum Possible Value 0.9045 0.4091
Maximum Possible Value 1.1055 0.6111
Minimum Possible Per Cent Change -9.55% -18.18%
Maximum Possible Per Cent Change +10.55% +22.22%

ω0 =

√
k

m
(3.6)

ζ =
b

2
√
mk

(3.7)

3.2 Implementation of Reinforcement Learning

The RL Agent’s performance is impacted by a variety of factors including its learning method,

architecture, input structure, output interpretation, and a wide range of tunable hyperparameters.

3.2.1 RL Agent Type (DDPG)

The RL Agent was chosen to be a Deep Deterministic Policy Gradient (DDPG). A DDPG is

a model-free, actor-critic RL method. DDPGs differ from other learning methods in that they

11

offer continuous outputs as opposed to discrete. This is ideal for SYSID wherein the outputs are

continuous by design. DDPG networks also support continuous or discrete observation spaces,

which is well suited to the task of time-series based SYSID.

3.2.2 Network Architecture

The Network Architecture is important to the effectiveness of the Agent. If the architecture is

too simplistic/too small, the network may not have the required complexity to accurately create a

policy function. If it is too complicated/too large, then the network may suffer from exceptionally

long training times and overly burdensome computational loads. This would make any practical

online implementation of the network difficult. With these two factors in mind, the critic network

was constructed with a variety of fully connected layers of 20 nodes each with Rectified Linear

Unit (ReLU) layers in between. The actor network was simpler with only a 3 node fully connected

layer and a hyperbolic tangent layer. This structure was chosen as it was sufficiently complex for

the task of system identification and the ReLU layers in particular would support noise-robustness.

3.2.3 Implementation of PIRL

Parameter Informed Reinforcement Learning is implemented within the RL Agent’s observa-

tions. The chosen parameters that are deemed relevant to the system model and can be obtained

easily are provided as additional inputs to the RL Agent at each time-step. For the MSD, the

parameters have been chosen to be m, k, and b, or mass, spring-constant, and damper-constant.

Given the system model in Equation 3.4, these parameters are sufficient to determine the system

model and thus represent a best-case-scenario for the effectiveness of PIRL. It should be noted that

any practical scenarios will not have such directly relevant information. For this reason, tests of

PIRL’s effectiveness with some variables missing are also conducted, as well as tests without PIRL

altogether to test if PIRL is a contributing factor to the SYSID performance or just the RL Agent.

3.2.4 RL Agent Inputs

The RL Agent observes a state history (position and velocity of the mass) of the last second in

0.1 second intervals. It also observes an error history of the last second in 0.1 second intervals.

The error history is calculated by propagating the last state through the trial matrices to create a

trial current state. The error is the difference between this trial state and the true, measured state.

12

It should be noted that the trial system states are not propagated through the trial matrices again to

generate the next error value. The current measured state is used instead. Otherwise, this would

effectively be assigning the RL Agent the task of SYSID as well as to drive the system by altering

its parameters to the true system if its guesses have caused it to deviate. This is outside the scope

of SYSID. The error calculation method is illustrated in Figure 3.2.

Figure 3.2 Error Calculation Method

It should be noted that in a real system, state histories may not be obtainable and one must use

output histories. In this work, it is assumed that the states are directly measured as outputs and thus

the C matrices are set to be identity for the true and trial systems.

Finally, the PIRL inputs are added into the observations along with the control input. The RL

Agent’s Observations can be seen in Figure 3.3.

Figure 3.3 RL Agent’s Observation

13

3.2.5 RL Agent Outputs

The RL Agent has a 3 x 1 array output, where the first term corresponds to A21, the second

to A22, and the third to B21, as seen in Equation 3.5. This is then constructed in full A and B

trial matrices, which are used to create the new observation and error observation windows. In this

manner, the PIRL Agent takes the form of a physics-informed neural network (PINN). PINNs are

neural networks that are able to leverage existing knowledge of physical systems, typically through

some form of differential equation that the neural network is encoded with [35]. By making the

output of the PIRL Agent values in a state-space dynamics representation, it is a PINN.

3.2.6 Reward Function

The Reward Function is the negative of the sum of the absolute values of the differences between

the trial and true matrices. The specific reward calculation subsystem in the Simulink file can be

seen in Figure 3.4. The Figure shows a Simulink implementation of Equation 3.8 where the summed

differences of the unknown system values and the estimated values comprise the reward function

signal. Note that values of the trial matrices are denoted in the Simulink with ’hat’. This reward

was chosen as it penalizes any error between the true system and the trial system.

Reward = −(|B21 −B21T |+ |A21 − A21T |+ |A22 − A22T |) (3.8)

Consideration was made to a variety of other reward functions, such as to penalize the cumulative

sum of the error between the trial system states and the true system states, or alternatively to

include a time penalty to reward faster convergence to the true value. These were ultimately not

implemented. For the first option, while this reward function carries the benefit that it theoretically

allows for completely online continuous learning, it also has the drawback of not directly penalizing

differences in the trial and true system. This could lead to the RL Agent outputting similar system

dynamics but with very different state-space representations due to the lack of a uniqueness of this

state-space representation. It also would mean that the RL Agent would not have direct feedback.

This would likely slow the learning process. The second option was ultimately not implemented

as there was already an existing penalty for inaccuracies in the current reward function; therefore,

14

this addition would not be worth the added complexity in the system.

Figure 3.4 RL Agent’s Reward Function

3.2.7 Other Hyperparameters

All other hyperparameters used to create the network have been listed in Table 3.3. Unless oth-

erwise stated, all RL Agents were trained and implemented using these hyperparameters. Sample

time, which refers to the rate at which the RL Agent is activated, was chosen to be 0.1 seconds as

this was not computationally expensive and allowed for 500 feedback iterations every episode. The

final time, which controls the duration of each episode, was chosen as 50 seconds as this would

theoretically allow for any transient responses to decay fully. The target smooth factor, mini batch

size, experience buffer length, critic learn rate and critic gradient threshold, actor learn rate and

actor gradient threshold were all left at their default values for DDPGs. These values are all related

to very specific tuning of the DDPG learning process and this degree of tuning was not ultimately

required. Discount factor refers to how the RL Agent is rewarded during the episode. It affects

whether the RL Agent will prioritize immediate rewards or long-term rewards. Noise variance and

noise decay rate are tunable hyperparameters that affect the exploration versus exploitation of the

RL Agent. They influence the noise that is added to RL Agent’s output which ensures that the RL

Agent explores different options. The maximum episode number is a hyperparameter that controls

the maximum number of episodes the RL Agent will be trained with before training is completed.

15

Table 3.3 Hyperparameters used for RL Agent Training
Parameter Purpose Value
Sample Time Rate at Which the Agent is Activated 0.1s
Final Time Total Time for Each Training Episode 50s
Target Smooth Factor Related to Overfitting 1e-3
Discount Factor Priority for Immediate Rewards 0.95
Mini Batch Size Related to Training 64
Experience Buffer Length Related to Training 1e6
Noise Variance Related to Exploration Vs. Exploitation 0.3
Noise Variance Decay Rate Related to Exploration Vs. Exploitation 1e-5
Critic Learn Rate Learning Rate for Critic Network 1e-3
Critic Gradient Threshold Related to Learning Rate 1
Actor Learn Rate Learning Rate for Actor Network 1e-3
Actor Gradient Threshold Related to Learning Rate 1
Max Episodes Maximum Training Episodes 8000

3.2.8 Simulink Implementation

The Simulink model used to implement PIRL on the MSD environment is shown in Figures

3.5 to 3.11. It should be noted that ’hat’ denotes the trial systems and associated signals. Figure

3.5 shows the Simulink diagram in its entirety. It can be seen in the upper left that the random

values for m, k, and b are generated, vertically concatenated, and sent to the observation window

from the Unknown Parameter Extractor. This connection is the key distinction of PIRL compared

to other RL systems. The A and B matrices formed from the sampled m, k, and b values are sent

to the State Space Model as well as the Reward Function. In the State Space Model, they are used

to simulate the true system, and in the Reward Function, they are compared to the RL Agent’s trial

matrices to create the reward.

The State Space Model receives the sampled A and B matrices, the control input from the

Exciter, and the trial A and B matrices and outputs the Y and Yhat signals that correspond to the

observed outputs from the true system and the trial system. These signals are then differenced to

create an error signal. The error signal as well as the true state output are inputted into a multiplexer

(Mux) port, which is then an input for the observation window Subsystem. This process creates the

state and error data that the observation window Subsystem converts into state and error histories.

The Exciter Subsystem generates the control input. It is composed of the superposition of

16

three sine waves. The three sinusoids are used to excite the system to generate sufficient outputs

for identification. The control input signal ’U’ is additionally used as an input to the observation

window.

The RL Agent block can be seen in the bottom right of the figure. It receives as inputs the

Obs signal from the Observation Window Subsystem, the Reward signal from the Reward Function

Subsystem as well as the isdone signal from a timer. The isdone signal determines if the RL Agent

has irrecoverably deviated from its intended purpose during an episode and that the episode should

therefore be ended early. This behavior was not observed during any training and thus the isdone

signal is used as a timer to end the simulation after 50 seconds.

The RL Agent outputs the A21, A22, and B21 values, which are demultiplexed and used as

inputs for the Generating Trial Matrices Subsystem. These trial matrices are then connected to the

State Space Model to generate the trial observation: Yhat. Finally, the Reward Function Subsystem

receives the A, B, Ahat and Bhat signals as its inputs and from these generates the reward signal

that is provided as an input to the RL Agent

Figure 3.6 shows the Unknown Parameter Extractor Subsystem. On the left is the x0 variable

which is reset each episode with the mass, spring constant, and damping constant assigned as a

random sample within the predetermined ranges. This variable is assigned through Simulink’s

Reinforcement Learning Environment’s Reset Function. Each value is then extracted and assigned

to an output that will be used in the Observation Window Subsystem. The necessary operations to

convert the constants into the true values of A21, A22, and B21 are then executed and the matrices

are concatenated with relevant predefined constants to create the true A and B matrices. These are

then assigned to an output for use in the Reward Function and State Space Subsystem.

17

Figure 3.5 Overall Implementation of PIRL

18

Figure 3.6 Unknown Parameter Extractor Subsystem

19

Figure 3.7 State Space Model Subsystem

The State Space Subsystem can be seen in Figure 3.7. It receives as inputs the A, B, Ahat,

Bhat and U signals. These are then applied as is conventional for a state space model following

Equations 3.2 and 3.3. The Y and Yhat signals are then assigned to outputs to be used by the

Observation Window Subsystem

Figure 3.8 Exciter Subsystem

The excitation function is shown in Figure 3.8. The Exciter Subsystem generates the control

inputs that excite the system with the frequencies necessary to allow the RL Agent to identify the

unknown system matrices. Three sine functions have been chosen for the excitation function and

can be seen to be summed and assigned an output. Each sine function has an amplitude of 1 with

frequencies of 1, 2, and 3 Hz respectively. The control input is provided as an equation in Equation

3.9

20

U = sin(2πt) + sin(4πt) + sin(6πt) (3.9)

Figure 3.9 Observation Window Subsystem

Figure 3.9 shows the Observation Window Subsystem. This subsystem receives the parameters

of PIRL, the control input, and state and error data as its inputs. The parameters and control inputs

are multiplexed into the observation window as is, while the state and error data are propagated

through a series of delay blocks. This creates a window of observation of the last second in 0.1

second intervals. The observation window is multiplexed with the parameters and control input

and assigned to the Obs output. This output signal is then connected to the RL Agent.

21

Figure 3.10 Constructing Trial Matrices Subsystem

The Constructing Trial Matrices Subsystem can be seen in Figure 3.10. The Subsystem has 3

inputs, all of which are the demultiplexed outputs from the RL Agent. To combine these outputs

into the trial matrices, the RL Agent’s first two outputs are concatenated vertically to create the

bottom row of the A matrix while the top row is created by extracting it from the Ahat matrix that

is stored in the program’s memory. Bhat’s top row follows a similar process. This initial Ahat and

Bhat values can be seen in Equation 3.10. An alternative to this method would be to create the Ahat

and Bhat matrices as concatenations of the RL Agent outputs and constants; however, the method

shown was chosen for its ability to be easily applied to different, more complex, systems.

Ahat =

0 1

0 0

 , Bhat =

0
0

 (3.10)

22

Figure 3.11 Reward Function Subsystem

The Reward Function Subsystem is shown in Figure 3.11. In this subsystem, it can be seen that

the A and Ahat matrices, as well as the B and Bhat matrices, are differenced and the absolute value

of these differences are squared and summed to create a total error. RL Agents require a reward

function to increase in value with improvement so this sum signal is multiplied by a gain of negative

one to ensure that increases in accuracy lead to a higher value. This signal is then fed through an

integrator and differentiator block to prevent an algebraic loop from occurring. A memory cell or

delay block would also serve this purpose.

3.2.9 Training and Testing Method

The quality of the results found in a test are limited by the quality of the test conducted. There

are many ways to train and test an RL Agent and great care must be given to selecting an appropriate

testing method or the effect that one seeks may not be captured. For many tests, the RL Agents

were trained to reach an Episode Reward of -50 and then saved for later evaluation. This is termed

the -50 Test. The test was effective for observing how the RL Agents learned and what variables

impacted their learning rates; however, this test was ultimately unable to show the effect of changes

to hyperparameters and other variables on RL Agent performance as the -50 threshold places a

maximum limit on performance. This means that, even though changing a variable may have an

impact on the maximum possible performance of an RL Agent, this effect will not be observed

in the results. If changing a variable reduces performance significantly, it may not reach the -50

threshold altogether, and thus will give a crude understanding of the effect of the variable. This is

23

illustrated in Figure 3.12.

Figure 3.12 Training Curve Threshold and its Impact on Performance

For this reason, rather than applying a reward threshold, RL Agents were trained with a fixed

number of episodes and the Agent that had the greatest average reward was used for testing. The

number of episodes required for this was set to 8000 as this allowed all Agents to reach their

maximums without training being ended prematurely. This test was found to be useful in observing

the impact to performance that resulted from changes in a specific variable had.

For testing the RL Agents, the absolute value average error of each term in the A and B matrices

was summed to create an average error per 50 second episode. The RL Agent was then provided

with 100 randomly selected systems with parameters within the trained range and the average error

from these systems was recorded. This was then repeated for 100 randomly selected systems with

parameters selected from a range that was triple that of the original training data. This was done

to observe if the RL Agent maintained effectiveness when presented with new data that were far

outside the range of the training data.

24

3.3 Results

The results of the PIRL implementation for the mass-spring-damper environment are included

in the following section. They are divided into three categories: Comparison to Existing Methods,

Effect of Hyperparameters, and Effect of Environmental Variables. Performance Comparison of

PIRL to Existing Systems provides insight into the performance of PIRL as a technology and how

its performance compares to existing methods. Effect of Hyperparameters depicts how alterations

to the parameters that affect RL Agent training affect the performance of PIRL. Finally, Effect of

Environmental Variables shows the robustness of the RL Agent to changes in its environment.

3.3.1 Performance Comparison of PIRL to Existing Systems

This section concerns the comparison of PIRL to existing SYSID algorithms. Specifically, PIRL

is analyzed in detail and its performance and effectiveness evaluated, and then this performance is

compared to that of conventional reinforcement learning and an extended Kalman filter.

Performance of PIRL

The training curve of the PIRL Agent can be seen in Figure 3.13. The RL Agent rapidly identifies

methods of improvement and follows them. The average curve follows a smooth logarithmic

increase indicative of diminished returns; however, the network explores a wide range in the

solution space as is evident by the larger variations in the episode reward curve.

25

Figure 3.13 PIRL - Training Curve

Performance on a Random System

The RL Agent was trained on an MSD with the mass, spring constant, and damping constant

all being randomly assigned within fixed ranges. To first understand the effectiveness of PIRL on

an MSD, the trained RL Agent was used to identify a random system within the unknown constant

ranges over which it was originally trained. The results of this test can be seen in Figures 3.14

to 3.17. The sampled constants are given in Table 3.4 along with the Per Cent Variation of the

sample with respect to the maximum possible deviation. The mass is roughly located within the

26

middle of the sampled system range while the spring constant and damping constant are further to

the maximum and minimum ranges respectively. The resulting A and B matrices are provided in

Equation 3.11

Table 3.4 Sample Constants for MSD
Parameter Value Per Cent Variation
Mass (m) 0.9937 -6.3%
Spring Constant (k) 1.0824 82.4%
Damper Constant (b) 0.9208 -79.2%

ATrue =

 0 1

−1.0893 −0.9266

 , BTrue =

 0

1.0063

 (3.11)

Figure 3.14 PIRL - Random Sample - Sum of Errors of A21, A22, and B21

Figure 3.14 shows the total summation of the errors of each unknown. From this Figure, it is

evident that the accuracy of the RL agent exhibits a brief transient response that lasts roughly 1-2

27

seconds and then reaches a oscillatory pattern that decays gradually. The transient section of this

curve reaches a maximum total error of 0.0518 and the oscillatory section has a maximum error

of roughly 0.03 and a minimum error of approximately 0.007. It should be noted that this is not

Per Cent error. The results indicate that when applied to the randomly selected system, the PIRL

Agent does not seem to exhibit a significant convergence time and may converge to the true value

if provided enough time. This is not fully demonstrated, though, as the error diminishes with time

but does not fully reach zero.

Figure 3.15 PIRL - Random Sample - Input Signals to RL Agent

The input signal histories to the RL Agent can be seen in Figure 3.15. The state and error

histories are shown in black. This ribbon-like appearance is due to the observation window,

wherein the multiple past samples are plotted in the same color. The larger oscillating ribbons

28

represent the state history and the thicker ribbon that slowly decreases in value is the error. It can

be seen that the error between the trial and true system does increase in magnitude slightly. This

may be a sign of a possible divergence. It is of note that the system model consistently gets more

accurate as evident in Figure 3.14; however, the ratio of these parameters with respect to each other

are similarly important to an accurate system model and it is possible that the RL Agent may be

converging on a more accurate model in the sense of the A and B matrices being close to the truth

but in a manner that leads to a temporary greater error in the state histories. This can be seen in

Figure 3.16 where the X2 trial state diverges slowly from the true state. It is possible that the RL

Agent may slowly diverge from the system model with time; however this cannot be confirmed

without further experimentation.

Figure 3.16 PIRL - Random Sample - History of True States and RL Agent Trial States

In Figure 3.16 one can see the time histories of the system’s two states. It can be seen that

the X1 trial state appears to be identical to the X1 true state. This is not due to the RL Agent’s

accuracy and is in fact due to the specific nature of the system as well as how the RL Agent has

29

been implemented. The state-space form of an MSD will always have the exact same upper row of

the A and B matrices. This means that, regardless of the A21, A22, and B21 values, if an MSD

is initialized at a given position and velocity, the derivative of the initial position will always be

defined exclusively by the initial velocity. The RL Agent receives as inputs the state history of the

true system as well as the error between the true and trial systems. This error is not propagated

through time, and at each time step, the trial system is initialized at the true system’s current state.

This is done to avoid divergence of the system during training. In addition, if the Agent is tasked

with both system identification and error propagation through time, it would be required that the

RL Agent drive the system to an identical state history by affecting the A and B matrices. For these

reasons, at each time step, the true and trial systems have the same starting X vector and thus the

X1 curve in both systems is defined through the experiment by the X2 curve of the true system.

Figure 3.17 presents the percentage error in the A21, A22 and B21 values estimated by the

PIRL Agent. Similar to the trends seen in Figure 3.14, there exists a roughly 1 second long transient

behavior from the RL Agent but it soon shifts to an oscillatory response in all unknowns. Errors for

all unknowns remain below 3% consistently, and for B21 the error remains below 0.8% after the

transient period. The A21 error does increase slightly during the 50 second episode. It is unclear

why this occurs although it may be due to there being no explicit reward/penalty for convergence

to one specific value or the lack thereof.

30

Figure 3.17 PIRL - Random Sample - Percentage Error of Trial and True Values in System Model

Performance of PIRL within Trained Ranges

In order to better understand the performance of the PIRL Agent it was implemented on 100

different randomized systems that were within its trained ranges. In this test, the Agent has not been

exposed to these specific systems; however, it should be capable of identifying their parameters

through its training. The results of this test can be seen in Table 3.5. Given the minimal transient

response and extended periodic response, the error’s respective time histories have been averaged.

It is evident that the PIRL Agent is effectively identifying the systems with all errors below 3%.

Note that the average total error is the average error of A21, A22, and B21 across each 50 second

window, across all 100 samples, and then finally averaged together.

31

Table 3.5 PIRL Agent Performance of 100 Systems Within Training Range
Parameter Per Cent Error
A21 0.8763%
A22 2.6953%
B21 1.3978%
Average Total Error 1.6565%

Effectiveness of PIRL Agent at Maximum Training Values

The PIRL Agent is trained with random samples within a fixed range. To better understand the

performance of the system, it was implemented and evaluated with the unknown quantities being

maximized. The results of this test can be seen in Figures 3.18 to 3.21. In this test, the mass, spring

constant, and damping constant are all set to 1.1.

Table 3.6 PIRL RL Agent Performance at Maximum Parameter Values
Parameter Per Cent Error
A21 0.4872%
A22 0.5198%
B21 9.3122%
Average Total Error 3.4397%

The average error from this test can be seen in Table 3.6. It is evident that, while the errors of

A21 and A22 decrease, the B21 error increases sufficiently that the trial system is ultimately less

accurate at this upper bound. Figure 3.18 illustrates that the error, much like the random sample

system, exhibits a transient response and then an oscillatory response. The oscillatory pattern differs

between the tests but appears to have a similar period. This pattern is likely due to the sinusoidal

excitation inputs. The upper limit system, while exhibiting this similarity in pattern, does so at a

greater magnitude of error. The maximum of the upper limit system is more than double that of

the random sample system. The oscillatory pattern of the error is also roughly 3 times greater in

magnitude in the upper boundary than the random sample. This supports the conclusion that the

RL Agent may lose accuracy as unknown system constants depart from their central values of 1.

32

Figure 3.18 PIRL - Upper Limit - Sum of Errors of A21, A22, and B21

Figure 3.19 shows the RL Agent’s inputs and it can be seen that state histories are roughly similar

to those of the random system, which is to be expected given that the systems, while different in

their physical parameters, are still fundamentally similar. In Figure 3.20 the state histories are

shown and it is clear that the X2 error is much greater than that obtained for the random system

and, while the trial states follows a similar trajectory to the true states, it has notably more error

than in the random sample system.

33

Figure 3.19 PIRL - Upper Limit - Input Signals to RL Agent

Figure 3.20 PIRL - Upper Limit - State History of True States and RL Agent Trial States

34

The percentage error histories are shown in Figure 3.21. The A21 and A22 errors are roughly

similar between the upper limit and the random sample and are somewhat smaller in magnitude;

however, the B21 error differs considerably and reaches a maximum error of roughly 10%.

Figure 3.21 PIRL - Upper Limit - Percentage Error of Trial and True Values in System Model

Effectiveness of PIRL Agent at Minimum Training Values

Similarly to the upper limit test, the PIRL Agent was implemented on the system with all

unknowns set to the lower limit. The results of this test are provided in Table 3.7. The effect of

the minimum limit system is similar to that of the maximum system with slight changes in error

from A21 and A22, but the predominant loss in accuracy coming from B21. The results of this test

can be seen in Figures 3.22 to 3.25. It is evident from these Figures, that much like the previous

tests, the average error of the PIRL Agent remains low; however, the B21 error specifically does

increase and thus causes an increase in the summation error curve, the error history curve, and the

difference between the true and trial states curves.

35

Table 3.7 PIRL Agent Performance at Minimum Parameter Values
Parameter Per Cent Error
A21 0.3584%
A22 1.3657%
B21 8.9190%
Average Total Error 3.5477%

Figure 3.22 PIRL - Lower Limit - Sum of Errors of A21, A22, and B21

36

Figure 3.23 PIRL - Lower Limit - Input Signals to RL Agent

Figure 3.24 PIRL - Lower Limit - State History of True States and RL Agent Trial States

37

Figure 3.25 PIRL - Lower Limit - Percentage Error of Trial and True Values in System Model

It is evident from these Figures that, much like the maximum value test, when the unknown

parameters are assigned at the limits of their training values, the percentage error increases. Despite

this increase in error, the RL Agent continues to require little to no convergence time and the state

histories of the true and trial systems remain closely aligned.

Effectiveness of PIRL Agent at Triple the Range - Upper Bound

The RL Agent was trained within a predefined bound of possible systems; however, if PIRL

were to be implemented in a real system, there may exist models that are outside of the training

ranges that the RL Agent has experienced. To better understand the effect of systems outside of

the training range, the RL Agent was implemented on a system with all unknowns set to 1.3. This

represents a system with an overall range of system values of 0.6 compared to the original range of

0.2. The average error of this test is shown in Table 3.8.

38

Table 3.8 PIRL Agent Performance at Triple Max Parameter Values
Parameter Per Cent Error
A21 0.5645%
A22 1.6401%
B21 26.7047%
Average Total Error 9.6364%

The average error of this system is significantly higher than the RL Agent operating within its

trained range. Figure 3.26 shows the significant increase in total error of this system. This greater

error is apparent in the state histories in Figure 3.27 where the X2 trial history diverges significantly

from the true state.

Figure 3.26 PIRL - Triple Range - Upper Limit - Sum of Errors of A21, A22, and B21

39

Figure 3.27 PIRL - Triple Range - Upper Limit - State History of True States and RL Agent Trial
States

Figure 3.28 PIRL - Triple Range - Upper Limit - Percentage Error of Trial and True Values in
System Model

40

The percentage error of each estimated term is illustrated in Figure 3.28. While the error of

each variable exhibits the same transient and periodic pattern, the magnitude of the errors are

significantly higher than any previous tests. This indicates that a significant departure from the

training range will lead to a considerable decrease in the RL Agent’s effectiveness. Furthermore,

this increase in error may not manifest equally in all unknown parameters, as the error in B21

increases considerably, while the RL Agent remains able to determine the values of A21 and A22

with little to no difficulty.

Effectiveness of PIRL Agent at Triple the Range - Lower Bound

A similar test is conducted to observe the impact of the minimum limit of this increased range,

the results of which can be seen in Table 3.9. For this test, all unknowns are set as 0.7 and it

can be seen that the effect of this is similar to that of the upper limit test where the A21 and A22

values experience slight losses in accuracy, whereas the B21 value differs significantly leading to

an ultimately higher average error between the trial system and the true system. The state history

and percentage error history can be seen in Figures 3.29 and 3.30. It is evident in these figures

that the lower bound system seems to result in X2 being consistently underestimated in value until

40 seconds. Additionally, the A21 and A22 errors remain relatively consistent but the B21 error

increases with time.

Table 3.9 PIRL Agent Performance at Triple Minimum Parameter Values
Parameter Per Cent Error
A21 0.7542%
A22 2.6025%
B21 27.9408%
Average Total Error 10.4325%

41

Figure 3.29 PIRL - Triple Range - Lower Limit - State History of True States and RL Agent Trial
States

Figure 3.30 PIRL - Triple Range - Lower Limit - Percentage Error of Trial and True Values in
System Model

42

Performance of Conventional Reinforcement Learning

The use of reinforcement learning for SYSID is not unique and it has been shown that it is

an effective method. PIRL differs from the typical implementation of RL with its use of system

parameters as additional inputs. To avoid misattributing the performance of an RL method to PIRL

specifically, a second RL Agent was trained and evaluated with all characteristics being the same

except that it lacked the parameters as inputs. The RL Agent was then evaluated over 100 different

systems within trained ranges as well as with the triple size range. The PIRL Agent was implemented

in the same manner for comparison. The results of these tests are shown in Table 3.10. The per-

centage error refers to the average error across the 50 second episode and across A21, A22, and B21.

Table 3.10 PIRL Agent Vs. Conventional RL Agent
Implementation PIRL Per Cent Error Conventional Per Cent Error
Trained Range 1.3543% 6.3386%
Triple Trained Range 5.078% 14.1924%

It is clear from these tests that the conventional RL Agent is effective within its trained range

and loses effectiveness as it is exposed to a greater range than it has been trained on; however,

the PIRL Agent consistently performs better than conventional RL by a factor of 2.7 or more. In

the trained range PIRL performs better than conventional RL by a factor of 4.68. This is a strong

indicator that PIRL positively impacts the RL Agent’s performance in SYSID.

Comparison to an Extended Kalman Filter

In addition to evaluating how PIRL performs with regard to other non-PIRL RL Agents, it is

also important to understand how PIRL performs when compared to more conventional methods.

An Extended Kalman Filter is used as an existing method through which conclusions can be

drawn regarding the PIRL Agent’s performance as an independent method of performing system

identification. It should be noted that this implementation of the extended Kalman filter is not the

only one possible. This particular implementation was chosen at it requires the filter to perform the

same task as the PIRL Agent.

43

Extended Kalman filters (EKFs) are used for a variety of purposes including filtering noise, state

estimation and system identification. When appropriately tuned, they can perform these tasks well

and in a computationally efficient manner. The EKF is similar to PIRL in that it relies on estimating

states and then, by comparing the differences between these states, it can determine the true system.

PIRL uses the error found between its trial system estimated state and the measurements but differs

in that this is only one part of the many different inputs provided to the algorithm and, rather than

explicitly estimating states, PIRL only indirectly estimates them by using the estimated system. An

EKF is implemented for system identification by using the desired estimated system values (A21,

A22, and B21) as states within the filter. These are then estimated by the EKF in the same manner

as conventional states. The Extended Kalman filter is required, rather than the regular Kalman

filter, as estimating the system values converts the system from linear to nonlinear. Before the EKF

can be used, the system must be converted from continuous time to discrete time. This is done

using Euler’s method as shown in Equations 3.12 and 3.13. It should be noted that dt refers to the

time step interval at which the EKF is implemented and not necessarily the rate at which the MSD

is simulated. In this experiment though, they are the same; dt is equal to Ts.

Ẋ = AX +BU (3.12)

Xk+1 = (Adt+ I)Xk +BdtUk (3.13)

Following the continuous to discrete conversion, the desired values are added as states. This

will make the system nonlinear and thus it must be represented as a series of functions as can be

seen in Equation 3.14, where x̂3, x̂4, and x̂5 represent A21, A22, and B21 respectively. It should

be noted that theˆdenotes that each state is an estimate.

44

x̂1

x̂2

x̂3

x̂4

x̂5

k+1

= f(X̂k, Uk) =

x̂1k + x̂2kdt

(x̂3kdt)x̂1k + (1 + x̂4kdt)x̂2k + x̂5kdtUk

x̂3k

x̂4k

x̂5k

(3.14)

With the discrete dynamics defined in Equation 3.14, the following procedure given in Equations

3.15 to 3.19 is performed in order at each k time step. Note that k + 1/k refers to intermediate

values and that C has been augmented with zeroes to support the larger X̂ vector. In this process,

F refers to the Jacobian of A with respect to X̂ , while Q, R, P, and K refer to the process noise

covariance matrix, the sensor noise covariance matrix, the estimation error covariance matrix and

the Kalman gain respectively.

X̂k+1/k = f(X̂k, Uk) (3.15)

Pk+1/k = FkPkF
T
k +Qk (3.16)

Kk+1 = Pk+1/kC
T (CPk+1/kC

T +Rk)
−1 (3.17)

X̂k+1 = X̂k+1/k +Kk+1(Yk+1 − CX̂k+1/k) (3.18)

Pk+1 = (I −Kk+1C)Pk+1/k (3.19)

In Figure 3.31, the EKF is applied to the MSD system and the estimations of the two states can

be seen to be very close to the true states observed. For this example, the mass, spring constant, and

45

damper constant are all equal to one with Gaussian noise added to the observations with a signal to

noise ratio of 40.

Figure 3.31 Extended Kalman Filter State Estimation Example

46

Figure 3.32 Extended Kalman Filter System Identification Example

In Figure 3.32, one can see the estimations of the A21, A22, and B21 values as estimated by

the EKF. It is evident from this figure that the EKF has little to no error in the estimated states,

but it suffers in accuracy for system identification with convergence times of up to 20 seconds for

B21. The average error of each term across the 50 seconds can be seen in Table 3.11; however, a

more accurate determination of average error would be to use the values once the EKF converged

and these results can be seen in Table 3.12. When only the last 25 seconds are used, the error

diminished significantly, with an average percentage error per term of only 3.58%. This is still

higher than the average error of the PIRL Agent across the trained range.

Table 3.11 EKF Average Error Example
Parameter Per Cent Error
A21 16.2739%
A22 15.1577%
B21 13.5061%
Average Total Error 14.9792%

47

Table 3.12 EKF Average Error (Converged) Example
Parameter Per Cent Error
A21 5.8274%
A22 7.9625%
B21 3.5786%
Average Total Error 5.7895%

To better understand how the EKF compares to PIRL, the EKF was tasked with the same test

as PIRL: to identify 100 systems randomly selected from the PIRL training range and the PIRL

testing range. It should be noted that the EKF is not being tuned for each system, much like how

PIRL cannot be altered for each system. The EKF is tuned to perform for a mass, spring, constant,

and damper constant of one, thereby keeping it tuned for the average expected system constants.

The results of the EKF have been compared with those of PIRL and only the last 25 seconds of the

EKF data has been used to avoid a negative bias caused by the EKF’s convergence time.

Table 3.13 Comparison of EKF to PIRL
Method Average Error Trained Range Average Error Triple Range
EKF 5.6114% 5.7974%
PIRL 0.6766% 3.9348%

The results of this test can be seen in Table 3.13. It is clear from these data that using PIRL leads

to a significant reduction of average error in the trained range as well as a minor one in the testing

range. This indicates that PIRL may have an advantage over the EKF for this specific application

of system identification. When combined with the minimal convergence time exhibited by PIRL it

is evident that in this environment, PIRL performs well as a novel method for system identification.

3.3.2 Effect of Hyperparameters

An RL Agent’s training is influenced by a number of different hyperparameters. These may or

may not impact the performance of the Agents. To better understand the relationship between each

hyperparameter and the performance of the Agents, the sample time, neural network architecture,

discount factor, noise variance and decay rate, and observation window length and interval were all

48

altered individually and the effects of these variations were observed and analyzed.

Effect of Higher Episode Reward Threshold

An RL Agent can be trained with a fixed reward threshold in which, upon having reached this

reward, training is completed. This was not the method used to train the RL Agents as it is not as

effective as selecting the highest average reward value from a fixed number of episodes. It remains

relevant to understand the effect of altering this threshold as it provides insight into the relationship

between the performance observed in training and testing. The results from this test can be seen

in Table 3.14. It should be noted that the -50 result comes from a different RL Agent but from

the same training regime than previous results and thus it has performed differently. The Episode

Number refers to the number of episodes required to reach the threshold.

Table 3.14 Effect of Episode Reward Threshold
Training Reward Average Error Average Error Episode Number
Cutoff Trained Range Triple Range
-500 12.6121% 23.9918% 8
-450 8.5146% 19.9860% 23
-400 6.1651% 17.8416% 62
-350 7.3524% 17.4945% 65
-300 6.4235% 17.7951% 94
-250 2.7437 8.6438% 144
-200 3.0812% 7.6651% 196
-150 2.1201 5.8566% 273
-100 0.8579% 4.6517% 349
-90 0.9982% 3.8319% 364
-80 1.2165% 5.7065% 392
-70 1.4015% 6.2514% 420
-60 1.3061% 5.1746% 431
-50 0.7694% 4.3294% 479
-40 0.5436% 3.7581% 495
-30 0.6015% 3.9229% 554
-20 0.7036% 3.7934% 695

In Table 3.14, it can be seen that, by increasing the required episode reward, the resultant

accuracy in both the trained range and the triple trained range increases significantly. There does

49

exist an asymptotic point roughly at -50 where further increases do not significantly improve

performance and in some cases decrease it. These decreases in performance are not likely due to

the increased reward limitation and are more likely the cause of the random initialization of the RL

Agent during training. Given these data, it can be concluded that -50 is a reasonable reward limit,

as further increases do not provide significant gains in performance and the number of training

episodes required to reach this limit increases significantly. The results of Table 3.14 have been

plotted in Figures 3.33 and 3.34. From Figure 3.33, it can be seen that the error seems to follow

an approximate exponential decay curve where the first increases to the reward threshold lead to

much larger improvements than the last increases. In Figure 3.34, it can be seen that increases

in the threshold require an approximately exponential number of training episodes to reach them.

While RL Agents in this thesis were not trained using a fixed cutoff (with the exception of this

test), this test grants insight into how the training process may be shortened. The 8000 training

episode method used in this thesis took several hours to complete on a high end consumer PC,

while achieving a -50 reward took roughly 20-30 minutes to obtain1.

In Figure 3.33, there exists two diversions from the decaying exponential trend at roughly

-350 and -70. It is unclear what causes these deviations. One possible explanation is that these

reward values may correspond to specific systems or small ranges of systems that, if the RL

Agent is provided with them, creates a specifically high reward value, thereby inflating the actual

performance of the RL Agent on all systems. If there existed an artificially ideal system, then it

would most likely be evident in the required number of episodes to reach the threshold as the RL

Agent would stop training sooner in this case. This is not evident in Figure 3.34 as the required

number of training episodes follows very closely with an exponential trend.

It is also possible that these diversions from the trend may be caused by noise. Each RL Agent

is initialized randomly and evaluated differently, and this may be the cause; however, it is notable

that the diversions in Figure 3.33 are representative of multiple points, which is uncharacteristic of

random noise.
1Computer Specifications: 11th Gen Intel(R) Core(TM) i7-11700KF @ 3.60GHz 3.60 GHz, Corsair Vengeance

Pro DDR4 4×16GB (2x16GB) 3600MHz CL18 Intel XMP

50

Figure 3.33 Episode Reward Threshold and Performance

Figure 3.34 Episode Reward Threshold and Required Training Episodes

51

Effect of Higher Average Reward Threshold

To reduce the impact of an RL Agent being well suited through probability to a particular

system, the same experiment was conducted with the average reward threshold used as opposed to

the episode reward threshold. The average reward is a moving average of the reward of the last 20

episodes. Using this as the threshold should reduce the variability in the performance data. The re-

sults of this experiment can be seen in Table 3.15. From these data, it is evident that, similarly to the

episode reward threshold test, increasing the average reward threshold corresponds to a decrease in

the average percentage error in both the trained range and the triple trained range. Additionally, the

episode number required to attain this threshold increases with the threshold; however, the episode

number associated with each reward is significantly greater for the average reward experiment than

the episode reward experiment.

Table 3.15 Effect of Average Reward Threshold
Training Reward Average Error Average Error Episode Number
Cutoff Trained Range Triple Range
-500 6.2646% 18.0490% 69
-450 6.1709% 18.7714% 95
-400 5.4421% 15.6981% 121
-350 4.3253% 13.9219% 144
-300 3.2476% 10.5674% 176
-250 3.1278% 10.6297% 210
-200 1.4579% 5.6982% 256
-150 2.2682% 7.9674% 302
-100 0.5929% 4.5089% 375
-90 1.3552% 5.1157% 418
-80 1.3526% 5.3207% 440
-70 0.8448% 5.0686% 460
-60 0.8177% 3.6122% 494
-50 0.6258% 3.7113% 527
-40 1.3507% 5.3390% 582
-30 0.6034% 3.3893% 634
-20 0.5697% 3.5536% 711

52

To better understand the effect of reward threshold on the performance of the RL Agent, the

data from Table 3.15 have been graphed and shown in Figures 3.35 and 3.36. The results from

Table 3.14 have also been included in these figures for comparison.

Figure 3.35 illustrates that, across both the trained range and triple range, increasing the reward

leads to a decrease in the RL Agent’s error. This is true for usage of the episode threshold or the

average threshold. Given that the average threshold requires a more consistent performance by the

RL Agent, it generally performs better than the episode threshold. There are a few exceptions to

this rule, which may be attributed to noise or the lessened effects of particularly convenient systems

for the RL Agent.

Figure 3.35 Average Reward and Episode Reward Threshold Performance

Figure 3.36 illustrates that using an average reward as opposed to episode reward effectively

increases the number of training episodes provided to the RL Agent. Changing from episode reward

to average reward not only requires the RL Agent to be sufficiently accurate (on average) across a

given window of episodes, it also, due to this requirement, gives the RL Agent a greater time in

53

which to improve. This two-fold benefit shows that the RL Agent performs better when training is

evaluated with respect to the average reward rather than the episode reward. This may be beneficial

if training to a fixed cutoff and desiring consistent performance, but as seen in Figure 3.36, it does

incur an increased computation cost.

Figure 3.36 Average Reward and Episode Reward Threshold Required Training Episodes

Sample Time

The RL Agent has a separate sample time from the simulation’s sample time. The RL Agent

sample time refers to how often the RL Agent is activated during the simulation. Each activation

gives a new A and B matrix. The reason for these sample times being different is to provide

more control over the computational requirements. An RL Agent that is trained offline every 0.01

seconds during its training episodes will have a significant training time. Even with a sufficiently

powerful computer or sufficient time, a complex AI of any kind being evaluated every 0.01 seconds

may be prohibitively inefficient in an online or embedded environment. For this reason, for the

MSD environment, the RL Agent is evaluated every 0.1 seconds.

54

It is hypothesized that, if the sample time is increased, the RL Agent will be able to complete

each episode faster, but because an RL Agent receives feedback on its Actions every sample, an

increase in the RL Agent’s sample time will decrease its learning rate per episode. This will lead to

larger final episode numbers but similar performances or even better performances given that the

greater sample time systems have been exposed to more systems. Therefore, the total number of

samples is expected to stay roughly the same.

To better understand this relationship, the sample time in training and testing was varied and

the impact that this had on performance, final episode number, and the total number of samples

was observed. The total samples value for each sample time was calculated using Equation 3.20,

where EN is the final episode number, Tf is the final episode time, and Ts is the sample time. For

this test, the RL Agent was required to reach an Episode Reward of -50. This was chosen over the

previously discussed method of evaluating the effect of variables to illustrate how sample time does

not impact the training rate despite the AI being implemented more or less frequently.

TotalSamples =
EN × Tf

Ts

(3.20)

Table 3.16 Effect of Sample Time
Sample Time (s) Average Error Average Error Episode Number Total

Trained Range Triple Range Samples
0.5 2.4899% 7.3761% 713 71,300
0.4 3.2230% 9.5613% 737 92,125
0.3 2.5934% 8.7263% 744 124,000
0.2 1.2903% 5.4141% 647 161,750
0.1 1.2637% 5.2865% 511 255,500

The results of this experiment can be seen in Table 3.16. It is clear that these data do not

follow the hypothesized trend, with increases in sample time leading to a significant decrease in

performance. Episode number is altered, but not by the substantial amount that a decrease in

feedback by 1/5th (as is the case from 0.1s to 0.5s) would indicate. There is additionally no clear

55

trend in either direction. Finally, increases in sample time lead to decreases in the total samples.

This is contrary to the hypothesis that they would stay approximately the same.

To understand the reason for these contrary results, the effect of sample time must be analyzed

more closely. The training curve for the 0.1 second sample time is shown in Figure 3.37, and the

training curve for the 0.5 second sample time is shown in Figure 3.38.

Figure 3.37 0.1 Second Sample Time Training Curve

Figure 3.38 0.5 Second Sample Time Training Curve

56

There exists a difference of note between the two curves. The 0.5s curve begins at a reward of

roughly -320 whereas the 0.1s curve begins closer to -800. This would indicate that the decreased

sample time is leading to an artificial increase in reward as new, untrained RL Agents should be

broadly similar in capability. The Sum of Errors of the two Agents can be seen in Figures 3.39 and

3.40. Both Agents were provided with the same system where all constants were in the middle of

the possible trained values. From these figures, it is evident that the error in the estimated A and B

matrices of the 0.5s system is consistently greater than that of the 0.1s system, which is contrary to

the reward curves seen previously. The error for the 0.5s system should be significantly lower as

its training curve is consistently higher than that of the 0.1s system.

Figure 3.39 0.1 Second Sum of Errors

57

Figure 3.40 0.5 Second Sum of Errors

This trend is also evident in the reward curves of a single episode, as seen in Figures 3.41 and

3.42. The reward of the 0.5s system is once again indicating a less accurate RL Agent, which is

contrary to the underlying reward curves that generated it. The reason for this trend lies in the

specific calculation of the reward function. When the RL Agent is training, every action is evaluated

with a specific reward that corresponds to the result of that action. The reward is the negative of

the summation of differences between the A and B matrices and their respective true values. This

is independent of sample time; however, the reward curve is summed at the end of each episode

and this is the value that appears at each data point in Figures 3.37 and 3.38. If the sample time is

decreased, the reward per RL Agent activation is not scaled to account for this and the total reward

decreases significantly, meaning that it appears in the training curve to perform worse and thus is

trained on more episodes to reach the chosen threshold. If the sample time is increased, the reward

is summed less often and thus the total episode reward increases. This has the effect of ending

training earlier for higher sample time systems, making them less accurate as they were trained on

fewer systems.

58

Figure 3.41 0.1 Second Reward Function

Figure 3.42 0.5 Second Reward Function

59

This is the reason that the larger sampling time artificially results in a less accurate RL Agent.

If sample time is used to scale the reward, as seen in Figure 3.43, then the performance of the

RL Agent is no longer impacted by sample time. This modified reward function is the Simulink

implementation of Equation 3.21. This can be seen in Table 3.17. The total number of samples all

are within the 220,000 to 250,000 range illustrating that sample time does not influence the total

amount of feedback required to train an RL Agent, but it does change the total number of episodes

required.

R = −(|B21 −B21T |+ |A21 − A21T |+ |A22 − A22T |)
Ts

0.1
(3.21)

It should be noted that an extra gain term was added to the modified reward function. The reason

for this gain is to maintain the -50 reward cutoff as a metric of comparable performance. Scaling

the error with sample time does prevent the reward from being artificially inflated as sample time

is increased; however, without the added gain, the -50 threshold that was tuned for a non-scaled

reward with a sample time of 0.1s would no longer produce RL Agents of the same capabilities.

The gain ensures that this reward threshold and its corresponding performance remain consistent

across these experiments. This specific test illustrates the significance of the reward function as

some may produce different results for different hyperparameters. These experiments also show

that, if the RL Agent must be implemented on sub-optimal hardware, the RL Agent can be trained

to perform well at greater, more computationally efficient sample times.

Figure 3.43 Modified Reward Function

60

Table 3.17 Effect of Sample Time with Modified Reward Function
Sample Time (s) Average Error Average Error Episode Number Total

Trained Range Triple Range Samples
0.5 2.2857% 7.4036% 2295 229,500
0.4 1.7079% 6.1961% 1788 223,500
0.3 1.5595% 5.3913% 1457 242,833
0.2 2.7554% 10.1835% 891 222,750
0.1 1.2812% 5.1646% 493 246,500

While the sample time may have a minimal impact on the number of samples required to reach

a specific Episode Reward, to better understand the effect sample time has on the performance

of the RL Agent, the RL Agents were trained using a fixed number of episodes and the episode

with the highest reward was tested. The results of this experiment are summarized in Table 3.18.

It is clear from these data that the sample time has minimal impact on the effectiveness of the

network. This finding is relevant in that it implies that the implementation of PIRL may not require

significant computational power. Therefore, as long as the sample time is consistent across training

and testing, the RL Agent should perform well even with greater sample times/lower sampling rates

that are far less computationally intensive.

Table 3.18 Effect of Sample Time with Maximum Performance Test
Sample Time (s) Average Error Average Error Maximum Perf. Maximum Reward

Trained Range Triple Range Episode
0.5 1.0350% 4.8302% 4645 -13.0059
0.4 0.4903% 3.2599% 4812 -5.2994
0.3 1.7901% 6.0911% 3558 -19.8745
0.2 0.5371% 4.4834% 3799 -5.4391
0.1 1.1218% 5.0378% 6789 -13.4506

One other specific aspect in which the performance of the RL Agent is not impacted by sample

time is the rate of convergence to the final A and B matrix values. It would appear in Figures

3.44 and 3.45, where the RL Agents have been trained with the -50 Test, that the 0.5s sample time

converges slower; however, Figures 3.46 to 3.53, which show the sum of errors across a wider range

61

of m, k, and b values, show that ultimately the sample time has limited to no effect of convergence

rate. This trend was found to be consistent across different RL Agents that were trained with the

same properties.

Figure 3.44 0.1 Second Sum of Errors (Modified Reward Function)

62

Figure 3.45 0.5 Second Sum of Errors (Modified Reward Function)

Figure 3.46 0.1 Second Sum of Errors (Modified Reward Function, Low Constant Values)

63

Figure 3.47 0.5 Second Sum of Errors (Modified Reward Function, Low Constant Values)

Figure 3.48 0.1 Second Sum of Errors (Modified Reward Function, High Constant Values)

64

Figure 3.49 0.5 Second Sum of Errors (Modified Reward Function, High Constant Values)

Figure 3.50 0.1 Second Sum of Errors (Modified Reward Function, Triple Low Constant Values)

65

Figure 3.51 0.5 Second Sum of Errors (Modified Reward Function, Triple Low Constant Values)

Figure 3.52 0.1 Second Sum of Errors (Modified Reward Function, Triple High Constant Values)

66

Figure 3.53 0.5 Second Sum of Errors (Modified Reward Function, Triple High Constant Values)

The most probable explanation for the minimal effect of sample time on rate of convergence is

that the RL Agent does not converge to the final result in the same manner as a typical numerical

algorithm, but rather it converges immediately upon access to the input data. The initial transient

responses may in fact be due to the delay blocks in Simulink not being fully activated and thus

the data being inaccurate. These blocks start at zero until sufficient time has passed that they are

reassigned. For this test, this ’activation delay’ for the RL Agent is 1 second, and it can be seen in

Figure 3.44 that the major deviations of the transient stop after 1 second.

Neural Network Architecture

The RL Agent’s primary ability to perform system identification lies in 3 hidden layers of the

neural network architecture. These layers were assigned as 20 neurons each as this was found

to be sufficient to achieve satisfactory results; however, there may exist superior configurations.

To investigate this possibility, the number of neurons in each layer was varied and the effect on

performance was observed. The results from this test are summarized in Table 3.19.

It can be seen in Table 3.19 that the neuron count per layer plays a significant role in the

performance of the RL Agent at neuron counts less than 5. When the neuron count is below this

67

value, the average error for both the trained range and the triple range criteria increases considerably,

with the error of the trained range for 1 neuron being over 200 times larger than the trained range

error with 5 neurons. When the neuron count is increased past 5 neurons per layer, the percentage

accuracy does not change significantly. For example, the performance of an Agent with 100 neurons

is not superior to one with 15 neurons.

The existence of the 5 neuron threshold is likely due to the RL Agent no longer having the

complexity to effectively map the value function. This is similar in nature to the findings of Kon

and Plaskota [36]. A neural network, when performing a task, has a lower bound on the number of

neurons required to successfully complete that task. It is probable that 5 neurons per layer is this

threshold for this environment as performance decreases significantly when neuron count is below

it. The data in Table 3.19 have been shown in Figure 3.54 to more clearly illustrate the impact that

this lower bound has on performance. A cropped version of Figure 3.54 is shown in Figure 3.55 to

show that, beyond this lower bound of five neurons, there is no clear benefit to the addition of more

neurons per layer.

68

Table 3.19 Effect of Neuron Architecture
Neurons Per Average Error Average Error Max. Perf. Maximum Reward
Layer Trained Range Triple Range Episode
1 117.4523% 115.4125% 26 -1705.3
2 48.7983% 53.7361% 4807 -624.1528
3 14.3001% 24.0776% 669 -183.5785
4 1.4915% 6.1445% 2160 -16.8640
5 0.5637% 3.1982% 1244 -7.1807
6 0.9322% 4.7644% 5758 -11.7201
7 0.67552% 3.9369% 2051 -7.9873
8 0.8600% 4.2747% 7576 -11.1436
9 0.6022% 4.2262% 1198 -6.4388
10 0.6572% 4.4907% 1760 -7.1178
15 0.51017% 3.5466% 1084 -7.4278
20 0.7801% 4.0621% 4728 -10.2685
25 0.6659% 4.4961% 1180 -8.9347
30 0.6689% 3.4032% 7984 -8.7131
35 0.6866% 4.2270% 1084 -7.8227
40 1.3066% 5.4706% 1471 -14.6719
45 0.6801% 2.8981% 4853 -7.6499
50 0.8145% 3.7938% 1301 -11.5376
55 0.5403% 2.8906% 7969 -7.5695
60 0.6588% 3.5952% 1106 -9.4253
65 1.0880% 6.4320% 1937 -9.2964
70 0.8757% 3.5096% 976 -10.4806
75 1.4684% 5.1845% 2160 -15.5131
80 0.8060% 3.5366% 1059 -10.2402
85 0.7472% 3.9555% 1340 -8.6140
90 0.6272% 3.7322% 6780 -8.8105
95 0.5371% 2.6908% 5197 -7.8741
100 0.7341% 3.5323% 5017 -8.8868

69

Figure 3.54 Effect of Neuron Count Per Layer on Performance

Figure 3.55 Effect of Neuron Count Per Layer on Performance - Reduced Axes

70

While increasing the neuron count in these hidden layers beyond 5 neurons did not impact per-

formance, it did increase the complexity and computational requirements of the training and testing

of the RL Agents. This increased the time required to train the Agents and may impact the ability for

the Agents to be implemented in real time on a physical system. Thus for practical implementation,

this test shows that once the minimum neuron count has been reached, the neuron count should not

be increased further with the understanding that this will improve performance. It will only make

the system less practical for implementation by increasing computational requirements.

Discount Factor

For a Reinforcement Learning Agent, the discount factor is a hyperparameter that affects whether

the Agent prioritizes immediate rewards or delayed rewards. A discount factor of 1 will not impact

the reward values while a value of less than one will guide the RL Agent to prioritize immediate

rewards. This can be useful in tasks where early costs can lead to greater rewards later. For this

task, the benefit of prioritizing immediate reward is unlikely to have any meaningful effect as the

nature of the problem does not change with time. Any benefits caused by a quick convergence to

the true A and B matrices should be adequately addressed by the reward function.

This expected trend is shown to be true in Table 3.20, shown visually in Figure 3.56. The

discount factor has little impact on overall performance within the trained range as well as within

the triple range. This is most likely due to the simplistic nature of the problem. The RL Agent’s task

is to reduce the difference between its estimated A and B matrices and the true A and B matrices

as much as possible. There likely exist very few to no RL Agent ’decisions’ with a short term cost

causing a greater long term reward. Environments where these decisions are present is why the

discount factor exists as a hyperparameter as altering the discount factor would provide the ability

to prioritize the longer term reward and thus impact the accuracy.

71

Table 3.20 Discount Factor
Discount Factor Average Error Average Error Max. Perf. Maximum Reward

Trained Range Triple Range Episode
1.0 1.0173% 20.8341% 392 -163.2839
0.95 0.8823% 4.0335% 1223 -9.4629
0.90 1.1260% 5.1486% 3704 -12.6133
0.85 0.5761% 2.8806% 5767 -7.9729
0.80 0.4712% 4.0550% 1191 -6.7614
0.75 0.6659% 3.4846% 1249 -7.2161
0.70 0.6055% 4.6472% 1122 -7.6588
0.65 1.3153% 5.4576% 3573 -13.7100
0.60 0.6199% 3.2766% 1352 -6.4159
0.55 0.5351% 3.9454% 1253 -6.3396
0.50 0.5429% 3.6746% 1201 -5.7554
0.45 0.4605% 3.0664% 1288 -5.3871
0.40 0.5437% 4.1352% 1411 -6.3960
0.35 1.0883% 4.3580% 4413 -11.7137
0.30 0.8922% 3.9381% 6522 -9.0571

Figure 3.56 Effect of Discount Factor on Performance

72

Noise Variance and Noise Decay Rate

When learning, RL Agents rely on a concept known as exploration vs. exploitation. An RL

Agent must explore possible value functions to find the optimum but must also exploit what it

has encountered once it has found one that is ideal or close to ideal. This is accomplished on a

mathematical level for DDPG networks with noise within the neural network’s actions. The RL

Agent’s actions are the product of the network itself and the input data that it receives; however,

before the output is enacted on the environment, noise is added into the output thereby causing the

Agent to explore a range of different options. This noise influences the RL Agent’s exploration vs.

exploitation where higher noise corresponds to a greater priority placed on exploration. In order

for the RL Agent to ultimately converge on one value function, the impact of this noise decays with

training.

Altering this noise may impact the training and thus the performance of the Agent. The presence

of noise may prevent the RL Agent from converging on non-ideal local minima and force the RL

Agent to explore more, thereby finding the globally optimal strategy. The RL Agent’s noise is

defined by two hyperparameters, the variance and the decay rate. Given that, changes to the noise

variance and its decay rate have been made and the effect of performance observed. These were

both varied in their values along powers of 2 to observe the impact that they have on performance.

In the first test, the noise variance was altered while the decay rate was maintained at its value

of 10−5. The results of this test are shown in Table 3.21 where it can be seen that alterations to

the noise variance do not appear to impact performance significantly. This would indicate that the

RL Agent is able to find the ideal or near-ideal policy without requiring a substantial amount of

exploring. For MSD SYSID, this is plausible as the problem is not complex. For this system, noise

variance does not appear to be of great significance; however, on other more complex systems, it

may be more important. The data from Table 3.21 have been presented in Figure 3.57.

73

Table 3.21 Effect of Noise Variance
Noise Variance Average Error Average Error Maximum Perf. Maximum Reward

Trained Range Triple Range Episode
23 0.8324% 5.1515% 2847 -11.6906
22 0.5745% 3.5302% 5731 -8.7419
21 1.4163% 5.9187% 2522 -16.3637
20 1.2094% 4.4433% 2398 -11.2355
2−1 1.4394% 5.6702% 2017 -13.6594
2−2 0.9292% 4.5371% 2130 -11.6052
2−3 1.1403% 3.9651% 3028 -14.1251
2−4 0.7343% 3.839% 4328 -9.1452
2−5 0.7316% 3.4283% 4569 -9.9087

Figure 3.57 Noise Variance: Impact on Performance

When noise variance is fixed, the noise decay rate determines the importance of exploitation

for the RL Agent. As the RL Agent trains, the decay rate reduces the impact of the random noise

and thus leads the RL Agent to converge to a fixed value function. The effect of varying the noise

decay rate can be seen in Table 3.22. Similarly to the variance, the decay rate has been assigned to

74

a range of powers of 2. It can be seen that the decay rate does not impact the performance of the

RL Agent significantly. The decay rate of 20 does seem to increase the error notably, but given the

error seen in the 2−10 value, it may be an outlier.

Table 3.22 Effect of Noise Decay Rate
Noise Average Error Average Error Maximum Perf. Maximum Reward
Decay Rate Trained Range Triple Range Episode
20 2.6002% 6.2303% 591 -37.7748
2−1 0.7687% 3.7818% 4758 -9.9919
2−2 1.5014% 3.4068% 5121 -19.3172
2−3 0.8370% 3.9105% 6306 -13.8286
2−4 1.3111% 3.4721% 5381 -17.0258
2−5 1.3141% 4.3113% 3520 -18.0116
2−6 1.1650% 3.4753% 2271 -14.0532
2−7 0.9891% 4.2281% 4624 -13.6886
2−8 0.6866% 4.1839% 6743 -8.4960
2−9 1.1222% 3.8615% 4271 -13.7597
2−10 1.2996% 5.5162% 5254 -17.5571
2−11 0.8189% 3.7462% 7599 -10.7555
2−12 0.6833% 4.0995% 6873 -8.1551
2−13 1.1199% 4.0457% 960 -15.2008
2−14 1.0782% 3.1354% 7292 -15.1065
2−15 0.7720% 3.8647% 5360 -10.4623
2−16 0.5991% 3.7781% 782 -9.2520
2−17 0.6677% 4.5512% 1510 -9.1095
2−18 0.6521% 3.6303% 5599 -9.8897
2−19 0.7108% 3.6303% 6219 -9.6393
2−20 0.9917% 4.3146% 6653 -27.8691

The effect of varying decay rate is best seen in Figure 3.58. The performance seems to not be

significantly impacted by the decay rate after the 20 value. The results of this test indicate that

decay rate is not a significant factor in optimizing RL Agent performance. It should be noted that

decreasing the decay rate may lead to an increase in episodes required to reach a specific reward

(average or episode) as it will decrease the rate at which the RL Agent converges on the final value

function. This will increase the required computation time for training with no significant impact

on performance and thus should be avoided.

75

Figure 3.58 Effect of Noise Decay Rate on Performance

Observation Window Length and Interval

The RL Agents receive as input data an observation window of the current states as well as

the past states of the system. The observation window is defined by 2 parameters, the number of

data points or length, and the interval between each data point. Altering both of these variable

influences the data that the RL Agent is exposed to and thus may have an impact on the RL Agent’s

performance. For this reason, the length and interval were altered and the effects on performance

measured.

The difference between the original Observation Window Simulink Diagram and the augmented

Observation Window Simulink Diagram can be seen in Figures 3.59 and 3.60. The Augmented

version has 64 total data points as opposed to the original 10. It is hypothesized that the addition

of more data points should allow for greater performance to be achieved as the RL Agent will have

access to more information about the system at each sample time.

76

Figure 3.59 Original Observation Window

The increase of input data can be seen in Figures 3.61 and 3.62. It should be noted that the

augmented Observation Window in Figure 3.62 corresponds to an untrained RL Agent and thus its

error data are not reflective of that of a fully trained RL Agent. These error data are the clustered

data points with a ribbon-like appearance that diverges. It can be seen across these figures that

the standard Observation Window encapsulates a much smaller period of time than the 64 Length

Augmented Window.

77

Figure 3.60 64 Length Augmented Observation Window

78

Figure 3.61 Original Observation Window Input Data

Figure 3.62 64 Length Augmented Observation Window Input Data

79

Increasing the size of the Observation Window does not appear to have a positive effect of

RL Agent accuracy, as is evidenced in Table 3.23 where both Reductions and Augmentations to

the RL Agent’s Observation Window Length from its original value of 10 appear to have little

to no impact on accuracy. When graphed in Figure 3.63, it can be seen that increases to the

Observation Window Length appear to increase the average percentage error in both the trained

range and the triple range. This runs contrary to the hypothesis that an increase in information

provided to the RL Agent will increase its accuracy. These data would indicate that the Observation

Window may add unnecessary information to the RL Agent that cause it to reach sub-optimal results.

Table 3.23 Effect of Observation Window Length
Observation Average Error Average Error Maximum Perf. Ep. Maximum
Window Length Trained Range Triple Range Reward
1 0.4906% 2.9154% 2204 -6.5528
2 0.5303% 3.2579% 4252 -6.4982
4 0.5044% 4.3880% 1281 -5.7308
8 0.7738% 3.5927% 5024 -9.5890
16 0.5731% 2.5453% 7619 -6.0819
32 0.8947% 4.6454% 1644 -12.3833
64 1.7296% 6.5237% 1268 -21.1884

80

Figure 3.63 Effect of Observation Window Length on Accuracy

The observation window can also be altered by changing the interval between the delay cells.

This allows the observation window to span a greater time period without increasing the computation

requirements. To accomplish this, the Simulink implementation was altered from Figure 3.59 to

3.64.

81

Figure 3.64 Simulink for 0.5 s Interval

The effect of altering the interval can be seen in Figure 3.65 and Table 3.24. In Figure 3.65 it

can be seen that the interval allows the window to cover a larger window of time but with fewer

data points. This is a different effect than that of the observation window length. Changing the

interval alters the sampling frequency of the observation window much like using a different data

rate on a sensor. The data provided in Table 3.24 indicate that there is no significant impact

caused by changes to the observation window interval. This is consistent with the findings from

the observation window length test in which more information did not increase accuracy. It would

seem that the observation window is not of significant importance or value to the RL Agent and

may not be required at all. This is likely due to the influence of PIRL negating the positive benefits

of the observation window. When the RL Agent is able to directly observe the specific quantities

that govern the system, it has little reason to place value on the state histories that only indirectly

provide the same information.

82

Figure 3.65 0.5 s Interval Observation Window Input Data

Table 3.24 Effect of Observation Window Interval
Observation Average Error Average Error Maximum Perf. Ep. Maximum
Window Interval (s) Trained Range Triple Range Reward
0.1 0.6369% 3.8204% 1164 -7.1106
0.2 1.4699% 4.9993% 1419 -14.1313
0.3 1.2924% 5.0317% 1623 -14.3071
0.4 0.5064% 3.7922% 1162 -6.6261
0.5 1.2831% 5.3159% 1528 -15.0392

3.3.3 Effect of Environmental Variables

An RL Agent’s performance may be influenced by changes to its environment. Such changes,

such as the range of the variation of the constants of the mass-spring-damper, the effect of sensor

noise, and the effect of reduced parameters, could have a significant impact on the ability of the RL

Agent to identify the system. For this reason, tests were conducted to observe the effects of these

changes in environment.

83

Effect of Range of Variation

For all previous tests, each parameter has been altered by a maximum of plus or minus 10% (or

0.1) during training. During testing, this is kept consistent for the trained range criterion and then

tripled for the triple range criterion. The purpose of the triple range criterion is to determine if the

RL Agent is effective when exposed to data outside of the range of what it has observed. The 0.1

range was chosen as it encompassed a variety of systems; however, in a practical application of this

system, the RL Agent may be applied to systems with significantly more variation. For this reason,

the range of variation was expanded and the effect on percentage error observed. The results of

this test are summarized in Table 3.25. It is evident from these data that the RL Agent is able to

maintain substantial accuracy within its trained range. The triple range increases with error more

significantly as is expected given that the triple range is increasing at triple the rate of the trained

range. Despite this, the RL Agent still maintains less than 10% error. These data speak to the

effectiveness of PIRL for SYSID.

Table 3.25 Effect of Greater Variation in Parameters
Variation Average Error Average Error Maximum Perf. Ep. Maximum Reward
Limit Trained Range Triple Range
0.0 0.1298% 0.1298% 4609 -1.6913
0.1 0.8914% 2.7442% 870 -13.8380
0.2 0.6389% 4.1848% 1126 -7.9597
0.3 0.9592% 7.7145% 2080 -9.3449

To better understand the influence of PIRL on the RL Agent, the test was repeated without

PIRL and the results of this test are presented in Table 3.26. From these results, much like the

previous test, it is evident that the percentage error increases as the range of variation increases.

In the trained and triple range, PIRL outperforms the non-PIRL/conventional RL Agent at all data

points, except 0.0 (no variation).

84

Table 3.26 Effect of Greater Variation in Parameters - Conventional RL
Variation Average Error Average Error Maximum Perf. Ep. Maximum Reward
Limit Trained Range Triple Range
0.0 0.06999% 0.6999% 2330 -1.5953
0.1 3.0791% 9.2511% 5366 -35.1741
0.2 5.5971% 16.7283% 6691 -68.3756
0.3 9.9655% 27.2288% 714 -112.6828

Effect of Noise on performance

If PIRL were to be implemented on a real dynamical system, it is most likely that there would

be noise in the input data. This would occur inconsistently as parameter data would not have noise,

as they would be derived from easily known and unchanging quantities. The input data also would

not feature noise as they would correspond to a pre-defined sinusoidal input. The only input with

noise would be that of the system states/observations and the error between the RL Agent’s trial

system’s states/observations. To simulate the effect of noise, an AWGN (Add White Gaussian

Noise) block was added into the RL Agent’s states/error signal, given a random seed, and set to a

constant predefined signal to noise ratio as measured in decibels (dB). This signal to noise ratio

(SNR) was then varied from 40 dB to 10 dB. The impact of the 40 dB noise can be seen in Figure

3.66. It should be noted that this Figure was generated with only a partially trained RL Agent and

thus the diverging error signal is not reflective of a fully trained RL Agent. In the Figure, the impact

of the noise is minimal and the signal (the state trajectories) is clearly evident.

85

Figure 3.66 SNR 40dB

Figure 3.67 shows the effect of a 10 dB SNR. At this increased level of noise, the state and

error trajectories are much more difficult to discern. It is hypothesized that this should cause the

RL Agent to see a decrease in performance and an increase in error.

86

Figure 3.67 SNR 10dB

The results from the test disprove this hypothesis, as is evident in Table 3.27. The addition of

Gaussian white noise has no discernible impact on the accuracy of the RL Agent at any tested noise

level. The error with added noise is not notably different from the tests without noise. This is most

likely due to the influence of PIRL. The RL Agent is able to be informed by the state trajectories,

but ultimately does not require them as the parameters contain within them sufficient information

to fully define the system. This may imply that the RL Agent may experience a decrease in perfor-

mance caused by the presence of noise if any of these parameters are missing or if the relationship

between parameters and system is sufficiently complex as to not be fully encapsulated by the RL

Agent’s neural network.

87

Table 3.27 Effect of Sensor Noise
Signal to Noise Average Error Average Error Maximum Maximum Reward
Ratio (dB) Trained Range Triple Range Perf. Ep.
40 0.6766% 3.9348% 4301 -8.5777
30 1.2457% 4.6325% 2149 -13.6742
20 0.8576% 4.8430% 1425 -10.2590
10 0.7229% 3.4888% 4741 -8.3063

Reduced Parameters

For the studies performed in this chapter, the RL Agent has been informed by the mass, spring-

constant, and damper-constant. The objective of this investigation was to provide a preliminary

understanding of the performance of PIRL and its possible benefits. In these initial tests, the RL

Agent is provided with a close to ideal set of inputs. This may not be possible on other systems

where the full scope of the system may not be captured by easily known parameters. In order to

better understand how PIRL’s performance is impacted by imperfect parameters, the parameters

that were provided to the RL Agent were altered as can be seen in Table 3.28.

Table 3.28 Effect of Reduced Parameters for PIRL
Parameters Average Error Average Error Maximum Perf. Ep. Maximum Reward

Trained Range Triple Range
m,k,b 0.7080% 5.3145% 1146 -8.3616
k,b 5.4208% 16.7332% 1146 -56.2411
m,b 2.2583% 7.8231% 7335 -23.2263
m,k 2.2310% 8.2912% 1216 -24.3703
m 3.7323% 12.9809% 3487 -37.1458
k 6.2881% 18.1904% 1718 -61.8511
b 5.9873% 19.0423% 900 -60.7773
None 6.2181% 16.5749% 2040 -70.6657

It can be seen in Table 3.28 that removing parameters has a significant effect on performance.

It can also be seen that certain parameters had a greater effect than others. When mass is removed,

the performance decreases to roughly similar to the conventional RL result and is in fact slightly

less accurate. When only the damping constant is provided, PIRL seems to be less accurate than

88

without any information although this may be due to statistical noise. This has the greatest effect

on the triple range criterion. These data would indicate that the mass is the most important factor

in accurately determining the system. Given that the mass directly impacts A21, A22, and B21,

this is expected. The impact of knowledge of the spring or damper constant appears to be roughly

similar. This demonstrates that, as would be expected, the value of a parameter to the RL Agent

may be closely related to the relevance that parameter has to the A and B matrices.

3.4 Conclusion

Implementation of PIRL in the MSD environment has illustrated a number of key attributes

of PIRL with regard to its use in system identification. PIRL has been shown to be effective at

performing system identification both within its trained range as well as within the triple range

criterion. It has been shown to produce more accurate models than an EKF and it does this

with a convergence time of only a few seconds at most. Additionally, PIRL performs better

than conventional RL models on the MSD system, which supports the hypothesis that additional

parameters provides a better RL performance. This chapter has also outlined a rough guide

regarding which hyperparameters have the most significant role in the performance of the Agents

and thus which ones to concern oneself with when optimizing the RL implementation. Notably,

noise variance, noise decay rate, discount factor, and observation window length and intervals

all had minimal impacts, while architecture exhibited a clear lower bound, and sample time was

relevant mostly to the design of the reward function and training threshold. PIRL was found to

perform well even when the range of variation was increased, and while there did exist a divergent

relationship between variation range and accuracy, PIRL continued to outperform conventional RL

under these conditions. Finally, PIRL was shown to maintain some effectiveness even when some

of the parameters were not provided to the Agent. There was an increase in error when parameters

were reduced, but the addition of any of the chosen parameters always led to a decrease in average

error in the trained range and mostly decreased the error in the triple range (some trials saw a slight

increase in error). Additionally, this test demonstrated that some parameters will have a greater

impact on reducing error than others. Mass was found to be the most significant parameter and this

89

is likely due to it being a factor in all unknown system variables. This chapter ultimately illustrates

that PIRL has merit as a novel system identification algorithm and appears to perform better than

EKFs and conventional RLs at the role of identifying the A and B matrices from a range of similar

mass-spring-damper systems.

90

4 Environment 2: Longitudinal Aircraft Model

An aircraft’s motion can be simplified into two separate decoupled and linearized dynamical

systems: lateral and longitudinal. Barring significant changes from the linearized state, these

equations define the dynamic behavior of an aircraft reasonably well.

The longitudinal system encompasses forward speed, vertical speed, pitch, pitch rate, and

sometimes altitude. The system is linearized from the aircraft’s trim conditions and thus all states

represent differences with respect to their trim conditions. The Longitudinal Flight Model (LFM)

was chosen as it is an increase in complexity from the MSD and is more relevant to the target

application of SYSID for fixed wing aircraft.

4.1 System Model

The state-space model of the LFM is given in Equation 4.1 [37]:

u̇

ẇ

q̇

θ̇

ḣ

=

Xu Xw Xq −g cos θ∗ 0

Zu Zw Zq −g sin θ∗ 0

Mu Mw Mq 0 0

0 0 1 0 0

− sin θ∗ − cos θ∗ 0 u∗ sin θ∗ + w∗ cos θ∗ 0

u

w

q

θ

h

+

Xδe Xδt

Zδe 0

Mδe 0

0 0

0 0

δe
δt

 (4.1)

where δe and δt are elevator and throttle inputs, u is the forward velocity, w is the vertical speed,

q is the pitch rate, θ is the pitch angle, h is the altitude, Xu, Xw, Xq, Zu, Zw, Zq,Mu,Mw are the

aircraft stability derivatives, and g is the acceleration due to gravity. It should be noted that asterisks

denote the trim conditions and that all states are differences measured from the trim conditions.

For example, a value for u of -10 indicates that the aircraft is flying at -10 ft/s slower than trim and

not 10ft/s backwards.

For the purposes of this environment, some of the complexity of the model has been removed.

For Environment 2, altitude as a state and thrust control have been removed. Altitude was removed

91

as all relevant altitude A and B terms could be determined by knowledge of the trim conditions

and thus would not be relevant to the RL Agent’s task. Thrust control was removed to simplify the

model as Environment 2 serves only as a further proof of concept. The reduced system can be seen

in Equation 4.2.

u̇

ẇ

q̇

θ̇

=

Xu Xw Xq −g cos θ∗

Zu Zw Zq −g sin θ∗

Mu Mw Mq 0

0 0 1 0

u

w

q

θ

+

Xδe

Zδe

Mδe

0

[
δe

]
(4.2)

The RL Agent is tasked with finding certain terms in the A and B matrices. These values

are A22, A23, and A33 and B1, B2, and B3. These specific values were selected as they could

not be determined through knowledge of the trim conditions such as the case for A14 and A24.

Additionally, A22, A23, and A33 were the largest, most influential values in their respective states

in the training data. Initially, the goal was to determine the values of the upper left 3x3 square of

the A matrix and the upper 3 values of the B matrix, but this was reduced because of its significant

increase in complexity from the MSD environment and the difficulty vs benefit of determining

some of the less impactful derivatives.

4.2 Training and Testing Data

Unlike the previous environment, the A and B matrices of the LFM cannot be assigned randomly

along fixed ranges. The values of each matrix are dependent on the aerodynamics of the aircraft

and thus must be generated through some form of simulator or through real-world data. Given the

large quantity of data required for training an RL Agent and the expense of collecting it, obtaining

sufficient data can be one of the largest challenges of AI systems implemented on aircraft. For this

environment and for both training and testing data, the A and B matrices were created using the

United States Air Force Stability and Control Digital Datcom.

Digital Datcom was created by the United States Air Force in 1978 at Wright-Patterson Air

Force Base in Dayton, Ohio. It is a computer program that performs the procedures found in the

92

USAF Stability and Control DATCOM [38]. In this regard, it serves as a non-CFD based calculator

for determining aerodynamic coefficients. The software is computationally inexpensive to run and

thus it was chosen to create the training and testing data for Environment 2.

For training, nine aircraft were used that would represent a wide variety of different aircraft,

thus ideally forcing the RL Agent to perform well for any given aircraft. The test aircraft was

selected as its overall size placed it roughly in the middle of the training set and would provide the

RL Agent ample opportunity to perform. Training and testing aircraft are shown in Table 4.1 along

with relevant size and performance parameters. Note that some values are approximations when

true values could not be obtained.

Table 4.1 Training and Testing Aircraft - General Information
Training
Manufacturer Model Weight Mom. In (IY) Wingspan

(lbs) (slugft2) (ft)
Beechcraft 99 10000[39] 15148[40] 46[39]
Boeing 737 115000[41] 2500000 112[41]
Beechcraft T-34C 4000[42] 1700 33[42]
Cessna 182 2950[43] 1500 26[43]
Cessna Citation I 10000[44] 25000 47[44]
Cessna Citation II 8000[45] 23216[46] 52[45]
Ryan Navion 2750[47] 2772[48] 33[47]
North American P-51 8000[49] 23000 37[49]
Northrop T38 10500[50] 24000[50] 25[50]
Testing
Learjet 35 14740[51] 18800 39[51]

To obtain the training and testing data, each aircraft was simulated using DATCOM at a range

of flight conditions. Three loops were used to this effect, with the first being a range of Mach

numbers, the second being a range of flight path angles, and the last being a range of altitudes. The

Mach numbers were given boundaries defined by reasonable airspeeds for the aircraft at its given

altitude, the flight path angles were given boundaries of 0 degrees to 20 or 15 degrees depending

on the aircraft’s capability, and finally the altitude was given boundaries that the aircraft could

93

reasonably perform. Any flight conditions that led to abnormal and likely erroneous information

were discarded by filtering based on the uncontrolled longitudinal stability eigenvalues. If an aircraft

had a maximum real eigenvalue of greater than 0.3, it was discarded, as aircraft with eigenvalues

greater than this diverged before the training episode could be completed. These stability data were

generated and saved. The resultant training data were comprised of 28,507 flight conditions across

the set of training aircraft, and the testing data were comprised of 2048 different flight conditions

across its one aircraft.

4.3 Implementation of Reinforcement Learning

Similar to Environment 1, the RL Agent’s performance is impacted by several factors including

its learning method, architecture, input structure, output interpretation, and a wide range of tunable

hyperparameters.

4.3.1 Learning Method (DDPG)

The RL Agent was again chosen to be a Deep Deterministic Policy Gradient (DDPG) Agent.

This is a model-free, actor-critic RL method, unique in that it offers continuous outputs as opposed

to discrete. This is optimal for SYSID as the outputs of the RL Agent are continuous values in the

A and B matrices. DDPG networks also support continuous or discrete observation spaces, which

is well suited to the task of time-series based SYSID.

4.3.2 Network Architecture

The Network Architecture is important to the effectiveness of the Agent. As was illustrated

in Environment 1, there can exist a lower bound on the RL Agent hidden layer size. Without

this necessary number of neurons, performance of the Agent decreases significantly. To avoid

this outcome, the architecture and size of the hidden layers were altered significantly. The Critic

and Actor networks are each composed of 7 hidden layers, starting at 500 neurons and gradually

decreasing until it reaches 20 neurons. Each layer is interspersed with a hyperbolic tangent layer

to ensure network stability. The MSD Actor originally was interspersed with reLu layers, but this

was altered to hyperbolic tangent layers to allow for the propagation of negative values that would

be required for the output layer.

94

4.3.3 Implementation of PIRL

Parameter Informed Reinforcement Learning is again implemented within the RL Agent’s

observations. The chosen parameters that are deemed relevant to the system model and can be

obtained easily are added in to the RL Agent’s inputs at each time-step. Unlike the MSD, the LFM

parameters span sufficiently large ranges that their values are normalized between 0 and 1. The

parameters were selected as Altitude (ft), Mach Number, Flight Speed (ft/s), Moment of Inertia

(IY) (slug ft2), Angle of Attack (rad), Pitch Angle (rad), Flight-Path-Angle (rad), Position of Center

of Gravity (ft), Position of Center of Gravity Measured from Mean Aerodynamic Chord, Wing

Surface Area, and Aircraft Weight. These were all selected as they embody possible effects caused

by changes from one aircraft to another or from one flight condition to another.

4.3.4 RL Agent Inputs

Identically to the MSD, for the LFM, the RL Agent observes a history of the states in 0.1 second

intervals. It also observes a history of the errors in the same manner. The error history is calculated

by observing the differences in the true system states and the trial system states. It should again be

noted that the trial system states are not fed back through the system as that would effectively be

assigning the RL Agent the task of SYSID as well as driving the system by altering its parameters

to the true system if its estimates have caused it to deviate. This is outside the scope of SYSID. The

error calculation method is illustrated in Figure 4.1.

Figure 4.1 Error Calculation Method

95

It should be noted that, in a real system, state histories may not be obtainable and one must use

output histories or a state estimator. This is not considered for this system and thus the C matrices

are assumed to be identity for the true and trial systems.

Finally, the PIRL inputs are added into the observations along with the control input. The RL

Agent’s Observations can be seen in Figure 4.2

Figure 4.2 RL Agent’s Observation

4.3.5 RL Agent Outputs

To perform SYSID, the RL Agent was tasked with finding A22, A23, A33 and B1, B2, and B3

from the A and B matrices of Equation 4.2. To determine these values, the RL Agent had an output

of 6 values, as shown in Equation 4.3:

RLAgentOutput =

A22Power

A23Power

A33Power

B1Power

B2Power

B3Power

(4.3)

It should be noted that each RL output is denoted with a Power Subscript. This is due to the

96

data transformation that was performed to allow the RL Agent to span the wide range of values that

each unknown could possess. This transformation can be seen in general in Equation 4.4 where

UMV refers to the unknown value in the matrix (e.g. A22), MPV refers to the maximum possible

value that an unknown could possess (from the training data), and RLO refers to the RL Agent

Output. An example is shown in Equation 4.5, where A22 is a transformation of the A22Power RL

Agent output. This transformation allows the required AI outputs to lie within roughly -1 to 1 and

logarithmically cover the full possible span of data. It should be noted that this transformation was

a requirement for an effective Agent as conventional data normalization would often render the AI

unable to estimate values that were near zero as scaling would reduce them to below that which

could have a significant impact on the Agent. This method requires prior knowledge of the sign of

each term.

UMV = MRLO
PV (4.4)

A22 = A22A22Power
max (4.5)

4.3.6 Reward Function

The Reward Function was altered for the LFM system to support the greater variation of

parameters. The previous reward function was effective for the MSD because all unknowns were

generally of equivalent value, whereas a percentage error reward function has to be used for the

LFM. Without this, the RL Agent would prioritize certain values in the A and B matrices, which

would lead to poor accuracy. The new reward function can be seen in Figure 4.3. Within the custom

Matlab function, a percentage error of each desired term is calculated and the negative average of

these percentages is the reward output signal. This signal is then scaled with the sample time to

prevent the issues encountered in the MSD system and scaled with a hyperbolic tangent function

97

and summed with one half1. The purpose of this transformation is to allow the critic network a

close range with which to predict the value of each action. A memory block is also included to

prevent algebraic loops from occurring. This delays the reward signal by 0.01 seconds, but given

the sample time for the RL Agent of 0.1 seconds, this is not a factor in the RL Agent’s learning

ability. This is performing the same operations as shown in Equation 4.6

R = tanh(−Ts

A22−A22T

A22
+ A23−A23T

A23
+ A33−A33T

A33
+ B1−B1T

B1
+ B2−B2T

B2
+ B3−B3T

B3

6
) + 0.5 (4.6)

One important note regarding the reward function is that the B1 term often possesses a value

near zero which, even with a small absolute error, could lead to percentage errors diverging, leading

to instability in Agent training. For this reason, if the B1 value is less than 0.5, which occurs in

the training set in 10% of all datasets and never in the testing set, absolute error is used instead of

percentage error. Additionally, this Reward function requires the prior knowledge of the true A and

B matrices. This prohibits online learning for the RL Agent. To support online learning, the RL

Agent should be implemented with a reward function more closely tied to the error in state histories

and not to the error in the specific A and B matrices. This is outside the scope of this thesis, but is

likely an area of worthwhile future research.

1This value was included to ensure that the reward in each time step was between 0 and 2; however, a value of 0.5
would move values between -0.5 and 1.5. This was found after data collection. To determine if this error would have
an impact on the results, the training was repeated with the corrected value. When no changes to performance were
observed across 100 random test database samples, the original data were used.

98

Figure 4.3 RL Agent’s Reward Function

4.3.7 Other Hyperparameters

All other hyperparameters used to create the network are listed in Table 4.2. Unless otherwise

stated, all RL Agents were trained and implemented using these hyperparameters.

Table 4.2 Hyperparameters used for RL Agent Training
Parameter Purpose Value
Sample Time Rate at Which the Agent is Activated 0.1s
Final Time Total Time for Each Training Episode 50s
Target Smooth Factor Related to Overfitting 1e-3
Discount Factor Priority for Immediate Rewards 0.95
Mini Batch Size Related to Training 64
Experience Buffer Length Related to Training 1e6
Noise Variance Related to Exploration V. Exploitation 0.1
Noise Variance Decay Rate Related to Exploration V. Exploitation 1e-5
Critic Learn Rate Learning Rate for Critic Network 1e-3
Critic Gradient Threshold Related to Learning Rate 1
Actor Learn Rate Learning Rate for Actor Network 1e-4
Actor Gradient Threshold Related to Learning Rate 1
Max Episodes Maximum Training Episodes 100,000

99

4.3.8 Simulink Implementation

The Simulink File used to implement PIRL for the LFM is shown in Figures 4.4 to 4.9. It

should be noted that ’hat’ denotes the trial systems and associated signals.

Figure 4.4 Overall Implementation of PIRL

100

Figure 4.4 shows the overall Simulink implementation. It features the following subsystems:

Unknown Parameter Extractor, Observation Generation, State-Space Model, Divergence Break,

Constructing Trial Matrices, and Reward Function. It additionally features the RL Agent Block as

well as the average error output, which is used to determine the accuracy of the trial systems. The

Unknown Parameter subsystem extracts the A and B matrices and PIRL parameters for the RL Agent

and State-Space to use. Similarly to the MSD, all A and B values and the PIRL parameters must be

stored in a single vector assigned as the initial conditions for the system. The State-Space Model

subsystem uses the true A and B matrices as well as the trial A and B matrices to determine the

state and error histories. These histories, along with the PIRL parameters and the Exciter Output,

are used by the Observation Generation Subsystem to generate the RL Agent’s Observations. The

Divergence Break Subsystem uses the true values of the states to end the simulation early if it is

found to be unstable and diverging. The Constructing Trial Matrices Subsystem converts the output

of the RL Agent to full A and B trial matrices by including any relevant constants or true A and B

values that are required. The Reward Function calculates the reward given to the RL Agent based

on the accuracy of its trial A and B matrices, and finally, the RL Agent block performs the task of

SYSID by using its observations and rewards to best find the value of A and B.

Figure 4.5 Unknown Parameter Extractor Subsystem

101

Figure 4.5 depicts the Unknown Parameter Extractor Subsystem. On the left is the x0, variable

which is reset each episode with a new flight condition selected at random. The values of the

A and B matrices, as well as the remaining PIRL parameters, are extracted from the x0 signal.

The A and B matrices are then directly outputted to be used elsewhere in the system. The flight

condition parameters are scaled through the fltconparamscaler function that transforms them to

values between zero and one. These are then outputted to be used by the RL Agent.

Figure 4.6 State Space Model Subsystem

The State Space Subsystem can be seen in Figure 4.6. Similar to the MSD, it receives as inputs

the A, B, Ahat, and Bhat signals. Unlike the MSD Environment, the excitor is no longer its own

subsystem and instead has been replaced by a chirp signal that excites the system across a spectrum

of frequencies starting at 0.01 Hz and ending at 1 Hz. This was chosen to allow the RL Agent to

observe the system when excited at a range of different frequencies and thus gain further insight

into the separate long and short period modes that exist within the LFM. The Chirp signal has a

gain applied that reduces its impact to a maximum elevator deflection of 0.01 radians, or roughly

half a degree. This input is combined with that of a gain multiplying the angle state signal to

create a proportional controller that maintains stability across the 50 second episode. The states

are propagated exactly as in the MSD environment using a linear, time-invariant model which is

102

numerically integrated to reach the next state. Unlike the MSD, Gaussian noise is added to the true

states therein simulating measurement noise. This noise added signal is then used to generate the

predicted states from the trial matrix to create the error signal. The measured state and error signals

are multiplexed together and outputted. The true states are also used as outputs and are used in the

Divergence Break Subsystem.

Figure 4.7 Observation Generation Subsystem

Figure 4.7 shows the Observation Generation Subsystem. This subsystem, like the MSD

environment, receives the parameters of PIRL, the control input, and state and error data as its

inputs. The parameters and control inputs are multiplexed directly into the observation signal,

while the state and error data are propagated through a series of delay blocks. This creates a

window of observation of the last second in 0.1 seconds intervals. The observation window is

multiplexed with the parameters and control input and assigned to the Observation output. This

output signal is then connected to the RL Agent.

103

Figure 4.8 Constructing Trial Matrices Subsystem

The Constructing Trial Matrices Subsystem can be seen in Figure 4.8. This system differs in

appearance significantly from the MSD but functionally serves the same purpose. The RL Agent

Output is decomposed into its requisite multipliers, which are applied to the maximum values

denoted A22 Gain, etc. These values are then used in combination with the true values of the other

sections of the A and B matrices (constants used when available) and the trial matrix signals are

completed. Each trial matrix has a sign correction function applied to since, as previously noted,

the RL Agent operates under the assumption that the sign of each unknown is known.

104

Figure 4.9 Reward Function Subsystem

The Reward Function Subsystem is shown in Figure 4.9. In this subsystem, it can be seen that

the A and Ahat matrices and B and Bhat matrices are inputted into a custom Matlab function. This

custom Matlab function calculates the percentage error of the differences of only the values that the

RL Agent is estimating. It then averages these errors and outputs the negative of this value. The

signal is processed through a memory cell to prevent an algebraic loop and then scaled between -1

and 1 through the hyperbolic tangent block. This signal is then outputted. Additionally, it can be

seen in the Figure that four display blocks are used to show the current values of A, Ahat, and B

and Bhat. This is used to observe the accuracy of each variable during training and testing. This

can also be seen via the Error Scope, which plots each individual error with time. Finally, the AOE

scope displays the average errors of each term with time. This signal is also used as an output,

which is relevant for collecting average error data during testing.

105

Figure 4.10 Divergence Break Subsystem

The Divergence Break Subsystem, shown in Figure 4.10, exists to flag and terminate the training

for any system which may be highly unstable. This system is rarely, if ever, used as the P controller

within the State-Space Model Subsystem maintains either stability or at least bounded states for

every flight condition in the training and testing data sets.

4.3.9 Training and Testing Method

In order to ensure that only the most high-performing RL Agents were used, the testing method

for the LFM was altered from the MSD. Instead of selecting the highest performing Agent based

on the highest Average Reward, the RL Agent was set to learn over a course of 100,000 episodes,

ensuring that it would reach an asymptotic level of performance. During training, each episode’s RL

Agent was saved, and roughly every 500-1000 Episodes, an Agent would be selected and evaluated.

Following the completion of the training, the sample Agent that had the lowest percentage error

would be selected as the fully trained candidate Agent.

This Agent would then be evaluated by tasking it with performing SYSID on a random 100

samples of different flight conditions selected from the test aircraft database. This would demon-

strate if the RL Agent could truly perform system identification on a new, unseen aircraft and to

what extent it could minimize the error between the true and trial systems. During this test, the

average error of the RL Agent’s trial system of the 50 second episode would be calculated and then

averaged with the other 100 trials.

4.4 Results

The results from the Longitudinal Flight Model environment are included in the following

section. Unlike the MSD, PIRL is only analyzed in its baseline configuration and in comparison

106

with other existing methods, with no evaluation of the effect of varying hyperparameters. The

computational requirements of training LFM networks prohibit the evaluation of the performance

impact of other hyperparameters and environmental factors. The Performance of PIRL section

documents how PIRL performs on the LFM as well as how changes in the application of PIRL

impact performance. The Comparison to Existing Systems section is composed of analysis of

PIRL’s performance when compared to conventional Reinforcement Learning and an Extended

Kalman Filter.

4.4.1 RL Agent Training Curve

The training curve of the PIRL RL Agent can be seen in Figure 4.11. This curve differs

significantly from the training curve of the MSD. The LFM curve is bounded between -25 and

150 due to the hyperbolic tangent present in the reward function and the reward function being

the negative sum of the average percentage error. Initially, the RL Agent improves and with a few

dips in performance, it reaches a rough average reward (denoted by the dark blue curve) asymptote

of 10-15. The RL Agent is unable to improve past this threshold despite its continued training.

Additionally, the RL Agent has a number of moments in which the performance suddenly decreases

for a period of several hundred episodes causing the average reward curve to be reduced to -5 or

lower. These sudden changes end as soon as they begin and performance returns to the previous

same level. It is unclear what causes this change although it may be due to the RL Agent exploring

an unproductive path to SYSID and then returning to its original method.

107

Figure 4.11 PIRL - Training Curve

4.4.2 Performance on a Random System

For an initial understanding of the effectiveness of the PIRL Agent, it was applied to a randomly

selected flight condition, chosen from the test database. This flight condition is summarized in

Table 4.3. It is also compared as a percentage difference to the average value of this flight condition

in the training set. This is to provide an indicator of how different this condition is from the training

data provided to the PIRL algorithm. It can be seen in the Table that this random flight condition

is roughly similar to the average system encountered in training with regard to its Altitude, Mach

Number, Airspeed, Pitch Angle, Flight Path Angle, and Weight. It is significantly different from

the average training condition with regard to its angle of attack. This is less due to the particular

angle caused by the flight condition and more due to a trait in how the Agent was trained. To ensure

that Digital DATCOM could find an appropriate trim condition in higher altitudes where higher

airspeeds would be required, the airspeeds at low altitudes were occasionally above what would

be expected for conventional flight and thus in many cases the angle of attack at low altitudes was

negative. This caused the average angle of attack to be near zero and thus the percentage error

value to be very large. The randomly chosen system has the A and B matrices shown in Equation 4.7.

108

Table 4.3 Random Sample Flight Condition
Flight Condition Value Per Cent Variation
Altitude (ft) 16400 16.97%
Mach No. 0.5 7.83%
Flight Speed (ft/s) 525.78 3.045%
Angle of Attack (Deg) 1.5799 3471%
Pitch Angle (Deg) 9.5799 -4.60%
Flight Path Angle (Deg) 8 -20.6629%
Weight (lbs) 14740 -0.1470%
Moment of Inertia (slug ft2) 18800 -90.45%

ATrue =

−0.0058 0.0370 0.2151 −31.7512

−0.1303 −1.1165 −7.8104 −5.3575

−0.0001054 −0.08359 −2.838 0

0 0 1 0

, BTrue =

−6.5911

−75.0933

−38.3456

0

(4.7)

109

Figure 4.12 Random Flight Condition - Trial A Values

In Figure 4.12, the trial values of the A matrix are depicted along with the desired ’true’ values.

The values for the B matrix are shown in Figure 4.13. In Figure 4.12, it is shown that the A22 value

follows its true value with a gradually reducing error of roughly 27%. A23 also gradually decreases

in its error starting at roughly 40%. A33 has essentially no error and retains this throughout

the 50 second window. In Figure 4.13, the B1 trial curve shows a gradual increase in error but

remains at roughly 30%. B2, much like A23, reaches the true value and remains there effectively

immediately. B3 exhibits the largest error with a trial value of zero. This occurs due to how the

RL Agent’s outputs have been used. If the Agent outputs a low positive or negative number, it is

used in Equation 4.4 and will output a trial value very near zero. Since the Agent is penalized with

percentage error, the RL Agent may output very near zero trial values as this incurs a maximum

penalty of 100%, whereas overshooting a value lacks this maximum penalty. This conservative

behavior may be caused by a lack of sufficient information to adequately predict a specific value. It

also may be caused by insufficient training, but given the training curve shown in Figure 4.11, this

is unlikely as the curve seems to show the RL Agent reaching a performance ceiling early that is

110

not breached despite a significant training period.

Figure 4.13 Random Flight Condition - Trial B Values

4.4.3 Performance on 100 Systems

Similarly to the MSD, the LFM PIRL Agent was implemented across 100 randomly selected

flight conditions and the average percentage error across each system was recorded. The results of

these tests have been provided in Table 4.4. In the table, it is evident that the RL Agent is able to

estimate the values of A22 and A23 reasonably well, with A33 and B2 being estimated somewhat

well. B1 is not estimated well, and the RL Agent fails to estimate B3 at all. The differences in

these average errors could be caused by a number of different factors.

111

Table 4.4 PIRL RL Agent Percentage Accuracy Across 100 Randomly Selected Flight Conditions
Variable PIRL Per Cent Error
A22 15.36%
A23 16.79%
A33 30.49%
B1 53.13%
B2 38.25%
B3 99.99%
Average 42.34%

One possible cause of these estimation errors is that the RL Agent lacks the neural capacity

to fully and accurately estimate these values. This is not deemed likely, as during the training

process, the neuron count of each layer, as well as the number of layers, changed extensively and

was expanding significantly from the MSD Environment, and yet no noticeable improvements to

performance were observed.

Another possible cause could lie in the variation of the data. To determine if this may be the

cause, the Coefficients of Variance were calculated for both the training set and the test set. These

data are shown in Table 4.5. The percentage error and Coefficients of Variance do appear to follow

a similar trend with larger coefficients of variance leading to larger percentage errors. This would

indicate that the variation of the variables has an impact on the RL Agent’s ability to predict them,

with greater variations leading to greater inaccuracies.

Table 4.5 Coefficients of Variance in Testing and Training Data
Variable PIRL Per Cent Error Training Coefficient Testing Coefficient

of Variance of Variance
A22 15.36% 0.5656 0.2050
A23 16.79% 0.5546 0.2211
A33 30.49% 0.7230 0.2212
B1 53.13% 1.2017 0.2960
B2 38.25% 0.9083 0.2674
B3 99.99% 0.9663 0.2755

The percentage accuracy of each unknown may also be impacted by how closely it is correlated

112

with any given input parameter. If an unknown were to be closely correlated to a parameter, the

RL Agent would have little difficulty in predicting its value, whereas if its value had little to no

relation to any parameters, the RL Agent would have to obtain this information from the state and

error histories, which may not be as easily interpretable.

4.4.4 Comparison to Existing Systems

It is important to understand the accuracy of PIRL, but this accuracy lacks context without

an exploration of the effectiveness of other methods. This section concerns the performance of

conventional Reinforcement Learning applied to this environment and an extended Kalman filter.

These results are compared to those of PIRL to demonstrate the effectiveness of this novel method.

Performance of Conventional Reinforcement Learning

Reinforcement Learning has been applied to system identification previously with success.

This application has, to the knowledge of the author, never included any PIRL additions or similar

such algorithms. To avoid misattributing the performance of an RL method to PIRL specifically,

a second RL Agent was trained and evaluated with all characteristics being the same except that

it lacked the parameters as inputs. The RL Agent was then evaluated over 100 different systems

randomly selected from the testing dataset. The first apparent difference between the two RL

Agents can be seen in the training curve shown in Figure 4.14. These results show that, while

initially the RL Agent learns well and improves both in episode reward and in average reward, this

progress quickly reaches an asymptote and the AI can no longer improve. This asymptote is at

roughly -4 for the average reward. This is indicative that, without the influence of PIRL, the RL

Agent is unable to complete the task of system identification. When implemented with the test

database, the percentage error leads one to reach a similar conclusion. The results of these tests

are shown in Table 4.6. From this Table, it is clear that conventional Reinforcement Learning is, in

this environment, less effective in performing the task of system identification than PIRL.

113

Figure 4.14 Conventional Reinforcement Learning Training Curve

Table 4.6 PIRL Agent Vs. Conventional RL Agent
Variable PIRL Per Cent Error Conventional Per Cent Error
A22 15.36% 38.23%
A23 16.79% 39.86%
A33 30.49% 78.63%
B1 53.13% 85.90%
B2 38.25% 99.06%
B3 99.99% 99.99%
Average 42.34% 73.61%

114

Figure 4.15 Error Trajectories of Non-PIRL Agent on a Randomly Selected Test Database System
(A Matrix Values)

The trajectories of the errors of the non-PIRL Agent can be seen in Figures 4.15 and 4.16. In

these figures, it is apparent that, even with sufficient training to lead to an asymptote in trained

performance, the conventional RL Agent is fundamentally unable to identify the system. It is

important to once again note that this is not due to the RL Agent being unable to identify a given

system; rather it is being tasked with identifying over 28,000 different systems. This is a much

more difficult endeavor, and the conventional RL Agent is unable to perform this task.

115

Figure 4.16 Error Trajectories of Non-PIRL Agent on a Randomly Selected Test Database System
(B Matrix Values)

It is clear from these tests that the conventional RL Agent may have been effective in the MSD

when the variation of the unknown system A and B values were more closely bounded, but in the

LFM, it is almost entirely unable to perform SYSID on the test set. The PIRL Agent performs

better by 31.27%, which is a clear indication of the benefit of the PIRL method.

Comparison to an Extended Kalman Filter

Similarly to the MSD, it is important to understand how PIRL performs when compared to

more conventional methods. An extended Kalman filter is used as an existing method through

which conclusions can be drawn regarding the Agent’s performance as an independent method of

performing system identification. It should be noted that the specific implementation used requires

the EKF to perform the exact task as the PIRL Agent, but other implementations that leverage

knowledge of the parameters to specific unknown matrix values may be used.

Extended Kalman filters (EKFs) are used for filtering noise, state estimation and system iden-

tification. When appropriately tuned, they can perform this task well and in a computationally

116

efficient manner. The EKF, much like PIRL, relies on estimating states to estimate the unknown A

and B values of the system. PIRL uses the error found between its trial system estimated state and

the measurements, but differs in that this is only one of the many different inputs to the algorithm.

Furthermore, the states are not estimated directly, but only indirectly by using the estimated system.

An EKF is implemented for system identification by using the desired estimated system values

(A22, A23, A33, and B1, B2, and B3) as states. These are then estimated as states by the EKF.

The Extended Kalman filter is required over the regular Kalman filter as using the system values

converts the system from linear to nonlinear. Before the EKF can be used, the system must be

converted from continuous time to discrete. This is done in the same manner as the MSD using

Euler’s method and is shown Equations 4.8 and 4.9. It should be noted that dt refers to the time

step at which the EKF is implemented and not necessarily the rate at which the LFM is simulated.

In this experiment, dt is equal to 0.01 seconds.

Ẋ = AX +BU (4.8)

Xk+1 = (Adt+ I)Xk +BdtUk (4.9)

Following the continuous to discrete conversion, the desired values are added as states. This

will make the system nonlinear and thus the augmented dynamics model is given as a series of

functions shown in Equation 4.10 where x̂5, x̂6, x̂7, x̂8, x̂9 and x̂10 represent A22, A23, A33, B1,

B2 and B3 respectively. It should be noted that the ”ˆ” denotes that each state is an estimate.

117

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

x̂7

x̂8

x̂9

x̂10

k+1

= f(X̂k, Uk) =

x̂1k + dt(Xux̂1k +Xwx̂2k +Xqx̂3k − g cos(θ∗)x̂4 + ux̂8k)

x̂2k + dt(Zux̂1k + x̂5kx̂2k + x̂6kx̂3k − g sin(θ∗)x̂4 + ux̂9k)

x̂3k + dt(Mux̂1k +Mwx̂2k + x̂7kx̂3k + ux̂10k)

x̂4k + dtx̂3k

x̂5k

x̂6k

x̂7k

x̂8k

x̂9k

x̂10k

(4.10)

With this dynamics model, the EKF procedure is given in Equations 4.11 to 4.15, which are

performed in order at each k time step. Note that k + 1/k refers to intermediate values and that

C has been augmented with zeroes to support the larger X̂ vector. In this process, F refers to the

Jacobian of A with respect to X̂ , while Q, R, P, and K refer to the process noise covariance matrix,

the sensor noise covariance matrix, the estimation error covariance matrix and the Kalman gain

respectively.

X̂k+1/k = f(X̂k, Uk) (4.11)

Pk+1/k = FkPkF
T
k +Qk (4.12)

Kk+1 = Pk+1/kC
T (CPk+1/kC

T +Rk)
−1 (4.13)

118

X̂k+1 = X̂k+1/k +Kk+1(Yk+1 − CX̂k+1/k) (4.14)

Pk+1 = (I −Kk+1C)Pk+1/k (4.15)

The results of this test can be seen in Table 4.7, where the EKF was applied to 100 randomly

selected flight conditions. It is clear from these results that the extended Kalman filter is less

effective than PIRL. The EKF manages to predict some values moderately well, but it is completely

unable to estimate other values, such as B2. This could be caused by a number of different factors,

including the particular system on which it was tuned, or more complicated variables such as the

persistence of excitation. No matter the cause, the EKF in this particular test seems unable to

effectively perform system identification with an average percentage error of 73.75% compared to

PIRL’s 42.34%. This is a positive indicator of PIRL’s effectiveness as a novel system identification

algorithm.

Table 4.7 PIRL RL Agent Vs. Extended Kalman Filter
Variable PIRL Per Cent Error EKF Per Cent Error
A22 15.36% 23.19%
A23 16.79% 81.94%
A33 30.49% 44.33%
B1 53.13% 100.41%
B2 38.25% 99.17%
B3 99.99% 93.49%
Average 42.34% 73.75%

4.5 Conclusion

System identification with the longitudinal flight model has demonstrated the effectiveness of

PIRL as a novel system identification algorithm for multiple similar systems. The results demon-

strate that, while PIRL is imperfect and still requires further development to accurately identify all

variables, it consistently outperforms existing methods such as conventional reinforcement learning

119

and extended Kalman filters. In addition to its greater accuracy, PIRL also identifies the systems

instantaneously or near instantaneously, as opposed to extended Kalman filters which have a sig-

nificant convergence time. Due to computational constraints, an in-depth analysis of the effects

of hyperparameters and environmental factors was not possible. This is an area in which further

study is recommended, as PIRL in its current status appears to bear merit as a novel algorithm and

further optimization is likely to lead to further reduced error.

This chapter has also demonstrated how flight conditions can be generated en masse for a number

of different aircraft through the use of Digital DATCOM. This may bear relevance outside of PIRL

and SYSID and be useful for research concerning the application of artificial intelligence and deep

learning with aerospace engineering. To the author’s knowledge, sufficiently large databases of

aircraft dynamics and control data for training artificial intelligence models on multiple different

platforms and in multiple different environments are exceedingly rare. With the code provided in

the appendices of this thesis, further research may be conducted from usage of this database alone.

120

5 Conclusions and Future Research

In Aerospace Engineering, novel aircraft design requires the generation of mathematical models

of the aircraft swiftly and accurately. Conventional mathematical system identification methods,

such as the extended Kalman filter, require tuning on each application while artificial intelligence

based methods require extensive training on their chosen platforms. To the author’s knowledge,

there has not yet been published research regarding a system identification method that can be

trained on a selection of similar related platforms and implemented on a new one. In this thesis,

this form of implementation is supported by the development of a novel form of Reinforcement

Learning Application termed PIRL: Parameter Informed Reinforcement Learning. This chapter

concerns the conclusions regarding the development of PIRL and its application to the problem of

SYSID for multiple related environments.

5.1 Conclusions

PIRL was created based on the notion that an AI algorithm that is trained to perform System

Identification on a variety of different platforms would be better suited to the task if it were provided

information beyond the state and error trajectories that inform existing mathematical and artificial

intelligence methods. By being informed by additional related information about each system,

the artificial intelligence agent should be able to develop at least a general internal mathematical

model of the relationship between these parameters and their role in the system’s dynamics. For

example, if an RL Agent is trained on two aircraft of similar class and weight but one possessed

a larger moment arm for its elevators than the other, the RL Agent should be able to observe this

difference and conclude that the coefficient determining the effect of elevator deflection would likely

be larger for the former aircraft. Thus, it would be able to carry this knowledge forward into the

implementation on a previously unseen aircraft. This task can be solved using supervised as well as

reinforcement learning; however, reinforcement learning was ultimately selected due to its ability

to train online if given a reward function based on the differences between state trajectories. This

type of reward function was ultimately not implemented due to difficulties in RL Agent training.

121

5.1.1 Environment 1: Mass-Spring-Damper

The Mass-Spring-Damper model was crucial in developing the first insights of how PIRL

was best implemented and its effectiveness when compared to existing systems and robustness

to changes in its operating Environment. In this Environment, the RL Agent was tasked with

identifying the unknown values in the A and B matrices of a Mass-Spring-Damper system. It was

found that PIRL was an effective novel method of SYSID. It produced more accurate models than

an Extended Kalman Filter and was able to generate these models with little to no convergence

time, whereas the EKF requires 10-15 seconds to converge. In addition, when applied to the MSD,

PIRL was shown to be more effective at SYSID than conventional Reinforcement Learning. This

strongly suggests that the presence of the additional parameters causes lower average percentage

errors in the trial systems. The Mass-Spring-Damper system, due to its simplicity, also allowed for

a significant amount of work to be conducted with regard to how the RL Agents can be optimized.

Many hyperparameters had little to no effect, while others were found to have unexpected effects.

In summary: noise variance, noise decay rate, discount factor, and observation window length and

intervals all had minimal impacts, while architecture exhibited a clear lower bound and sample time

was relevant mostly to the design of the reward function and training threshold. Finally, the MSD

Environment enabled evaluation of PIRL when certain environmental variables change such as the

range of possible variation, the presence of sensor noise of varying Signal-to-Noise Ratios, and

the effect of reduced parameters. It was determined in these experiments that the RL Agents that

were trained with PIRL were more effective than their conventional RL counterparts. Ultimately,

this environment allowed PIRL and its implementation to be better understood so that it could be

applied more effectively in the Longitudinal Flight Model. It also demonstrated on a small-scale

how PIRL was more effective than existing methods for System Identification of multiple related

environments.

5.1.2 Environment 2: Longitudinal Flight Model

The Longitudinal Flight Model Environment allowed for a much more accurate and thus more

challenging task for the PIRL Agents. In this environment, the PIRL Agents were tasked with

122

identifying specific values from the A and B matrices of the longitudinal flight models of a

Learjet 35 Aircraft at various different flight conditions after being trained on simulated flight

data of several other aircraft at other flight conditions. PIRL was once again evaluated against a

conventional Reinforcement Learning agent and an extended Kalman filter. PIRL was ultimately

unable to fully identify this system and suffered from an average percentage error of roughly 40%;

however, when compared to other existing methods, this percentage error was considerably lower

than attained by the other algorithms. The extended Kalman filter and conventional Reinforcement

Learning both were only able to achieve roughly 70% error. Due to the computational requirements

of training these Agents, an in-depth analysis of the effects of hyperparameters and environmental

factors was not undertaken.

In the process of applying PIRL to this Environment, a large database of different aircraft across

different flight conditions was developed. This was done through extensive usage of the USAF’s

Stability and Control Digital DATCOM program that was able to rapidly generate stability data that

could be used to generate the A and B matrices of a Longitudinal Flight Model. To the author’s

knowledge, there are little to no databases containing a significant number of aircraft flight models

across a significant number of flight conditions. The program and DATCOM files featured in the

appendices of this thesis may allow for more of these databases to be generated. These databases

are critical for any AI research with application to multiple aircraft or to aircraft at multiple different

flight conditions.

5.2 Future Research

This thesis concerns the development and evaluation of the Parameter Informed Reinforcement

Learning Method to SYSID of multiple related environments. From this topic, a number of further

research areas may be pursued. This thesis is only intended to provide the first implementation of

PIRL and not a comprehensive analysis of its effectiveness. Additionally, this thesis examines an

area in which to the author’s knowledge, little to no research exists. This is the problem of SYSID

for multiple related environments. Given this thesis’ limited scope, the following avenues of future

research are recommended:

123

• Investigate PIRL’s effectiveness when applied to more complex systems.

• Investigate the effect of hyperparameters on PIRL’s effectiveness in the Longitudinal Flight

Model (or others).

• Investigate the usage of an error trajectory based reward function to enable online learning.

• Further develop the PIRL algorithm to enable use of any control input signal.

• Investigate use of PIRL with frequency-domain data.

• Expand the aircraft training and testing database and observe any differences to PIRL perfor-

mance.

• Conduct a more comprehensive comparison between PIRL and other conventional SYSID

methods.

• Explore PIRL’s application in other non-SYSID applications.

• Explore PIRL’s application in fault-tolerance applications.

• Investigate the relationship between PIRL Parameters and Trial Matrix Values to determine

most effective parameters.

• Determine ideal methods for pre-processing PIRL/RL Agent inputs.

• Determine ideal methods for post-processing PIRL/RL Agent outputs.

• Explore PIRL’s application to the tuning of extended Kalman filter through the RL Agent’s

output.

• Explore methods to develop large AI datasets of flight test or flight model information.

• Explore implementation of novel or existing algorithms to SYSID of multiple related envi-

ronments.

124

REFERENCES

[1] Deistler, M., System Identification and Time Series Analysis: Past, Present, and Future,
Springer-Verlag, 2008, pp. 97–109. https://doi.org/10.1007/3-540-48022-6 7.

[2] Federal Aviation Administration, “AC 61-107B: Aircraft Operations at Altitudes Above 25,000
Feet Mean Sea Level or Mach Numbers Greater Than .75,” Tech. rep., Federal Aviation
Administration, 2013.

[3] Cessna Aircraft Company, Pilot’s Operating Handbook - Cessna Model 172N, Cessna Aircraft
Company, 1977.

[4] Australian Transport Safety Bureau, “In-flight uncontained engine failure overhead Batam
Island, Indonesia 4 November 2010 VH-OQA Airbus A380-842,” Tech. rep., Australian
Transport Safety Bureau, 2013.

[5] Sutton, R. S., and Barto, A. G., Reinforcement Learning: An Introduction, A Bradford Book,
Cambridge, MA, USA, 2018.

[6] Mathworks, What Is Reinforcement Learning?, Mathworks, Natick, Massachusetts, USA,
2023.

[7] Ljung, L., System Identification: An Overview, Springer London, London, 2015, pp.
1443–1458. https://doi.org/10.1007/978-1-4471-5058-9 100, URL https://doi.org/10.1007/
978-1-4471-5058-9 100.

[8] Bauer, J. E., and Andrisani, D., “Estimating short-period dynamics using an extended Kalman
filter,” Tech. rep., NASA, 1990.

[9] Gu, Y., Jin, J., and Mei, S., “l0 Norm Constraint LMS Algorithm for Sparse System
Identification,” IEEE Signal Processing Letters, Vol. 16, No. 9, 2009, pp. 774–777.
https://doi.org/10.1109/LSP.2009.2024736.

[10] Kaltenbacher, B., and Nguyen, T. T. N., “A model reference adaptive system approach for
nonlinear online parameter identification,” arXiv.org, 2021.

[11] Morelli, E. A., and Grauer, J. A., “Practical Aspects of Frequency-Domain Approaches for
Aircraft System Identification,” Journal of Aircraft, Vol. 57, No. 2, 2020, pp. 268–291.
https://doi.org/10.2514/1.C035599, URL https://doi.org/10.2514/1.C035599.

[12] Martinsen, A. B., Lekkas, A. M., and Gros, S., “Combining system identification with
reinforcement learning-based MPC,” IFAC-PapersOnLine, Vol. 53, No. 2, 2020, pp.
8130–8135. https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.2294, URL https://www.
sciencedirect.com/science/article/pii/S2405896320329542, 21st IFAC World Congress.

[13] Hu, J., Wang, Q., Ye, Y., and Tang, Y., “Toward Online Power System Model Identification:
A Deep Reinforcement Learning Approach,” IEEE Transactions on Power Systems, Vol. 38,

125

https://doi.org/10.1007/3-540-48022-6_7
https://doi.org/10.1007/978-1-4471-5058-9_100
https://doi.org/10.1007/978-1-4471-5058-9_100
https://doi.org/10.1007/978-1-4471-5058-9_100
https://doi.org/10.1109/LSP.2009.2024736
https://doi.org/10.2514/1.C035599
https://doi.org/10.2514/1.C035599
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.2294
https://www.sciencedirect.com/science/article/pii/S2405896320329542
https://www.sciencedirect.com/science/article/pii/S2405896320329542

No. 3, 2023, pp. 2580–2593. https://doi.org/10.1109/TPWRS.2022.3180415.

[14] H., J. A. M., Vicente, O. F., Perez, S., Belfadil, A., Ibanez-Llano, C., Rondon, F. J. P., Valle,
J. J., and Pelaz, J. A., “Reinforcement Learning in System Identification,” , 2022.

[15] Perrusquı́a, A., and Yu, W., “Identification and optimal control of nonlinear systems us-
ing recurrent neural networks and reinforcement learning: An overview,” Neurocomputing
(Amsterdam), Vol. 438, 2021, pp. 145–154.

[16] Nonomura, T., Shibata, H., and Takaki, R., “Extended-Kalman-filter-based dynamic mode
decomposition for simultaneous system identification and denoising,” PloS one, Vol. 14,
No. 2, 2019.

[17] Kassim, A. M., Abas, N., Legowo, A., Ibrahim, Z., and Rahim, N., “Modeling and System
Identification using Extended Kalman Filter for a Quadrotor System,” Applied Mechanics and
Materials, Vol. 313-314, 2013, pp. 976–981.

[18] Basappa, K., and Jategaonkar, R., “Evaluation of Recursive Methods for Aircraft Parameter
Estimation,” AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2004.

[19] Choi, M., Oh, J. J., and Choi, S. B., “Linearized Recursive Least Squares Methods for
Real-Time Identification of Tire-Road Friction Coefficient,” IEEE transactions on vehicular
technology, Vol. 62, No. 7, 2013, pp. 2906–2918.

[20] Ding, F., Wang, Y., Dai, J., Li, Q., and Chen, Q., “A recursive least squares parameter
estimation algorithm for output nonlinear autoregressive systems using the input–output data
filtering,” Journal of the Franklin Institute, Vol. 354, No. 15, 2017, pp. 6938–6955.

[21] De Souza, D. A., Batista, J. G., Vasconcelos, F. J. S., Dos Reis, L. L. N., Machado, G. F.,
Costa, J. R., Junior, J. N. N., Silva, J. L. N., Rios, C. S. N., and Junior, A. B. S., “Identification
by Recursive Least Squares With Kalman Filter (RLS-KF) Applied to a Robotic Manipulator,”
IEEE access, Vol. 9, 2021, pp. 63779–63789.

[22] Li, S., Xue, Q., Shi, D., Li, X., and Zhang, W., “Recursive Least Squares Based Refinement
Network for Vehicle Trajectory Prediction,” Electronics (Basel), Vol. 11, No. 12, 2022.

[23] Kamali, C., Pashilkar, A., and Raol, J., “Evaluation of Recursive Least Squares algorithm for
parameter estimation in aircraft real time applications,” Aerospace Science and Technology,
Vol. 15, No. 3, 2011, pp. 165–174. https://doi.org/https://doi.org/10.1016/j.ast.2010.12.007,
URL https://www.sciencedirect.com/science/article/pii/S1270963810001628.

[24] Guo, Y., and Kareem, A., “Non-stationary frequency domain system identification using
time–frequency representations,” Mechanical Systems and Signal Processing, Vol. 72-73,
2016, pp. 712–726.

[25] Morelli, E. A., “Low-Order Equivalent System Identification for the Tu-144LL Supersonic
Transport Aircraft,” Journal of guidance, control, and dynamics, Vol. 26, No. 2, 2003, pp.

126

https://doi.org/10.1109/TPWRS.2022.3180415
https://doi.org/https://doi.org/10.1016/j.ast.2010.12.007
https://www.sciencedirect.com/science/article/pii/S1270963810001628

354–362.

[26] Morelli, E. A., and Grauer, J. A., “Practical Aspects of Frequency-Domain Approaches for
Aircraft System Identification,” Journal of Aircraft, Vol. 57, No. 2, 2020, pp. 268–291.

[27] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra,
D., “Continuous control with deep reinforcement learning,” , 2019.

[28] Qiu, C., Hu, Y., Chen, Y., and Zeng, B., “Deep Deterministic Policy Gradient (DDPG)-Based
Energy Harvesting Wireless Communications,” IEEE Internet of Things Journal, Vol. 6,
No. 5, 2019, pp. 8577–8588. https://doi.org/10.1109/JIOT.2019.2921159.

[29] Jia, Z., Gao, Q., and Peng, X., “LSTM-DDPG for Trading with Variable Positions,” Sensors
(Basel, Switzerland), Vol. 21, No. 19, 2021, pp. 6571–.

[30] Guo, S., Zhang, X., Zheng, Y., and Du, Y., “An Autonomous Path Planning Model for
Unmanned Ships Based on Deep Reinforcement Learning,” Sensors (Basel, Switzerland),
Vol. 20, No. 2, 2020, pp. 426–.

[31] Zhu, M., Tian, K., Wen, Y.-Q., Cao, J.-N., and Huang, L., “Improved PER-DDPG based
nonparametric modeling of ship dynamics with uncertainty,” Ocean Engineering, Vol. 286,
2023, p. 115513. https://doi.org/https://doi.org/10.1016/j.oceaneng.2023.115513, URL https:
//www.sciencedirect.com/science/article/pii/S0029801823018978.

[32] Aoun, C. E., “Fault Tolerant Deep Reinforcement Learning for Aerospace Applications,”
Master’s thesis, Embry-Riddle Aeronautical University, 2021.

[33] Shalumov, V., “Cooperative online Guide-Launch-Guide policy in a target-missile-defender
engagement using deep reinforcement learning,” Aerospace science and technology, Vol. 104,
2020, pp. 105996–.

[34] Liu, Z., Li, J., Wang, C., Yu, R., Chen, J., He, Y., and Sun, C., “System Identification Based
on Generalized Orthonormal Basis Function for Unmanned Helicopters: A Reinforcement
Learning Approach,” IEEE Transactions on Vehicular Technology, Vol. 70, No. 2, 2021, pp.
1135–1145. https://doi.org/10.1109/TVT.2021.3051696.

[35] Raissi, M., Perdikaris, P., and Karniadakis, G. E., “Physics Informed Deep Learning
(Part I): Data-driven Solutions of Nonlinear Partial Differential Equations,” CoRR, Vol.
abs/1711.10561, 2017. URL http://arxiv.org/abs/1711.10561.

[36] Kon, M., and Plaskota, L., “Information complexity of neural networks,” Neural networks,
Vol. 13, No. 3, 2000, pp. 365–375.

[37] Hajiyev, C., “LQR Controller with Kalman Estimator Applied to UAV Longitudinal Dynam-
ics,” Positioning, Vol. 04, 2013, pp. 36–41. https://doi.org/10.4236/pos.2013.41005.

[38] McDonnell Douglas Astronautics Co., The USAF Stability and Control Digital DATCOM.

127

https://doi.org/10.1109/JIOT.2019.2921159
https://doi.org/https://doi.org/10.1016/j.oceaneng.2023.115513
https://www.sciencedirect.com/science/article/pii/S0029801823018978
https://www.sciencedirect.com/science/article/pii/S0029801823018978
https://doi.org/10.1109/TVT.2021.3051696
http://arxiv.org/abs/1711.10561
https://doi.org/10.4236/pos.2013.41005

Volume I. Users Manual, United States Air Force, 1978.

[39] Airliners.net, 2023. URL https://www.airliners.net/aircraft-data/beech-99-airliner/66.

[40] Scott, j., “Beech 99 Low-Speed Cruise Configuration,” https://m-
selig.ae.illinois.edu/apasim/Aircraft-uiuc/beech99-v1/aircraft.dat, 2000. Accessed:
2023-10-17.

[41] Airliners.net, 2023. URL https://www.airliners.net/aircraft-data/boeing-737-800900/96.

[42] NASA, 2023. URL https://www.nasa.gov/aeronautics/t-34c-mission-support-aircraft/.

[43] AOPA, 2023. URL https://www.aopa.org/go-fly/aircraft-and-ownership/aircraft-guide/
aircraft/cessna-182.

[44] GlobalAir.com, 2023. URL https://www.globalair.com/aircraft-for-sale/specifications?
specid=183.

[45] GlobalAir.com, 2023. URL https://www.globalair.com/aircraft-for-sale/specifications?
specid=184.

[46] Horssen, L. V., de Visser, C. C., and Pool, D. M., “Aerodynamic Stall and Buffet Modeling
for the Cessna Citation II Based on Flight Test Data,” 2018 AIAA Modeling and Simulation
Technologies Conference, 2018.

[47] GlobalAir.com, 2023. URL https://www.globalair.com/aircraft-for-sale/specifications?
specid=300.

[48] Suit, W. T., Aerodynamic parameters of the Navion airplane extracted from flight, Legacy
CDMS, 1972.

[49] GlobalAir.com, 2023. URL https://www.globalair.com/aircraft-for-sale/specifications?
specid=484.

[50] Nolan, I., Robert C, Wing Rock Prediction Method for a High Performance Fighter Aircraft,
1992.

[51] GlobalAir.com, 2023. URL https://www.globalair.com/aircraft-for-sale/specifications?
specid=25.

128

https://www.airliners.net/aircraft-data/beech-99-airliner/66
https://www.airliners.net/aircraft-data/boeing-737-800900/96
https://www.nasa.gov/aeronautics/t-34c-mission-support-aircraft/
https://www.aopa.org/go-fly/aircraft-and-ownership/aircraft-guide/aircraft/cessna-182
https://www.aopa.org/go-fly/aircraft-and-ownership/aircraft-guide/aircraft/cessna-182
https://www.globalair.com/aircraft-for-sale/specifications?specid=183
https://www.globalair.com/aircraft-for-sale/specifications?specid=183
https://www.globalair.com/aircraft-for-sale/specifications?specid=184
https://www.globalair.com/aircraft-for-sale/specifications?specid=184
https://www.globalair.com/aircraft-for-sale/specifications?specid=300
https://www.globalair.com/aircraft-for-sale/specifications?specid=300
https://www.globalair.com/aircraft-for-sale/specifications?specid=484
https://www.globalair.com/aircraft-for-sale/specifications?specid=484
https://www.globalair.com/aircraft-for-sale/specifications?specid=25
https://www.globalair.com/aircraft-for-sale/specifications?specid=25

A Programs Used For Environments
A.1 Mass Spring Damper Code
A.1.1 One-Time Training of Fixed Reward

clc

close all

clear

n_knowns = 3

n_states = 2

C = eye(2)

Ts = 0.1

Tf = 50

window_size = 10

obsInfo = rlNumericSpec([4*window_size + n_knowns+1,1])

actInfo = rlNumericSpec([3,1])

open_system("sys10")

set_param('sys10','GPUAcceleration','off')

env = rlSimulinkEnv("sys10","sys10/RL Agent",...

obsInfo,actInfo);

129

env.ResetFcn = @(in) setVariable(in,'x0',[rand()*0.2+0.9,rand()

*0.2 + 0.9,rand*0.2 + 0.9]); %m k b

% Observation path

obsPath = [

featureInputLayer(obsInfo.Dimension(1),Name="obsInputLayer")

fullyConnectedLayer(20)

reluLayer

fullyConnectedLayer(20,Name="obsPathOutLayer")];

% Action path

actPath = [

featureInputLayer(actInfo.Dimension(1),Name="actInputLayer")

fullyConnectedLayer(20,Name="actPathOutLayer")];

% Common path

commonPath = [

additionLayer(2,Name="add")

reluLayer

fullyConnectedLayer(1,Name="CriticOutput")];

criticNetwork = layerGraph();

criticNetwork = addLayers(criticNetwork ,obsPath);

criticNetwork = addLayers(criticNetwork ,actPath);

criticNetwork = addLayers(criticNetwork ,commonPath);

criticNetwork = connectLayers(criticNetwork , ...

130

"obsPathOutLayer","add/in1");

criticNetwork = connectLayers(criticNetwork , ...

"actPathOutLayer","add/in2");

criticNetwork = dlnetwork(criticNetwork);

summary(criticNetwork)

critic = rlQValueFunction(criticNetwork , ...

obsInfo,actInfo, ...

ObservationInputNames="obsInputLayer", ...

ActionInputNames="actInputLayer");

getValue(critic, ...

{rand(obsInfo.Dimension)}, ...

{rand(actInfo.Dimension)})

actorNetwork = [

featureInputLayer(obsInfo.Dimension(1))

fullyConnectedLayer(3)

tanhLayer

fullyConnectedLayer(actInfo.Dimension(1))

];

actorNetwork = dlnetwork(actorNetwork);

summary(actorNetwork)

actor = rlContinuousDeterministicActor(actorNetwork ,obsInfo,

actInfo);

131

getAction(actor ,{rand(obsInfo.Dimension)})

agent = rlDDPGAgent(actor,critic);

agent.SampleTime = Ts;

agent.AgentOptions.TargetSmoothFactor = 1e-3;

agent.AgentOptions.DiscountFactor = 0.95; %OG was 1

agent.AgentOptions.MiniBatchSize = 64;

agent.AgentOptions.ExperienceBufferLength = 1e6;

agent.AgentOptions.NoiseOptions.Variance = 0.3;

agent.AgentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

agent.AgentOptions.CriticOptimizerOptions.LearnRate = 1e-03; %OG

was 3

agent.AgentOptions.CriticOptimizerOptions.GradientThreshold = 1;

agent.AgentOptions.ActorOptimizerOptions.LearnRate = 1e-04;

agent.AgentOptions.ActorOptimizerOptions.GradientThreshold = 1;

getAction(agent ,{rand(obsInfo.Dimension)})

trainOpts = rlTrainingOptions(...

MaxEpisodes=8000, ...

MaxStepsPerEpisode=ceil(Tf/Ts), ...

132

ScoreAveragingWindowLength=20, ...

Verbose=false, ...

Plots="training-progress",...

StopTrainingCriteria="EpisodeReward",...

StopTrainingValue= -50, ...

SaveAgentCriteria = "EpisodeReward", ...

SaveAgentValue = -50, ...

SaveAgentDirectory = "sys10Agents");

trainingStats = train(agent,env,trainOpts);

133

A.1.2 One-Time Execution RL Agent

%For getting averages of PIRL nets

clc;

clear;

close all;

window_size = 10;

n_knowns = 3;

n_states = 2;

Ahat = [0,1;0,0];

Bhat = [0;0];

Ts = 0.1;

Tf = 50;

C = eye(2);

obsInfo = rlNumericSpec([4*window_size+1,1]);% + n_knowns+1,1])

actInfo = rlNumericSpec([3,1]);

open_system('executor10_simulink.slx');

env = rlSimulinkEnv("executor10_simulink","executor10_simulink/RL

Agent",...

obsInfo,actInfo);

134

error_top = 0;

error_top_A21 = 0;

error_top_A22 = 0;

error_top_B21 = 0;

error_bottom = 0;

agent = load("sys10Agents\Agent495"); %Change for Each Run

agent = agent.saved_agent;

for i = 1:100

x0 = [rand()*0.2+0.9,rand()*0.2 + 0.9,rand*0.2 + 0.9]; %m k b

agent.SampleTime = Ts;

[a] = sim('executor10_simulink.slx',50);

t1 = 0:Ts:Tf;

t2 = 0:0.01:Tf;

b = a.yout{1}.Values.Data(1,:)';

c = a.yout{2}.Values.Data;

d = a.yout{3}.Values.Data;

e = a.yout{4}.Values.Data;

f = a.yout{5}.Values.Data;

error = 100*abs((e(1,1:end)-f(1))./(f(1)));

errorA21 = mean(error);

error = 100*abs((e(2,1:end)-f(2))./(f(2)));

135

errorA22 = mean(error);

error = 100*abs((e(3,1:end)-f(3))./(f(3)));

errorB21 = mean(error);

error_top_A21 = error_top_A21 + errorA21;

error_top_A22 = error_top_A22 + errorA22;

error_top_B21 = error_top_B21 + errorB21;

error_top = error_top + (errorA21+errorA22+errorB21)/3;

error_bottom = error_bottom + 1;

[i,error_top_A21/error_bottom ,error_top_A22/error_bottom ,

error_top_B21/error_bottom ,error_top/error_bottom]

error_top/error_bottom;

end

136

A.1.3 Optimal RL Agent Training

%Run tests in one code - better training criterion

%CURRENTLY CONFIGURED FOR DISCOUNT FACTOR

clc

close all

clear

results = [];

var_range = 1:-0.05:0.3;

mkdir('sys16Agents')

for var_n = 1:length(var_range)

cd sys16Agents

directory = cellstr(ls);

directory = directory(3:end);

for i = 1:length(directory)

file = directory(i);

delete(file{1})

end

cd ..

137

var = var_range(var_n);

%Trainer

n_knowns = 3;

n_states = 2;

Ts = 0.1;

Tf = 50;

window_size = 10;

obsInfo = rlNumericSpec([4*window_size + n_knowns+1,1]);

actInfo = rlNumericSpec([3,1]);

open_system("sys16")

set_param('sys16','GPUAcceleration','on')

env = rlSimulinkEnv("sys16","sys16/RL Agent",...

obsInfo,actInfo);

env.ResetFcn = @(in) setVariable(in,'x0',[rand()*0.2+0.9,rand

()*0.2 + 0.9,rand*0.2 + 0.9]); %m k b

% Observation path

obsPath = [

featureInputLayer(obsInfo.Dimension(1),Name="

obsInputLayer")

fullyConnectedLayer(20)

138

reluLayer

fullyConnectedLayer(20,Name="obsPathOutLayer")];

% Action path

actPath = [

featureInputLayer(actInfo.Dimension(1),Name="

actInputLayer")

fullyConnectedLayer(20,Name="actPathOutLayer")];

% Common path

commonPath = [

additionLayer(2,Name="add")

reluLayer

fullyConnectedLayer(1,Name="CriticOutput")];

criticNetwork = layerGraph();

criticNetwork = addLayers(criticNetwork ,obsPath);

criticNetwork = addLayers(criticNetwork ,actPath);

criticNetwork = addLayers(criticNetwork ,commonPath);

criticNetwork = connectLayers(criticNetwork , ...

"obsPathOutLayer","add/in1");

criticNetwork = connectLayers(criticNetwork , ...

"actPathOutLayer","add/in2");

criticNetwork = dlnetwork(criticNetwork);

summary(criticNetwork)

139

critic = rlQValueFunction(criticNetwork , ...

obsInfo,actInfo, ...

ObservationInputNames="obsInputLayer", ...

ActionInputNames="actInputLayer");

getValue(critic, ...

{rand(obsInfo.Dimension)}, ...

{rand(actInfo.Dimension)})

actorNetwork = [

featureInputLayer(obsInfo.Dimension(1))

fullyConnectedLayer(3)

tanhLayer

fullyConnectedLayer(actInfo.Dimension(1))

];

actorNetwork = dlnetwork(actorNetwork);

summary(actorNetwork)

actor = rlContinuousDeterministicActor(actorNetwork ,obsInfo,

actInfo);

getAction(actor ,{rand(obsInfo.Dimension)})

agent = rlDDPGAgent(actor,critic);

agent.SampleTime = Ts;

140

agent.AgentOptions.TargetSmoothFactor = 1e-3;

agent.AgentOptions.DiscountFactor = var; %OG was 1

agent.AgentOptions.MiniBatchSize = 64;

agent.AgentOptions.ExperienceBufferLength = 1e6;

agent.AgentOptions.NoiseOptions.Variance = 0.3;

agent.AgentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

agent.AgentOptions.CriticOptimizerOptions.LearnRate = 1e-03;

%OG was 3

agent.AgentOptions.CriticOptimizerOptions.GradientThreshold =

1;

agent.AgentOptions.ActorOptimizerOptions.LearnRate = 1e-04;

agent.AgentOptions.ActorOptimizerOptions.GradientThreshold =

1;

getAction(agent ,{rand(obsInfo.Dimension)})

trainOpts = rlTrainingOptions(...

MaxEpisodes= 8000, ...

MaxStepsPerEpisode=ceil(Tf/Ts), ...

ScoreAveragingWindowLength=20, ...

Plots="none", ...

Verbose=false, ...

StopTrainingCriteria="EpisodeReward",...

StopTrainingValue= 10, ...

141

SaveAgentCriteria = "EpisodeReward", ...

SaveAgentValue = -100000, ...

SaveAgentDirectory = "sys16Agents");

results

trainingStats = train(agent,env,trainOpts);

average_reward_stats = trainingStats.AverageReward;

[M,I] = max(average_reward_stats);

close_system('sys16.slx')

open_system('executor16_simulink.slx');

error_top = 0;

error_top_A21 = 0;

error_top_A22 = 0;

error_top_B21 = 0;

error_bottom = 0;

cd sys16Agents

directory = cellstr(ls);

cd ..

agent = load("sys16Agents\Agent"+I);

agent = agent.saved_agent;

for i = 1:100

142

x0 = [rand()*0.2+0.9,rand()*0.2 + 0.9,rand*0.2 + 0.9]; %m

k b

[a] = sim('executor16_simulink.slx',50);

t1 = 0:Ts:Tf;

t2 = 0:0.01:Tf;

b = a.yout{1}.Values.Data(1,:)';

c = a.yout{2}.Values.Data;

d = a.yout{3}.Values.Data;

e = a.yout{4}.Values.Data;

f = a.yout{5}.Values.Data;

error = 100*abs((e(1,1:end)-f(1))./(f(1)));

errorA21 = mean(error);

error = 100*abs((e(2,1:end)-f(2))./(f(2)));

errorA22 = mean(error);

error = 100*abs((e(3,1:end)-f(3))./(f(3)));

errorB21 = mean(error);

error_top_A21 = error_top_A21 + errorA21;

error_top_A22 = error_top_A22 + errorA22;

error_top_B21 = error_top_B21 + errorB21;

error_top = error_top + (errorA21+errorA22+errorB21)/3;

143

error_bottom = error_bottom + 1;

[i,error_top_A21/error_bottom ,error_top_A22/error_bottom ,

error_top_B21/error_bottom ,error_top/error_bottom];

error_top/error_bottom;

end

std_range_error = error_top/error_bottom;

error_top = 0;

error_top_A21 = 0;

error_top_A22 = 0;

error_top_B21 = 0;

error_bottom = 0;

for i = 1:100

x0 = [rand()*0.6+0.7,rand()*0.6 + 0.7,rand*0.6 + 0.7]; %m

k b

agent.SampleTime = Ts;

[a] = sim('executor16_simulink.slx',50);

t1 = 0:Ts:Tf;

t2 = 0:0.01:Tf;

b = a.yout{1}.Values.Data(1,:)';

c = a.yout{2}.Values.Data;

d = a.yout{3}.Values.Data;

e = a.yout{4}.Values.Data;

144

f = a.yout{5}.Values.Data;

error = 100*abs((e(1,1:end)-f(1))./(f(1)));

errorA21 = mean(error);

error = 100*abs((e(2,1:end)-f(2))./(f(2)));

errorA22 = mean(error);

error = 100*abs((e(3,1:end)-f(3))./(f(3)));

errorB21 = mean(error);

error_top_A21 = error_top_A21 + errorA21;

error_top_A22 = error_top_A22 + errorA22;

error_top_B21 = error_top_B21 + errorB21;

error_top = error_top + (errorA21+errorA22+errorB21)/3;

error_bottom = error_bottom + 1;

[i,error_top_A21/error_bottom ,error_top_A22/error_bottom ,

error_top_B21/error_bottom ,error_top/error_bottom];

error_top/error_bottom;

end

trp_range_error = error_top/error_bottom;

close_system('executor16_simulink.slx');

results = [results;I,M,var,std_range_error ,trp_range_error]

145

writematrix(results,'sys16results.txt');

end

146

A.1.4 Optimal RL Agent Training - Range of Variation

%CURRENTLY CONFIGURED FOR RANGE OF VARIATION

clc

close all

clear

results = [];

var_range = 0:0.1:1.9;

mkdir('sys20Agents')

for var_n = 1:length(var_range)

cd sys20Agents

directory = cellstr(ls);

directory = directory(3:end);

for i = 1:length(directory)

file = directory(i);

delete(file{1})

end

cd ..

147

var = var_range(var_n);

%Trainer

n_knowns = 3;

n_states = 2;

Ts = 0.1;

Tf = 50;

window_size = 10;

obsInfo = rlNumericSpec([4*window_size + n_knowns+1,1]);

actInfo = rlNumericSpec([3,1]);

open_system("sys20")

set_param('sys20','GPUAcceleration','on')

env = rlSimulinkEnv("sys20","sys20/RL Agent",...

obsInfo,actInfo);

env.ResetFcn = @(in) setVariable(in,'x0',[(rand()-0.5)*var

+1,(rand()-0.5)*var + 1,(rand()-0.5)*var + 1]); %m k b

% Observation path

obsPath = [

featureInputLayer(obsInfo.Dimension(1),Name="

obsInputLayer")

148

fullyConnectedLayer(20)

reluLayer

fullyConnectedLayer(20,Name="obsPathOutLayer")];

% Action path

actPath = [

featureInputLayer(actInfo.Dimension(1),Name="

actInputLayer")

fullyConnectedLayer(20,Name="actPathOutLayer")];

% Common path

commonPath = [

additionLayer(2,Name="add")

reluLayer

fullyConnectedLayer(1,Name="CriticOutput")];

criticNetwork = layerGraph();

criticNetwork = addLayers(criticNetwork ,obsPath);

criticNetwork = addLayers(criticNetwork ,actPath);

criticNetwork = addLayers(criticNetwork ,commonPath);

criticNetwork = connectLayers(criticNetwork , ...

"obsPathOutLayer","add/in1");

criticNetwork = connectLayers(criticNetwork , ...

"actPathOutLayer","add/in2");

criticNetwork = dlnetwork(criticNetwork);

149

summary(criticNetwork)

critic = rlQValueFunction(criticNetwork , ...

obsInfo,actInfo, ...

ObservationInputNames="obsInputLayer", ...

ActionInputNames="actInputLayer");

getValue(critic, ...

{rand(obsInfo.Dimension)}, ...

{rand(actInfo.Dimension)})

actorNetwork = [

featureInputLayer(obsInfo.Dimension(1))

fullyConnectedLayer(3)

tanhLayer

fullyConnectedLayer(actInfo.Dimension(1))

];

actorNetwork = dlnetwork(actorNetwork);

summary(actorNetwork)

actor = rlContinuousDeterministicActor(actorNetwork ,obsInfo,

actInfo);

getAction(actor ,{rand(obsInfo.Dimension)})

agent = rlDDPGAgent(actor,critic);

agent.SampleTime = Ts;

150

agent.AgentOptions.TargetSmoothFactor = 1e-3;

agent.AgentOptions.DiscountFactor = 0.95;

agent.AgentOptions.MiniBatchSize = 64;

agent.AgentOptions.ExperienceBufferLength = 1e6;

agent.AgentOptions.NoiseOptions.Variance = 0.3;

agent.AgentOptions.NoiseOptions.VarianceDecayRate = 1e-5;

agent.AgentOptions.CriticOptimizerOptions.LearnRate = 1e-03;

agent.AgentOptions.CriticOptimizerOptions.GradientThreshold =

1;

agent.AgentOptions.ActorOptimizerOptions.LearnRate = 1e-04;

agent.AgentOptions.ActorOptimizerOptions.GradientThreshold =

1;

getAction(agent ,{rand(obsInfo.Dimension)})

trainOpts = rlTrainingOptions(...

MaxEpisodes=8000, ...

MaxStepsPerEpisode=ceil(Tf/Ts), ...

ScoreAveragingWindowLength=20, ...

Plots="none", ...

Verbose=false, ...

StopTrainingCriteria="EpisodeReward",...

StopTrainingValue= 10, ...

151

SaveAgentCriteria = "EpisodeReward", ...

SaveAgentValue = -100000, ...

SaveAgentDirectory = "sys20Agents");

results

trainingStats = train(agent,env,trainOpts);

average_reward_stats = trainingStats.AverageReward;

[M,I] = max(average_reward_stats);

open_system('executor20_simulink.slx');

error_top = 0;

error_top_A21 = 0;

error_top_A22 = 0;

error_top_B21 = 0;

error_bottom = 0;

cd sys20Agents

directory = cellstr(ls);

cd ..

agent = load("sys20Agents\Agent"+I);

agent = agent.saved_agent;

for i = 1:100

x0 = [(rand()-0.5)*var+1,(rand()-0.5)*var + 1,(rand()

-0.5)*var + 1]; %m k b

152

[a] = sim('executor20_simulink.slx',50);

t1 = 0:Ts:Tf;

t2 = 0:0.01:Tf;

b = a.yout{1}.Values.Data(1,:)';

c = a.yout{2}.Values.Data;

d = a.yout{3}.Values.Data;

e = a.yout{4}.Values.Data;

f = a.yout{5}.Values.Data;

error = 100*abs((e(1,1:end)-f(1))./(f(1)));

errorA21 = mean(error);

error = 100*abs((e(2,1:end)-f(2))./(f(2)));

errorA22 = mean(error);

error = 100*abs((e(3,1:end)-f(3))./(f(3)));

errorB21 = mean(error);

error_top_A21 = error_top_A21 + errorA21;

error_top_A22 = error_top_A22 + errorA22;

error_top_B21 = error_top_B21 + errorB21;

error_top = error_top + (errorA21+errorA22+errorB21)/3;

error_bottom = error_bottom + 1;

[i,error_top_A21/error_bottom ,error_top_A22/error_bottom ,

153

error_top_B21/error_bottom ,error_top/error_bottom];

error_top/error_bottom;

end

std_range_error = error_top/error_bottom;

error_top = 0;

error_top_A21 = 0;

error_top_A22 = 0;

error_top_B21 = 0;

error_bottom = 0;

for i = 1:100

x0 = [(rand()-0.5)*3*var+1,(rand()-0.5)*3*var + 1,(rand()

-0.5)*3*var + 1]; %m k b

agent.SampleTime = Ts;

[a] = sim('executor20_simulink.slx',50);

t1 = 0:Ts:Tf;

t2 = 0:0.01:Tf;

b = a.yout{1}.Values.Data(1,:)';

c = a.yout{2}.Values.Data;

d = a.yout{3}.Values.Data;

e = a.yout{4}.Values.Data;

f = a.yout{5}.Values.Data;

154

error = 100*abs((e(1,1:end)-f(1))./(f(1)));

errorA21 = mean(error);

error = 100*abs((e(2,1:end)-f(2))./(f(2)));

errorA22 = mean(error);

error = 100*abs((e(3,1:end)-f(3))./(f(3)));

errorB21 = mean(error);

error_top_A21 = error_top_A21 + errorA21;

error_top_A22 = error_top_A22 + errorA22;

error_top_B21 = error_top_B21 + errorB21;

error_top = error_top + (errorA21+errorA22+errorB21)/3;

error_bottom = error_bottom + 1;

[i,error_top_A21/error_bottom ,error_top_A22/error_bottom ,

error_top_B21/error_bottom ,error_top/error_bottom];

error_top/error_bottom;

end

trp_range_error = error_top/error_bottom;

results = [results;I,M,var,std_range_error ,trp_range_error]

writematrix(results,'sys20results.txt');

155

end

156

A.1.5 Extended Kalman Filter Implementation

clc

clear

close all

error_array_2 = [];

for i = 1:100

sim_t_s = 0.01;

T_s = 0.1;

T_f = 50;

m=(rand()-0.5)*1*0.2 + 1;

k=(rand()-0.5)*1*0.2 + 1;

b=(rand()-0.5)*1*0.2 + 1;

SNR = 40;

X = [0;0];

X_hat = [0;0;0;0;0];

Y = eye(2)*X;

A_true_1 = [0,1;-k/m,-b/m];

B_true_1 = [0,1/m]';

C = awgn(eye(2)*X,SNR);

157

A_true = A_true_1*sim_t_s + eye(2);

B_true = B_true_1*sim_t_s;

Y_hist = [];

X_hat_hist = [];

C = [1,0,0,0,0;0,1,0,0,0];

syms x1 x2 x3 x4 x5 U_sym

f1 = x1 + x2*T_s;

f2 = x1*x3*T_s+(1+x4*T_s)*x2 + x5*T_s*U_sym;

f3 = x3;

f4 = x4;

f5 = x5;

f = [f1;f2;f3;f4;f5];

P = [1000,0,0,0,0;...

0,1000,0,0,0;...

0,0,1000,0,0;...

0,0,0,1000,0;...

0,0,0,0,1000];

Q = [0.01,0,0,0,0;...

0,0.01,0,0,0;...

0,0,100,0,0;...

0,0,0,100,0;...

0,0,0,0,100];

R = [10,0;0,10];

A = jacobian(f,[x1;x2;x3;x4;x5]);

for t = 0:sim_t_s:T_f

158

X_hat_hist = [X_hat_hist ,X_hat];

Y_hist = [Y_hist,Y];

U = sin(t) + sin(t/2) + sin(t/3);

X = A_true*X + B_true*U;

Y = awgn(eye(2)*X,SNR);

if rem(t,T_s) == 0

x1 = X_hat(1);

x2 = X_hat(2);

x3 = X_hat(3);

x4 = X_hat(4);

x5 = X_hat(5);

A = [1,T_s,0,0,0;...

T_s*x3,T_s*x4+1,T_s*x1,T_s*x2,T_s*U;...

0,0,1,0,0;...

0,0,0,1,0;...

0,0,0,0,1];

X_hat(1) = x1 + x2*T_s;

X_hat(2) = x1*x3*T_s+(1+x4*T_s)*x2 + x5*T_s*U;

X_hat(3) = x3;

X_hat(4) = x4;

X_hat(5) = x5;

P = A*P*A.' + Q;

159

K = P*C.'*inv(C*P*C.'+R);

X_hat = X_hat + K*(Y - C*X_hat);

P = (eye(5)-K*C)*P;

X_hat = double(X_hat);

end

end

error_array = [abs((X_hat_hist(3,:)-A_true_1(2,1))./A_true_1

(2,1));...

abs((X_hat_hist(4,:)-A_true_1(2,2))./A_true_1(2,2));...

abs((X_hat_hist(5,:)-B_true_1(2,1))./B_true_1(2,1))]*100;

hoz_error = mean(error_array(:,end-2500:end),2);

error = mean(hoz_error);

error_array_2 = [error_array_2;error];

[i,error,mean(error_array_2)]

end

160

A.2 Longitudinal Flight Model Code
A.2.1 DATCOM Data Generation and Storage Code

clc

clear

%Notes

database = load('database_test_2.txt');

%database = [];

STMACH = 0.85;

cd Datcom_2020\'AC_Models'

ls

directory = cellstr(ls);

directory = directory(3:end);

n_planes = length(directory);

for aircraft_n = 2

%Loading in aircraft from selection

aircraft = directory(aircraft_n);

aircraft = {'Learjet.dat'};

cd ..

aircraft_file_n = sprintf('AC_models/%s',aircraft{1});

for alt = 4000:400:20000

for fpa = 0:2:15

for mach_req = 0.5:0.05:0.7

keep_trying = 1

while keep_trying == 1

try

clc

alt

161

fpa

mach_req

location = cellstr(cd);

location = location{1};

if strcmp(location ,'C:\Users\natha\

OneDrive\Documents\School\Thesis\

Experiment 2')

cd Datcom_2020

elseif strcmp(location,'C:\Users\natha\

OneDrive\Documents\School\Thesis\

Experiment 2\Datcom_2020\Bin')

cd ..

end

%Rewriting mach

opts = delimitedTextImportOptions("

Delimiter","ignore");

raw_AC = readcell(aircraft_file_n ,opts);

mach_row = raw_AC(2);

mach_row = mach_row{1};

new_mach = sprintf('%.1f,%s%.2f,',

mach_req ,'STMACH=',STMACH);

for i = 1:length(mach_row(23:end))

mach_row(23+i) = ' ';

end

mach_row(24:23+length(new_mach)) =

new_mach;

raw_AC(2) = {mach_row};

162

alt_row = raw_AC(3);

alt_row = alt_row{1};

new_alt = sprintf('%.1f,',alt);

for i = 1:length(alt_row(14:end))

alt_row(14+i) = ' ';

end

alt_row(14:13+length(new_alt)) = new_alt;

raw_AC(3) = {alt_row};

row = raw_AC(1);

row = row{1};

new_file = sprintf('%s',row);

for i = 2:size(raw_AC)

row = raw_AC(i);

row = row{1};

if strcmp(row(1),'$')

new_file = sprintf('%s \n %s',

new_file ,row);

elseif strcmp(row(1:4),'NACA')||

strcmp(row(1:4),'DAMP')||strcmp(

row(1:4),'DERI')||strcmp(row(1:4),

'TRIM')||strcmp(row(1:4),'NEXT')

new_file = sprintf('%s \n%s',

new_file ,row);

else

new_file = sprintf('%s\n %s',

new_file ,row);

end

163

end

writematrix(new_file ,'Bin/for005.dat',"

QuoteStrings","none")

%Running DATCOM and loading the input and

output files

cd Bin

open('DD_32x.exe')

cd ..

cd ..

pause(2)

aero = datcomimport('Datcom_2020/Bin/

for006.dat','off',0);

aero = aero{1};

raw = readcell('Datcom_2020/Bin/for006.

dat');

raw_AC = readcell('Datcom_2020/Bin/for005

.dat');

%Extracting Data from files, some are not

in aero and must be pulled

%manually

Mach0 = aero.mach; % --

altitude = aero.alt; % --

altitude_m = altitude*0.3048;

[T_m, a_m, P_m, rho_m] = atmosisa(

altitude_m);

rho = 0.00194032033*rho_m;

% Initial Conditions

164

for index = 1:size(raw,1)

row = raw(index ,1);

row = row{1};

if length(row) >= 4

first_entry_mach = row(1:4);

if strcmp(first_entry_mach ,'MACH'

)

Vt0_row = raw(index+3,1);

end

end

end

Vt0_row = strsplit(Vt0_row{1},' ');

Vt0 = Vt0_row(4);

Vt0 = str2num(Vt0{1});

for index = 1:size(raw,1)

row = raw(index ,1);

row = row{1};

if length(row) >= 4

first_entry_mach = row(1:4);

if strcmp(first_entry_mach ,'MACH'

)

S_row = raw(index+3,1);

end

end

end

S_row = strsplit(S_row{1},' ');

S = S_row(8);

165

S = str2num(S{1});

q = 1/2 * rho * Vt0ˆ2;

% Initial Conditions

raw_AC2 = readcell('Datcom_2020/Bin/

for005.dat',opts);

index = 0;

notFound = 1;

while notFound == 1

index = index + 1;

row = raw_AC2{index};

pause(0.1)

if length(row) >= 2

if strcmp(row(1:2),'WT')

notFound = 0;

end

end

end

W = str2num(row(strfind(row,'WT=')+3:

strfind(row,'.')-1));

syms alpha0 D T CL CL_w de CM_e CL_e CM

syms CL positive

syms CD positive

eq1 = CM_e == de*((aero.dcm_sym(6)-aero.

dcm_sym(5))/(aero.delta(6)-aero.delta

(5)));

eq2 = CL_e == de*((aero.dcl_sym(6)-aero.

dcl_sym(5))/(aero.delta(6)-aero.delta

166

(5)));

eq3 = CL == alpha0 * aero.cla(2) + aero.

cl(2) + CL_e;

eq4 = CD == alpha0 * ((aero.cd(3)-aero.cd

(2))/(aero.alpha(3)-aero.alpha(2))) +

aero.cd(2);

eq5 = CM == alpha0 * aero.cma(2) + aero.

cm(2) + CM_e;

eq6 = T + (CL*q*S)*sind(alpha0) - (CD*q*S

)*cosd(alpha0) - W*sind(alpha0+fpa) ==

0;

eq7 = -(CL*q*S)*cosd(alpha0) - (CD*q*S)*

sind(alpha0) + W*cosd(alpha0 + fpa) ==

0;

eq8 = CM == 0;

Sol = vpasolve([eq1,eq2,eq3,eq4,eq5,eq6,

eq7,eq8]);

dT0 = double(Sol.T);

alpha0 = double(Sol.alpha0);

de0 = double(Sol.de)

CL_trim = double(Sol.CL);

CD_trim = double(Sol.CD);

%Rewriting to trim conds.

%Nalpha to 1

raw_AC = readcell('Datcom_2020/Bin/for005

.dat',opts);

raw_AC(4) = {sprintf('NALPHA=2.0,ALSCHD

167

=%.2f,%.2f,',alpha0,alpha0+1)};

row = raw_AC(1);

row = row{1};

new_file = sprintf('%s',row);

for i = 2:size(raw_AC)

row = raw_AC(i);

row = row{1};

if strcmp(row(1),'$')

new_file = sprintf('%s \n %s',

new_file ,row);

elseif strcmp(row(1:4),'NACA')||

strcmp(row(1:4),'DAMP')||strcmp(

row(1:4),'DERI')||strcmp(row(1:4),

'TRIM')||strcmp(row(1:4),'NEXT')

new_file = sprintf('%s \n%s',

new_file ,row);

else

new_file = sprintf('%s\n %s',

new_file ,row);

end

end

writematrix(new_file ,'Datcom_2020/Bin/

for005.dat',"QuoteStrings","none")

%Importing Trimmed Case

cd Datcom_2020/Bin

open('DD_32x.exe')

cd ..

168

cd ..

pause(2)

%aero = datcomimport('Datcom_2020/Bin/

for006.dat');

%aero = aero{1};

raw = readcell('Datcom_2020/Bin/for006.

dat',opts);

raw_AC = readcell('Datcom_2020/Bin/for005

.dat');

inertias = readcell('Inertias.txt');

try

index = 1;

inertia_found = 0;

while inertia_found == 0

if strcmp(inertias{index,1},aero.

case)

Iy = inertias{index ,2};

inertia_found = 1;

end

index = index + 1;

end

catch

fprintf('No Inertia\n')

return

end

169

Sw = S; %-- % Surface area

of wing (ftˆ2)

%Getting MAC

index = 0;

notFound = 1;

while notFound == 1

index = index + 1;

row = raw_AC2(index);

row = row{1};

if length(row) >= 4

if strcmp(row(1:4),'NACA')

wing_data_row_n = index;

notFound = 0;

end

end

end

row = raw_AC2(wing_data_row_n+1,1);

row = row{1};

start_point = strfind(row,'CHRDR=')+6;

end_point = strfind(row,',')-1;

end_point = end_point(1);

root_chord = str2num(row(start_point:

end_point));

start_point = strfind(row,'CHRDTP=')+7;

end_point = strfind(row,',')-1;

170

end_point = end_point(2);

tip_chord = str2num(row(start_point:

end_point));

cw = (root_chord + tip_chord)/2;

g = 32.2; %-- %

Acceleration due to gravity (ft/sˆ2)

m = W/g; %-- % Mass (

slugs)

% Aerodynamic Coefficients at Trim

Condition

index = 1;

notFound = 1;

while notFound == 1 && index < size(raw

,1)

row = raw(index ,1);

row = row{1};

if length(row) >= 6

first_entry_mach = row(1:6);

if strcmp(first_entry_mach ,'

NUMBER')

cla_row = raw(index+6,1);

notFound = 0;

end

end

if notFound == 1

index = index + 1;

end

171

end

cla_row = strsplit(cla_row{1},' ');

cla = cla_row(8);

cla = str2num(cla{1});

cl_row = raw(index+6,1);

cl_row = strsplit(cl_row{1},' ');

clslow = cl_row(3);

clslow = str2num(clslow{1});

cd1_row = raw(index+6,1);

cd1_row = strsplit(cd1_row{1},' ');

cd1 = cd1_row(2);

a1 = cd1_row(1);

cd1 = str2num(cd1{1});

a1 = str2num(a1{1});

cdslow = cd1;

cd2_row = raw(index+7,1);

cd2_row = strsplit(cd2_row{1},' ');

cd2 = cd2_row(2);

a2 = cd2_row(1);

cd2 = str2num(cd2{1});

a2 = str2num(a2{1});

CL_alpha = cla*180/pi;

CD_alpha = ((cd2-cd1/(a2-a1)))*180/pi; %

--

cma_row = raw(index+6,1);

cma_row = strsplit(cma_row{1},' ');

cma = cma_row(9);

172

cma = str2num(cma{1});

Cm_alpha = cma*180/pi;

if raw{index+25,1} == 0

index = index + 1;

end

clad_row = raw(index+25,1);

clad_row = strsplit(clad_row{1},' ');

clad = clad_row(4);

clad = str2num(clad{1});

CL_alphadot = clad*180/pi;

cmad_row = raw(index+25,1);

cmad_row = strsplit(cmad_row{1},' ');

cmad = cmad_row(5);

cmad = str2num(cmad{1});

Cm_alphadot = cmad(1)*180/pi;

clq_row = raw(index+25,1);

clq_row = strsplit(clq_row{1},' ');

clq = clq_row(2);

clq = str2num(clq{1});

CL_q = aero.clq(1)*180/pi;

cmq_row = raw(index+25,1);

cmq_row = strsplit(cmq_row{1},' ');

cmq = cmq_row(3);

cmq = str2num(cmq{1});

Cm_q = aero.cmq(1)*180/pi;

index = 1;

173

notFound = 1;

while notFound == 1 && index < size(raw

,1)

row = raw(index ,1);

row = row{1};

if length(row) >= 6

first_entry_mach = row(1:6);

if strcmp(first_entry_mach ,'

NUMBER')

cmslow_row = raw(index+6,1);

notFound = 0;

end

end

if notFound == 1

index = index + 1;

end

end

cmslow_row = strsplit(cmslow_row{1},' ');

cmslow = cmslow_row(4);

cmslow = str2num(cmslow{1});

ndm_row_check = raw(index+45,1);

if strcmp(ndm_row_check{1}(1),'0')

index = index + 1;

end

dcl_row = raw(index+45,1);

dcl_row = strsplit(dcl_row{1},' ');

174

dcl = dcl_row(2);

dcl = str2num(dcl{1});

dcm = dcl_row(3);

dcm = str2num(dcm{1});

dcd = dcl_row(5);

dcd = str2num(dcd{1});

%Rewriting mach

cd Datcom_2020

raw_AC = readcell('Bin/for005.dat',opts);

mach_row = raw_AC(2);

mach_row = mach_row{1};

new_mach = sprintf('%.1f,%s%.2f,',

mach_req+0.1,'STMACH=',STMACH);

for i = 1:length(mach_row(23:end))

mach_row(23+i) = ' ';

end

mach_row(24:23+length(new_mach)) =

new_mach;

raw_AC(2) = {mach_row};

row = raw_AC(1);

row = row{1};

new_file = sprintf('%s',row);

for i = 2:size(raw_AC)

row = raw_AC(i);

row = row{1};

if strcmp(row(1),'$')

new_file = sprintf('%s \n %s',

175

new_file ,row);

elseif strcmp(row(1:4),'NACA')||

strcmp(row(1:4),'DAMP')||strcmp(

row(1:4),'DERI')||strcmp(row(1:4),

'TRIM')||strcmp(row(1:4),'NEXT')

new_file = sprintf('%s \n%s',

new_file ,row);

else

new_file = sprintf('%s\n %s',

new_file ,row);

end

end

writematrix(new_file ,'Bin/for005.dat',"

QuoteStrings","none")

cd Bin

open('DD_32x.exe')

cd ..

cd ..

pause(2)

raw = readcell('Datcom_2020/Bin/for006.

dat',opts);

index = 1;

notFound = 1;

while notFound == 1 && index < size(raw

,1)

row = raw(index ,1);

row = row{1};

176

if length(row) >= 6

first_entry_mach = row(1:6);

if strcmp(first_entry_mach ,'

NUMBER')

clfast_row = raw(index+6,1);

notFound = 0;

end

end

if notFound == 1

index = index + 1;

end

end

clfast_row = strsplit(clfast_row{1},' ');

clfast = clfast_row(3);

clfast = str2num(clfast{1});

cdfast_row = raw(index+6,1);

cdfast_row = strsplit(cdfast_row{1},' ');

cdfast = cdfast_row(2);

cdfast = str2num(cdfast{1});

cmfast_row = raw(index+6,1);

cmfast_row = strsplit(cmfast_row{1},' ');

cmfast = cmfast_row(4);

cmfast = str2num(cmfast{1});

cd1_row = raw(index+6,1);

cd1_row = strsplit(cd1_row{1},' ');

cd1 = cd1_row(2);

a1 = cd1_row(1);

177

cd1 = str2num(cd1{1});

a1 = str2num(a1{1});

cd2_row = raw(index+7,1);

cd2_row = strsplit(cd2_row{1},' ');

cd2 = cd2_row(2);

a2 = cd2_row(1);

cd2 = str2num(cd2{1});

a2 = str2num(a2{1});

CL_alpha = cla*180/pi;

CD_alpha = ((cd2-cd1/(a2-a1)))*180/pi; %

--

cma_row = raw(index+6,1);

cma_row = strsplit(cma_row{1},' ');

cma = cma_row(9);

cma = str2num(cma{1});

Cm_alpha = cma*180/pi;

CL_Mach = (clfast-clslow)/0.1;

CD_Mach = (cdfast-cdslow)/0.1;

Cm_Mach = (cmfast-cmslow)/0.1;

CL_de = (dcl)/(5)*180/pi; %--

Cm_de = (dcm)/(5)*180/pi; %--

CD_de = (dcd)/(5)*180/pi; % --

theta0 = vpa((alpha0+fpa)*pi/180,4);

alpha0 = vpa(alpha0*pi/180,4);

u0 = vpa(Vt0*cos(alpha0),4);

w0 = vpa(Vt0*sin(alpha0),4);

% Compute Stability Derivatives

178

Qw = 0.5*rho*Vt0ˆ2;

CD_u = Mach0*CD_Mach;

CL_u = Mach0*CL_Mach;

Cm_u = Mach0*Cm_Mach;

% Stability Derivatives

D_u = (CD_u + 2*CD_trim)*Qw*Sw/(m*u0);

L_u = (CL_u + 2*CL_trim)*Qw*Sw/(m*u0);

M_u = Cm_u*(Qw*Sw*cw)/(Iy*u0);

D_w = (CD_alpha - CL_trim)*Qw*Sw/(m*u0);

L_w = (CL_alpha + CD_trim)*Qw*Sw/(m*u0);

M_w = Cm_alpha*(Qw*Sw*cw)/(Iy*u0);

M_alpha = M_w*u0;

L_wdot = CL_alphadot*(cw/(2*u0))*Qw*Sw/(m

*u0);

M_wdot = Cm_alphadot*(cw/(2*u0))*(Qw*Sw*

cw)/(Iy*u0);

M_adot = M_wdot*u0;

L_q = CL_q*(cw/(2*u0))*Qw*Sw/m;

M_q = Cm_q*(cw/(2*u0))*(Qw*Sw*cw)/Iy;

L_de = CL_de*Qw*Sw/m;

M_de = Cm_de*Qw*Sw*cw/Iy;

D_de = CD_de*Qw*Sw/m;

X_u = (-D_u*cos(alpha0) + L_u*sin(alpha0)

);

Z_u = (-D_u*sin(alpha0) - L_u*cos(alpha0)

);

X_w = (-D_w*cos(alpha0) + L_w*sin(alpha0)

179

);

Z_w = (-D_w*sin(alpha0) - L_w*cos(alpha0)

);

X_q = L_q*sin(alpha0);

Z_q = -L_q*cos(alpha0);

X_de = (-D_de*cos(alpha0) + -D_de*cos(

alpha0));

Z_de = (-D_de*sin(alpha0) - L_de*cos(

alpha0));

Z_wdot = -L_wdot*cos(alpha0);

% Form the State Space Model

Mbar_wdot = M_wdot/(1 - Z_wdot);

Z_wdot = 0;

A_long = [X_u, X_w, X_q, -g*cos(theta0),

0;

Z_u, Z_w, Z_q,...

-g*sin(theta0), 0;

M_u, M_w, M_q,...

0, 0;

0, 0, 1, 0, 0;

sin(theta0), -cos(theta0), 0, Vt0,

0];

B_long = [X_de; Z_de; M_de;0; 0];

row = raw(36);

pos1 = strfind(row,'=');

pos1 = pos1{1};

pos1 = pos1(1);

180

pos2 = strfind(row,',');

pos2 = pos2{1};

pos2 = pos2(1);

row = row{1};

XCG = row(pos1+1:pos2-1);

XCG = str2num(XCG);

XW = str2num(row(strfind(row,'XW=')+3:

strfind(row,',ZW')-1));

index = 0;

notFound = 1;

while notFound == 1

index = index + 1;

row = raw_AC(index);

row = row{1};

if length(row) >= 6

if strcmp(row(1:6),'NACA-W')

notFound = 0;

end

end

end

row = raw_AC(index+2);

row = row{1};

SAVSI = str2num(row(strfind(row,'SAVSI=')

+6:strfind(row,',CHSTAT')-1));

row = raw_AC(index+1);

row = row{1};

SSPN = str2num(row(strfind(row,'SSPN=')

181

+5:strfind(row,',SSPNE')-1));

tr = tip_chord/root_chord;

y_mac = 1/3 * ((1+2*tr)/(1+tr))*SSPN;

X_C_bar_t = y_mac * tand(SAVSI);

cg_wrt_c_bar = (XCG-(X_C_bar_t+XW))/aero.

cbar;

alt = double(alt);

mach_req = double(mach_req);

Vt0 = double(Vt0);

Iy = double(Iy);

alpha0 = double(alpha0);

theta0 = double(theta0);

fpa = double(fpa);

XCG = double(XCG);

X_C_bar_t = double(X_C_bar_t);

S = double(S);

W = double(W);

params = [alt,mach_req,Vt0,Iy,alpha0,

theta0,fpa,XCG,cg_wrt_c_bar ,S,W];

%fprintf('%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t

%.2f\t\t%.2f\t%.2f',params)

for index1 = 1:size(A_long ,1)

for index2 = 1:size(A_long ,2)

A_long_new(index1,index2) =

double(A_long(index1,index2));

end

end

182

A_long = A_long_new;

for index1 = 1:size(B_long ,1)

for index2 = size(B_long ,2)

B_long_new(index1,index2) =

double(B_long(index1,index2));

end

end

%Hello dedicated reader

%Congrats on reading this far

%Hope you enjoyed the thesis! :)

B_long = B_long_new;

database = [database;A_long(1,1:end),

A_long(2,1:end),...

A_long(3,1:end),A_long(4,1:end),

A_long(5,1:end),...

B_long(1:end,1)',params];

%file_n = sprintf('%s.txt',aircraft{1});

delete database_test_2.txt

writematrix(database ,'database_test_2.txt

');

A_long;

cd Datcom_2020

keep_trying = 0;

catch

keep_trying = 1;

end

183

end

end

end

end

end

184

A.2.2 RL Agent Training Code

%Run tests in one code - better training criterion

%CURRENTLY CONFIGURED FOR NEW AI OUTPUT IMPLEMENTATION - USE WITH

%SYS1EXECUTOR

clc

close all

clear

continue_training = 0

I = 7328

database = importdata('..\database2.txt');

%database = database(1:10,1:end)

zero_sum = 0;

for i=1:size(database)

if database(i,1) == 0

zero_sum = zero_sum + 1;

end

end

if zero_sum > 10

print(Badimport)

end

185

A22_gain = max(abs(database(:,7)));

A22_gain_2 = min(abs(database(:,7)));

A23_gain = max(abs(database(:,8)));

A23_gain_2 = min(abs(database(:,8)));

A33_gain = max(abs(database(:,13)));

A33_gain_2 = min(abs(database(:,13)));

B1_gain = max(abs(database(:,26)));

B1_gain_2 = min(abs(database(:,26)));

B2_gain= max(abs(database(:,27)));

B2_gain_2 = min(abs(database(:,27)));

B3_gain = max(abs(database(:,28)));

B3_gain_2 = min(abs(database(:,28)));

results = [];

var_range = 20:-10:0;

mkdir('sys1Agents')

for var_n = 1

var = var_range(var_n);

%Trainer

n_knowns = 11;

n_states = 5;

C = eye(4);

Ahat = [0,1;0,0];

186

Bhat = [0;0];

Ts = 1;

Tf = 50;

window_size = 10;

%[a] = sim('sys3.slx',20)

obsInfo = rlNumericSpec([8*window_size + n_knowns+1+20,1]);

actInfo = rlNumericSpec([6,1]);

open_system("sys1")

%set_param('sys1','GPUAcceleration ','on')

env = rlSimulinkEnv("sys1","sys1/RL Agent",...

obsInfo,actInfo);

env.ResetFcn = @(in) setVariable(in,'x0',database(randi(size(

database ,1)),1:end));

% Observation path

obsPath = [

featureInputLayer(obsInfo.Dimension(1),Name="

obsInputLayer")

fullyConnectedLayer(500)

tanhLayer

fullyConnectedLayer(400)

187

tanhLayer

fullyConnectedLayer(300)

tanhLayer

fullyConnectedLayer(200)

tanhLayer

fullyConnectedLayer(100)

tanhLayer

fullyConnectedLayer(50)

tanhLayer

fullyConnectedLayer(25)

tanhLayer

fullyConnectedLayer(20,Name="obsPathOutLayer")];

% Action path

actPath = [

featureInputLayer(actInfo.Dimension(1),Name="

actInputLayer")

fullyConnectedLayer(20,Name="actPathOutLayer")];

% Common path

commonPath = [

additionLayer(2,Name="add")

reluLayer

fullyConnectedLayer(1,Name="CriticOutput")];

criticNetwork = layerGraph();

criticNetwork = addLayers(criticNetwork ,obsPath);

188

criticNetwork = addLayers(criticNetwork ,actPath);

criticNetwork = addLayers(criticNetwork ,commonPath);

criticNetwork = connectLayers(criticNetwork , ...

"obsPathOutLayer","add/in1");

criticNetwork = connectLayers(criticNetwork , ...

"actPathOutLayer","add/in2");

criticNetwork = dlnetwork(criticNetwork);

summary(criticNetwork)

critic = rlQValueFunction(criticNetwork , ...

obsInfo,actInfo, ...

ObservationInputNames="obsInputLayer", ...

ActionInputNames="actInputLayer");

getValue(critic, ...

{rand(obsInfo.Dimension)}, ...

{rand(actInfo.Dimension)})

actorNetwork = [

featureInputLayer(obsInfo.Dimension(1))

fullyConnectedLayer(500)

tanhLayer

fullyConnectedLayer(400)

tanhLayer

fullyConnectedLayer(300)

tanhLayer

189

fullyConnectedLayer(200)

tanhLayer

fullyConnectedLayer(100)

tanhLayer

fullyConnectedLayer(50)

tanhLayer

fullyConnectedLayer(25)

tanhLayer

fullyConnectedLayer(actInfo.Dimension(1))

];

actorNetwork = dlnetwork(actorNetwork);

summary(actorNetwork)

actor = rlContinuousDeterministicActor(actorNetwork ,obsInfo,

actInfo);

getAction(actor ,{rand(obsInfo.Dimension)})

if continue_training == 1

cd sys1Agents

directory = cellstr(ls);

cd ..

agent = load("sys1Agents\Agent"+I);

agent = agent.saved_agent;

else

190

cd sys1Agents

directory = cellstr(ls);

directory = directory(3:end);

for i = 1:length(directory)

file = directory(i);

delete(file{1})

end

cd ..

agent = rlDDPGAgent(actor,critic);

end

agent.SampleTime = Ts;

agent.AgentOptions.TargetSmoothFactor = 1e-3;

agent.AgentOptions.DiscountFactor = 0.95; %OG was 1

agent.AgentOptions.MiniBatchSize = 64;

agent.AgentOptions.ExperienceBufferLength = 1e6;

agent.AgentOptions.NoiseOptions.Variance = 0.1;

agent.AgentOptions.NoiseOptions.VarianceDecayRate = 1e-4;

agent.AgentOptions.CriticOptimizerOptions.LearnRate = 1e-03;

%OG was 3

191

agent.AgentOptions.CriticOptimizerOptions.GradientThreshold =

1;

agent.AgentOptions.ActorOptimizerOptions.LearnRate = 1e-04;

agent.AgentOptions.ActorOptimizerOptions.GradientThreshold =

1;

getAction(agent ,{rand(obsInfo.Dimension)})

trainOpts = rlTrainingOptions(...

MaxEpisodes=100000, ...

MaxStepsPerEpisode=ceil(Tf/Ts), ...

ScoreAveragingWindowLength=500, ...

Verbose=false, ...

StopTrainingCriteria="EpisodeReward",...

StopTrainingValue= 1000, ...

SaveAgentCriteria = "EpisodeReward", ...

SaveAgentValue = -100000, ...

SaveAgentDirectory = "sys1Agents");

results

trainingStats = train(agent,env,trainOpts);

average_reward_stats = trainingStats.AverageReward;

[M,I] = max(average_reward_stats);

192

%close_system('sys19.slx')

%open_system('executor1_simulink.slx');

error_top = 0;

error_top_A21 = 0;

error_top_A22 = 0;

error_top_B21 = 0;

error_bottom = 0;

cd sys1Agents

directory = cellstr(ls);

cd ..

agent = load("sys1Agents\Agent"+I);

agent = agent.saved_agent;

database2 = load('..\test_database.txt');

%database = load('..\database2.txt');

%database = database(1:10,1:end)

error_array = [];

for i = 1:100

x0 = database2(randi(size(database2 ,1)),1:end);

%x0 = [rand()*0.6+0.7,rand()*0.6 + 0.7,rand*0.6 + 0.7]; %

m k b

%set_param('executor11_simulink ','GPUAcceleration ','on');

%agent = load("Test 4 Agents\Agent476.mat");

193

[a] = sim('sys1.slx',50);

error = mean(a.yout{1}.Values.Data)*100

error_array = [error_array;error];

end

%close_system('executor19_simulink.slx');

results = [results;I,M,var,mean(error_array)]

writematrix(results,'sys1results.txt');

end

194

A.2.3 RL Agent Testing Code

clc

clear

close all

I = 6000;

agent = load("Test10\sys1Agents\Agent"+I);

agent = agent.saved_agent;

database2 = load('database_test_2.txt');

Ts = 1;

%database = load('..\database2.txt');

%database = database(1:10,1:end)

rng(0)

database = importdata('database2.txt');

%database = database(1:10,1:end)

zero_sum = 0;

for i=1:size(database)

if database(i,1) == 0

zero_sum = zero_sum + 1;

end

end

195

if zero_sum > 10

print(Badimport)

end

A22_gain = max(abs(database(:,7)));

A23_gain = max(abs(database(:,8)));

A33_gain = max(abs(database(:,13)));

B1_gain = max(abs(database(:,26)));

B2_gain = max(abs(database(:,27)));

B3_gain = max(abs(database(:,28)));

n_knowns = 11;

n_states = 5;

C = eye(4);

Ahat = [0,1;0,0];

Bhat = [0;0];

Tf = 50;

window_size = 10;

error_array = [];

error_array_2 = [];

for i = 1:100

x0 = database2(randi(size(database2 ,1)),1:end);

196

%x0 = [rand()*0.6+0.7,rand()*0.6 + 0.7,rand*0.6 + 0.7]; %m k

b

%set_param('executor11_simulink ','GPUAcceleration ','on');

%agent = load("Test 4 Agents\Agent476.mat");

[a] = sim('agent_tester_sys1.slx',Tf);

error = mean(a.yout{1}.Values.Data)*100;

error_array = [error_array;error];

[error,mean(error_array),i];

%scatter(x0(31),error,'k.')

%hold on

%pause(0.0001)

A22_error = mean(abs((reshape(a.trialValsA.Data(2,2,:),[1,Tf

+1])-a.trueA.Data(2,2))./abs(a.trueA.Data(2,2))))*100;

A23_error = mean(abs((reshape(a.trialValsA.Data(2,3,:),[1,Tf

+1])-a.trueA.Data(2,3))./abs(a.trueA.Data(2,3))))*100;

A33_error = mean(abs((reshape(a.trialValsA.Data(3,3,:),[1,Tf

+1])-a.trueA.Data(3,3))./abs(a.trueA.Data(3,3))))*100;

B1_error = mean(abs((reshape(a.trialValsB.Data(1,:),[1,Tf+1])

-a.trueB.Data(1))./abs(a.trueB.Data(1))))*100;

B2_error = mean(abs((reshape(a.trialValsB.Data(2,:),[1,Tf+1])

197

-a.trueB.Data(2))./abs(a.trueB.Data(2))))*100;

B3_error = mean(abs((reshape(a.trialValsB.Data(3,:),[1,Tf+1])

-a.trueB.Data(3))./abs(a.trueB.Data(3))))*100;

error_array_2 = [error_array_2;A22_error ,A23_error ,A33_error ,

B1_error ,B2_error ,B3_error];

fprintf('%d\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n',i,

mean(error_array_2 ,1),mean(error_array))

end

figure(1)

subplot(3,1,1)

plot(0:1:Tf,reshape(a.trialValsA.Data(2,2,:),[1,Tf+1]))

hold on

plot(0:1:Tf,ones(size(0:1:Tf))*a.trueA.Data(2,2))

ylabel('A22 Value')

ylim([-3 0])

subplot(3,1,2)

plot(0:1:Tf,reshape(a.trialValsA.Data(2,3,:),[1,Tf+1]))

hold on

plot(0:1:Tf,ones(size(0:1:Tf))*a.trueA.Data(2,3))

ylabel('A23 Value')

ylim([-9 0])

subplot(3,1,3)

plot(0:1:Tf,reshape(a.trialValsA.Data(3,3,:),[1,Tf+1]))

hold on

198

plot(0:1:Tf,ones(size(0:1:Tf))*a.trueA.Data(3,3))

ylabel('A33 Value')

ylim([-4 2])

xlabel('Time (s)')

legend('Trial Value','True Value')

figure(2)

subplot(3,1,1)

plot(0:1:Tf,reshape(a.trialValsB.Data(1,:),[1,Tf+1]))

hold on

plot(0:1:Tf,ones(size(0:1:Tf))*a.trueB.Data(1))

ylabel('B1 Value')

ylim([-7 0])

subplot(3,1,2)

plot(0:1:Tf,reshape(a.trialValsB.Data(2,:),[1,Tf+1]))

hold on

plot(0:1:Tf,ones(size(0:1:Tf))*a.trueB.Data(2))

ylim([-80 5])

ylabel('B2 Value')

subplot(3,1,3)

plot(0:1:Tf,reshape(a.trialValsB.Data(3,:),[1,Tf+1]))

hold on

plot(0:1:Tf,ones(size(0:1:Tf))*a.trueB.Data(3))

ylim([-50 40])

ylabel('B3 Value')

xlabel('Time (s)')

legend('Trial Value','True Value')

199

B DATCOM Files
B.1 Training
B.1.1 Beechcraft B99

CASEID B99

$FLTCON NMACH=1.0,MACH=0.5,STMACH=0.8,

NALT=1.0,ALT=10000.0,

NALPHA=5.0,ALSCHD=-2.0,0.0,2.0,4.0,6.0,

WT=10000.0,

LOOP=2.0$

$OPTINS SREF=278.5,CBARR=6.42,BLREF=47.08$

$SYNTHS XCG=18.9,ZCG=3.125,XW=17.0,ZW=0.00,ALIW=1.5,XH=35.0,ZH=3.96,

ALIH=0.0,XV=31.88,ZV=1.86,XVF=31.88,VERTUP=.TRUE.$

$SYNTHS HINAX=36.0$

$BODY NX=4.0,

X =0.0,5.0,33.0,44.0,

R =0.0,2.7,2.7,0.0$

NACA-W-5-23015

$WGPLNF CHRDR=8.9,CHRDTP=2.94,SSPN=23.54,SSPNE=20.8,

SAVSI=6.0,CHSTAT=0.25,TWISTA=3.0,DHDADI=4.0,TYPE=1.0$

NACA-H-6-64A010

$HTPLNF CHRDR=5.0,CHRDTP=2.5,SSPN=9.42,SSPNE=9.22,

SAVSI=10.0,CHSTAT=0.0,TWISTA=0.0,DHDADI=9.0,TYPE=1.0$

$SYMFLP FTYPE=1.0,NDELTA=9.0,DELTA(1)=-20.0,-15.0,-10.0,-5.0,0.0,

5.0,10.0,15.0,20.0,PHETE=0.0,PHETEP=0.0,CHRDFI=3.0,

CHRDFO=2.0,SPANFI=2.3,SPANFO=9.42,NTYPE=1.0$

DAMP

DERIV DEG

TRIM

200

NEXT CASE

201

B.1.2 Boeing 737

CASEID BOEING 737

$FLTCON NMACH=1.0,MACH=0.5,STMACH=0.8,

NALT=1.0,ALT=10000.0,

NALPHA=5.0,ALSCHD=-2.0,0.0,2.0,4.0,6.0,

WT=115000.,

LOOP=2.0$

$OPTINS SREF=1329.9,CBARR=14.3,BLREF=93.0$

$SYNTHS XCG=40.3,ZCG=0.0,XW=28.3,ZW=-1.4,ALIW=1.0,

XH=76.6,ZH=6.2,ALIH=0.0,XV=70.1,ZV=8.14$

$SYNTHS HINAX=80.0$

$BODY NX=14.,

BNOSE=2.,BTAIL=2.,BLA=20.0,

X(1)=0.,1.38,4.83,6.90,8.97,13.8,27.6,55.2,

65.6,69.0,75.9,82.8,89.7,90.4,

ZU(1)=.69,2.07,3.45,4.38,5.87,6.90,8.28,

8.28,8.28,8.28,7.94,7.59,7.50,6.9,

ZL(1)=-.35,-1.73,-3.45,-3.80,-4.14,-4.49,-4.83,

-4.83,-3.45,-2.76,-0.81,1.04,4.14,6.21,

R(1)=.34,1.38,2.76,3.45,4.14,5.18,6.21,6.21,

5.87,5.52,4.14,2.76,.69,0.0$

NACA-W-4-0012-25

$WGPLNF CHRDR=23.8,CHRDTP=4.8,SSPN=46.9,SSPNE=40.0,

SAVSI=29.0,CHSTAT=0.25,TWISTA=8.0,TYPE=1.0$

NACA-H-4-0012-25

$HTPLNF CHRDR=12.4,CHRDTP=4.1,SSPN=17.6,SSPNE=15.87,CHSTAT=.25,

TWISTA=0.,TYPE=1.,SAVSI=31.,DHDADI=9.$

202

$SYMFLP FTYPE=1.0,NDELTA=9.0,DELTA(1)=-20.0,-15.0,-10.0,-5.0,0.0,

5.0,10.0,15.0,20.0,PHETE=0.0,PHETEP=0.0,CHRDFI=3.0,

CHRDFO=2.,SPANFI=0.,SPANFO=17.6,NTYPE=1.0$

NACA-V-4-0012-25

$VTPLNF CHRDR=17.8,CHRDTP=6.37,SAVSI=40.1,

SSPN=20.3,SSPNOP=0.,SSPNE=20.3,CHSTAT=0.0,TWISTA=0.,TYPE= 1.$

DAMP

DERIV DEG

TRIM

NEXT CASE

203

B.1.3 Beechcraft T34C

CASEID Beechcraft T-34C aircraft

$FLTCON NMACH=1.0,MACH=0.5,STMACH=0.8,

NALT=1.0,ALT=10000.0,

NALPHA=5.0,ALSCHD=-2.0,0.0,2.0,4.0,6.0,

WT=4000.0,

LOOP=2.0$

$OPTINS SREF=179.9,CBARR=5.42,BLREF=33.396$

$SYNTHS XCG=10.24,ZCG=3.7,XW=6.02,ZW=-1.1,ALIW=3.81,

XH=21.4,ZH=1.2,ALIH=0.0,XV=20.9,ZV=0.89$

$SYNTHS HINAX=21.6$

$BODY NX=16.0,ITYPE=1.0,METHOD=1.0,

X=0.0,1.11,1.78,5.01,5.48,6.33,6.59,7.09,7.62,9.54,12.9,15.2,

18.3,21.0,21.6,25.7,

ZU=0.45,0.98,1.34,1.83,1.92,2.67,2.9,3.25,3.39,3.39,3.39,2.32,

2.14,2.36,1.87,0.94,

ZL=0.45,0.0,-1.38,-1.78,-1.78,-1.78,-1.78,-1.78,-1.78,-1.78,

-1.43,-1.29,-0.76,-0.31,-0.22,0.94,

R=0.0,0.49,1.4,1.78,1.83,2.21,2.29,2.5,2.61,2.61,2.61,1.8,

1.4,1.38,1.07,0.0,$

NACA-W-5-23016

$WGPLNF CHRDR=6.68,CHRDTP=3.92,SSPN=16.0,SSPNE=14.1,

SAVSI=3.98,CHSTAT=0.25,TYPE=1.0$

NACA-H-4-0009

$HTPLNF CHRDR=3.57,CHRDTP=2.45,SSPN=5.79,SSPNE=5.35,SAVSI=3.98,CHSTAT=0.0,

DHDADI=7.21,TYPE=1.0$

$SYMFLP FTYPE=1.0,NDELTA=9.0,DELTA(1)=-20.0,-15.0,-10.0,-5.0,0.0,

204

5.0,10.0,15.0,20.0,PHETE=0.0,PHETEP=0.0,CHRDFI=1.0,

CHRDFO=0.8,SPANFI=0.,SPANFO=5.79,NTYPE=1.0$

NACA-V-4-0009

$VTPLNF SAVSI=7.5,CHSTAT=0.0,TYPE=1.0,CHRDTP=2.90,SSPNE=4.72,SSPN=5.53,

CHRDR=4.46$

DAMP

DERIV DEG

TRIM

NEXT CASE

205

B.1.4 Cessna 182

CASEID CESSNA 182

$FLTCON NMACH=1.0,MACH=0.5,STMACH=0.8,

NALT=1.0,ALT=10000.0,

NALPHA=5.0,ALSCHD=-2.0,0.0,2.0,4.0,6.0,

WT=2950.0,

LOOP=2.0$

$OPTINS SREF=174.0,CBARR=4.90,BLREF=36.0$

$SYNTHS XCG=7.29,ZCG=3.25,XW=6.05,ZW=6.80,ALIW=1.5,

XH=19.53,ZH=3.82,ALIH=0.0,XV=20.26,ZV=4.25$

$SYNTHS HINAX=22.0$

$BODY NX=20.0,ITYPE=2.0,METHOD=2.0,

X=0.34,0.85,1.80,2.21,3.82,5.01,5.73,6.16,8.49,10.15,

11.55,12.95,14.39,15.92,17.75,19.27,20.76,22.29,23.69,24.84,

ZU=4.84,5.26,5.31,5.35,5.35,6.20,6.71,7.05,6.96,6.71,

5.77,5.14,4.97,4.92,4.80,4.67,4.54,4.42,4.33,4.25,

ZL=3.74,2.89,2.38,2.29,2.00,1.95,1.95,2.04,2.17,2.34,

2.45,2.55,2.72,2.80,2.89,3.01,3.18,3.31,3.57,3.74,

S=7.63,20.45,21.76,22.88,24.37,28.03,31.54,34.55,35.08,32.20,

26.38,23.37,19.90,17.51,14.92,12.13,10.00,6.99,4.79,0.65,

P=17.61,18.76,18.46,18.74,20.46,21.76,22.80,22.91,22.22,19.99,

18.69,18.04,17.59,17.08,16.57,16.32,16.19,16.05,15.98,0.31,

R=0.57,1.60,1.80,1.91,2.11,2.19,2.32,2.42,2.45,2.27,

2.06,1.88,1.70,1.44,1.24,1.00,0.82,0.57,0.39,0.05$

NACA-W-4-2412

$WGPLNF CHRDR=5.33,CHRDTP=3.5,SSPN=18.0,SSPNE=16.00,

SAVSI=0.0,CHSTAT=0.0,SAVSO=3.0,CHRDBP=5.33,SSPNOP=9.625,

206

TWISTA=-3.0,SSPNDD=9.625,DHDADI=1.73,DHDADO=1.73,TYPE=1.0$

NACA-H-4-0012

$HTPLNF CHRDR=4.55,CHRDTP=2.52,SSPN=5.67,SSPNE=4.5,

SAVSI=9.0,CHSTAT=0.0,TWISTA=0.0,DHDADI=0.0,TYPE=1.0$

$SYMFLP FTYPE=1.0,NDELTA=9.0,DELTA(1)=-20.0,-15.0,-10.0,-5.0,0.0,

5.0,10.0,15.0,20.0,PHETE=0.0,PHETEP=0.0,CHRDFI=2.0,

CHRDFO=2.0,SPANFI=1.18,SPANFO=5.67,NTYPE=1.0$

NACA-V-4-0009

$VTPLNF CHRDR=4.58,CHRDTP=2.12,SSPN=4.45,SSPNE=4.25,

SAVSI=35.0,CHSTAT=0.25,TYPE=1.0$

DAMP

DERIV DEG

TRIM

NEXT CASE

207

B.1.5 Cessna Citation I

CASEID Citation I Model 500

$FLTCON NMACH=1.0,MACH=0.5,STMACH=0.8,

NALT=1.0,ALT=10000.0,

NALPHA=5.0,ALSCHD=-2.0,0.0,2.0,4.0,6.0,

WT=10000.0,

LOOP=2.0$

$OPTINS SREF=278.5,CBARR=6.42,BLREF=47.08$

$SYNTHS XCG=18.9,ZCG=3.125,XW=17.0,ZW=0.00,ALIW=1.5,XH=35.0,ZH=3.96,

ALIH=0.0,XV=31.88,ZV=1.86,XVF=31.88,VERTUP=.TRUE.$

$SYNTHS HINAX=36.0$

$BODY NX=10.0,

X =0.0,1.0,2.7,6.3,9.8,7.3,25.0,29.3,2.3,43.5,

ZU =0.0,0.8,1.4,1.9,3.7,3.7,3.7,3.2,3.0,0.0,

ZL =0.0,-0.8,-1.2,-1.3,-1.4,-1.4,-1.4,-0.5,0.0,2.0,

R =0.0,1.2,1.9,2.5,2.6,2.6,5.4,4.5,1.6,0.0$

NACA-W-5-23015

$WGPLNF CHRDR=8.9,CHRDTP=2.94,SSPN=23.54,SSPNE=20.8,

SAVSI=6.0,CHSTAT=0.25,TWISTA=3.0,DHDADI=4.0,TYPE=1.0$

NACA-H-6-64A010

$HTPLNF CHRDR=5.0,CHRDTP=2.5,SSPN=9.42,SSPNE=9.22,

SAVSI=10.0,CHSTAT=0.0,TWISTA=0.0,DHDADI=9.0,TYPE=1.0$

$SYMFLP FTYPE=1.0,NDELTA=9.0,DELTA(1)=-20.0,-15.0,-10.0,-5.0,0.0,

5.0,10.0,15.0,20.0,PHETE=0.0,PHETEP=0.0,CHRDFI=3.0,

CHRDFO=2.0,SPANFI=2.3,SPANFO=9.42,NTYPE=1.0$

DAMP

DERIV DEG

208

TRIM

NEXT CASE

209

B.1.6 Cessna Citation II 550

CASEID Citation II Model 550

$FLTCON NMACH=1.0,MACH=0.5,STMACH=0.8,

NALT=1.0,ALT=10000.0,

NALPHA=5.0,ALSCHD=-2.0,0.0,2.0,4.0,6.0,

WT=8000.0,

LOOP=2.0$

$OPTINS SREF=320.8,CBARR=6.75,BLREF=51.7$

$SYNTHS XCG=21.9,ZCG=3.125,XW=19.1,ZW=-0.95,ALIW=2.5,XH=39.2,ZH=3.46,

ALIH=0.0,XV=34.76,ZV=1.56,XVF=-45.0,SCALE=1.0,VERTUP=.TRUE.$

$SYNTHS HINAX=42.0$

$BODY NX=8.0,BNOSE=1.0,BTAIL=1.0,BLN=8.8,BLA=19.7,ITYPE=1.0,METHOD=1.0,

X(1)=0.0,1.0,2.7,6.0,8.8,28.5,39.4,44.8,

R(1)=0.0,1.25,2.1,2.7,2.76,2.7,1.25,0.39,

ZU(1)=0.0,0.86,1.3,1.9,3.63,3.37,2.33,1.73,

ZL(1)=0.0,-0.86,-1.04,-1.56,-1.56,-1.81,0.0,1.3$

NACA-W-5-23014

$WGPLNF CHRDR=9.42,CHRDTP=3.01,SSPN=25.85,SSPNE=23.46,

SAVSI=1.3,CHSTAT=0.25,TWISTA=-3.0,DHDADI=3.6,DHDADO=0.0,TYPE=1.0$

NACA H 4 0010

$HTPLNF CHRDR=4.99,CHRDTP=2.48,SSPN=9.42,SSPNE=9.21,

SAVSI=5.32,CHSTAT=0.25,TWISTA=0.0,DHDADI=9.2,TYPE=1.0$

$SYMFLP FTYPE=1.0,NDELTA=9.0,DELTA(1)=-20.0,-15.0,-10.0,-5.0,0.0,

5.0,10.0,15.0,20.0,PHETE=0.0,PHETEP=0.0,CHRDFI=3.0,

CHRDFO=2.0,SPANFI=0.0,SPANFO=9.42,NTYPE=1.0$

NACA V 4 0012

$VTPLNF CHRDTP=3.63,SSPNE=8.85,SSPN=9.42,CHRDR=9.42,SAVSI=32.3,CHSTAT=0.25,

210

TYPE=1.0$

DAMP

DERIV DEG

TRIM

NEXT CASE

211

B.1.7 Ryan Navion

CASEID NAVION

$FLTCON NMACH=1.0,MACH=0.5,STMACH=0.8,

NALT=1.0,ALT=10000.0,

NALPHA=5.0,ALSCHD=-2.0,0.0,2.0,4.0,6.0,

WT=2750.0,

LOOP=2.0$

$OPTINS SREF=180.0,CBARR=5.67,BLREF=33.38$

$SYNTHS XCG=8.00,ZCG=-0.47,XW=6.28,ZW=-2.12,ALIW=2.0,XH=21.64,ZH=0.78,

ALIH=0.0,XV=23.21,ZV=0.0,XVF=19.76,ZVF=1.25,VERTUP=.TRUE.$

$SYNTHS HINAX=23.0$

$BODY NX=18.0,ITYPE=1.0,

X=0.0,0.314,0.666,2.352,4.077,5.449,6.115,6.939,7.644,8.311,

9.840,11.055,12.505,14.191,17.327,20.503,23.639,27.755,

ZU=1.019,1.372,1.490,1.764,2.038,2.078,2.509,2.979,3.136,3.215,

3.136,2.900,2.470,1.686,1.450,1.215,0.862,0.548,

ZL=-1.019,-1.372,-1.490,-1.764,-2.038,-2.117,-2.156,-2.195,-2.195,

-2.195,-2.195,-2.156,-2.117,-1.960,-1.568,-1.176,-0.862,-0.392,

S=3.765,6.422,7.433,9.992,12.799,13.815,15.802,17.685,

18.552,18.823,18.384,17.130,14.969,10.887,6.881,3.904,2.163,0.125,

P=6.913,8.999,9.668,11.207,12.683,13.176,14.114,15.019,15.399,

15.533,15.003,14.765,13.749,11.702,9.299,7.039,5.618,2.292,

R=1.176,1.490,1.568,1.803,1.999,2.097,2.156,2.176,2.215,2.215,

2.195,2.156,2.078,1.901,1.470,1.039,0.627,0.078$

NACA-W-4-4415

$WGPLNF CHRDR=6.89,CHRDTP=3.90,SSPN=16.69,SSPNE=14.48,

SAVSI=2.90,CHSTAT=0.00,TWISTA=-3.0,DHDADI=7.50,TYPE=1.0$

212

NACA-H-4-0012

$HTPLNF CHRDR=4.00,CHRDTP=2.60,SSPN=6.58,SSPNE=6.19,

SAVSI=6.0,CHSTAT=0.00,TWISTA=0.0,DHDADI=0.00,TYPE=1.0$

$SYMFLP FTYPE=1.0,NDELTA=9.0,DELTA(1)=-20.0,-15.0,-10.0,-5.0,0.0,

5.0,10.0,15.0,20.0,PHETE=0.0,PHETEP=0.0,CHRDFI=2.0,

CHRDFO=1.0,SPANFI=0.0,SPANFO=6.58,NTYPE=1.0$

NACA-V-4-0012

$VTPLNF CHRDR=4.40,CHRDTP=2.10,SSPN=4.80,SSPNE=4.39,

SAVSI=20.0,CHSTAT=0.00,TYPE=1.0$

DAMP

DERIV DEG

TRIM

NEXT CASE

213

B.1.8 North American P51

CASEID P-51D

$FLTCON NMACH=1.0,MACH=0.5,STMACH=0.8,

NALT=1.0,ALT=10000.0,

NALPHA=5.0,ALSCHD=-2.0,0.0,2.0,4.0,6.0,

WT=8000.0$

$OPTINS SREF=235.0,CBARR=6.3,BLREF=37.5$

$SYNTHS XCG=8.25,ZCG=-1.0,XW=8.82,ZW=-2.48,ALIW=1.0,XH=25.6,ZH=1.5,

ALIH=2.0,XV=26.5,ZV=1.0$

$SYNTHS HINAX=27.0$

$BODY BNOSE=2.0,BLN=2.0,NX=20.0,

X(1)=0.0,2.2,2.59,4.81,7.39,10.9,11.8,12.3,13.5,13.9,14.4,15.4,

16.3,17.1,18.9,22.7,26.5,30.1,31.2,32.2,

ZU(1)=0.11,1.06,1.11,1.53,1.69,1.95,2.64,2.64,3.01,2.96,2.75,2.75,

2.75,2.69,2.59,2.27,1.85,1.58,1.37,1.11,

ZL(1)=-0.32,-1.21,-1.53,-2.11,-2.43,-2.59,-2.59,-2.59,-2.59,-3.27,

-3.43,-3.43,-3.33,-3.22,-2.91,-1.48,-0.58,0.0,0.37,0.69,

R(1)=0.26,1.08,1.32,1.80,2.09,2.3,2.64,2.64,2.8,2.75,3.17,3.09,

3.09,3.01,2.96,1.85,1.21,0.77,0.53,0.21$

NACA-W-6-63A216

$WGPLNF CHRDR=8.56,CHRDTP=4.07,SSPN=17.91,SSPNE=16.11,

SAVSI=3.54,CHSTAT=0.0,DHDADI=6.77,TYPE=1.0,TWISTA=-2.0$

NACA-H-6-63A014

$HTPLNF CHRDR=4.23,CHRDTP=2.91,SSPN=6.87,SSPNE=6.34,

SAVSI=5.4,CHSTAT=0.0,TYPE=1.0$

$SYMFLP FTYPE=1.0,NDELTA=9.0,DELTA(1)=-20.0,-15.0,-10.0,-5.0,0.0,

5.0,10.0,15.0,20.0,PHETE=0.0,PHETEP=0.0,CHRDFI=3.0,

214

CHRDFO=2.0,SPANFI=0.0,SPANFO=6.87,NTYPE=1.0$

DAMP

DERIV DEG

TRIM

NEXT CASE

215

B.1.9 Northrop T38

CASEID T-38A

$FLTCON NMACH=1.0,MACH=0.5,STMACH=0.8,

NALT=1.0,ALT=10000.0,

NALPHA=5.0,ALSCHD=-2.0,0.0,2.0,4.0,6.0,

WT=10500.0,

LOOP=2.0$

$OPTINS SREF=170.0,CBARR=7.73,BLREF=25.25$

$SYNTHS XCG=25.000,ZCG=1.15,XW=20.1667,ZW=0.00,ALIW=0.0,

XH=34.500,ZH=0.00,ALIH=0.0,XV=32.0,ZV=1.15$

$SYNTHS HINAX=36.0$

$BODY NX=20.0,

X(1)=0.00,2.00,4.00,6.00,8.00,10.00,12.00,14.00,16.00,18.00,

18.75,22.20,25.20,27.00,28.20,31.25,34.50,37.75,41.00,44.25,

ZU(1)=0.00,0.65,1.05,1.50,2.25,3.20,3.90,4.15,4.20,4.15,

4.10,3.80,3.50,3.20,3.10,2.80,2.60,2.40,2.20,1.90,

ZL(1)=0.00,-0.65,-0.90,-1.00,-1.10,-1.15,-1.10,-1.00,-0.90,-0.85,

-0.80,-0.70,-0.65,-0.65,-0.65,-0.60,-0.50,-0.40,-0.10,0.40,

S(1)=0.00,1.95,4.29,7.50,11.06,15.23,17.75,18.28,18.11,17.75,

29.40,25.20,19.51,16.56,16.50,17.00,15.50,12.60,8.86,4.50,

P(1)=0.00,5.60,8.30,11.00,13.30,15.70,17.10,17.40,17.30,17.10,

21.80,20.20,17.70,16.30,16.30,16.80,16.20,14.60,12.30,9.00,

R(1)=0.00,0.75,1.10,1.50,1.65,1.75,1.78,1.78,1.78,1.78,

3.00,2.80,2.35,2.15,2.20,2.50,2.50,2.25,1.93,1.50$

NACA-W-6-65A005

$WGPLNF CHRDR=11.221,CHRDTP=2.244,SSPN=12.625,SSPNE=10.2,

SAVSI=24.0,CHSTAT=0.25,TYPE=1.0$

216

NACA-H-6-65A004

$HTPLNF CHRDR=6.667,CHRDTP=1.667,SSPN=7.083,SSPNE=4.8$

$SYMFLP FTYPE=1.0,NDELTA=9.0,DELTA(1)=-20.0,-15.0,-10.0,-5.0,0.0,

5.0,10.0,15.0,20.0,PHETE=0.0,PHETEP=0.0,CHRDFI=3.0,

CHRDFO=1.667,SPANFI=2.3,SPANFO=7.083,NTYPE=1.0$

NACA-V-6-65A004

$VTPLNF CHRDR=10.3,CHRDTP=2.5,SSPN=8.0,SSPNE=6.7,

SAVSI=25.0,CHSTAT=0.25,TYPE=1.0$

DAMP

DERIV DEG

TRIM

NEXT CASE

217

B.2 Testing
B.2.1 Learjet 35

CASEID Learjet

$FLTCON NMACH=1.0,MACH=0.5,STMACH=0.8,

NALT=1.0,ALT=10000.0,

NALPHA=5.0,ALSCHD=-2.0,0.0,2.0,4.0,6.0,

WT=14740.0,

LOOP=2.0$

$OPTINS SREF=230.0,CBARR=7.0,BLREF=34.0$

$SYNTHS XCG=24.0,ZCG=-1.0,XW=20,ZW=1.59,ALIW=1.0,XH=41.2,ZH=-9.0,

ALIH=0.0,VERTUP=.TRUE.$

$SYNTHS HINAX=43.0$

$BODY NX=4.0,

X=0.0,5.0,35.0,42.0,

R=0.0,2.0,2.0,0.0$

NACA-W-6-64-110

$WGPLNF CHRDR=10.15,CHRDTP=5.14,SSPN=16.5,SSPNE=13.96,

SAVSI=16.26,CHSTAT=0.25,TWISTA=2.0,DHDADI=4.76,TYPE=1.0$

NACA-H-6-64-010

$HTPLNF CHRDR=5.08,CHRDTP=2.54,SSPN=8.57,SSPNE=7.93,

SAVSI=26.57,CHSTAT=0.0,TWISTA=1.0,TYPE=1.0$

$SYMFLP FTYPE=1.0,NDELTA=9.0,DELTA(1)=-20.0,-15.0,-10.0,-5.0,0.0,

5.0,10.0,15.0,20.0,PHETE=0.0,PHETEP=0.0,CHRDFI=3.0,

CHRDFO=2.0,SPANFI=0.0,SPANFO=8.57,NTYPE=1.0$

DAMP

DERIV DEG

TRIM

218

NEXT CASE

219

	Online Aircraft System Identification Using a Novel Parameter Informed Reinforcement Learning Method
	Scholarly Commons Citation

	Microsoft Word - MSAE title page

	Text4: December 2023
	Text3: Nathan Michael Schaff
	Text2: PARAMETER INFORMED REINFORCEMENT LEARNING METHOD
	Text1: ONLINE AIRCRAFT SYSTEM IDENTIFICATION USING A NOVEL
	Text12:
	Text11: Member, Dr. K. Merve Dogan
	Text10: Member, Dr. Hever Moncayo
	Text9: Chair, Dr. Richard Prazenica
	Text8: This Thesis was prepared under the direction of the candidate’s Thesis Committee Chair, Dr. Richard Prazenica, Department of Aerospace Engineering, and has been approved by the members of the Thesis Committee. It was submitted to the Office of the Senior Vice President for Academic Affairs and Provost, and was accepted in the partial fulfillment of the requirements for the Degree of Master of Science in Aerospace Engineering.
	Text7: Nathan Michael Schaff
	Text6: PARAMETER INFORMED REINFORCEMENT LEARNING METHOD
	Text5: ONLINE AIRCRAFT SYSTEM IDENTIFICATION USING A NOVEL
	Date_3:
	Date_2:
	Date:

