
Doctoral Dissertations and Master's Theses 

Fall 2023 

Explorations in Monocular Distance And Ranging (MODAR) Explorations in Monocular Distance And Ranging (MODAR) 

Techniques for Real-World Applications Techniques for Real-World Applications 

Devon Vail 
vaild@my.erau.edu 

Follow this and additional works at: https://commons.erau.edu/edt 

 Part of the Electro-Mechanical Systems Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Vail, Devon, "Explorations in Monocular Distance And Ranging (MODAR) Techniques for Real-World 
Applications" (2023). Doctoral Dissertations and Master's Theses. 780. 
https://commons.erau.edu/edt/780 

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted 
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons. 
For more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/298?utm_source=commons.erau.edu%2Fedt%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/780?utm_source=commons.erau.edu%2Fedt%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


i 

` 

Explorations in Monocular Distance And Ranging (MODAR) Techniques for Real-World 

Applications 

 

 

 

A THESIS 

 

Presented to the Department of Mechanical Engineering 

 

Embry-Riddle Aeronautical University, Daytona Beach 

 

 

 

 

 

In Partial Fulfillment 

 

of the Requirements for the Degree 

 

Master of Science in Mechanical Systems 

 

 

 

 

 

Committee Members: 

 

Dr. Christopher Hockley – Advisor  

 

Dr. Eric Coyle 

 

Dr. Brian Butka 

 

 

 

 

By Devon A. Vail 

 

B.S., 2021, Embry-Riddle Aeronautical University, Daytona Beach 

 

 

December 2023 

 

 

 

 



ii 

` 

Acknowledgements 
I would like to acknowledge and thank everyone who has helped me through my graduate 

degree. I would have been unable to complete my degree without the support of my numerous 

friends, family members, and professors at Embry-Riddle Aeronautical University who helped me 

along the way. 

First and foremost, I’d like to thank my advisor, Dr. Hockley, for inspiring me to research 

this topic all the way back in my undergraduate career. This idea has evolved quite a lot over the 

years and, under Dr. Hockley’s guidance, it has become the focus of this thesis. Additionally, I’d 

like to thank Dr. Butka and Dr. Coyle for their help with this thesis. Dr. Coyle’s mentorship 

through many projects and classes has helped refine my passion for robotics and helped me become 

the student I am today. I’d also like to thank Dr. Patrick Currier especially for continually 

advocating for my success as a student and finding ways for me to be involved in the research on-

campus; without his support this thesis would not have happened. I’d also like to express my 

gratitude for the assistance of Mike Bakula for sharing his expertise of optics with me. 

Furthermore, I’d like to thank my family for their ongoing support of my studies and their 

encouragement to keep me pushing through. I’d like to thank my girlfriend, Katelyn, as well for 

her constant support and encouragement. She kept me motivated throughout my college career and 

kept me going through this thesis.  

To all my peers and friends, thank you so much for your words of encouragement and for 

letting me bounce ideas off you when I got stuck. 

  



iii 

` 

Table of Contents 
Acknowledgements ......................................................................................................................... ii 

Table of Contents ........................................................................................................................... iii 

Table of Figures .............................................................................................................................. v 

Abstract ........................................................................................................................................... 1 

Introduction ..................................................................................................................................... 2 

Depth Retrieval Sensors .............................................................................................................. 2 

Active Sensors ......................................................................................................................... 2 

Passive Sensors ........................................................................................................................ 4 

Motivation of This Work............................................................................................................. 5 

Overview of Scale Ambiguity ..................................................................................................... 5 

Investigation of Shutter Types .................................................................................................... 8 

Mechanical Shutters ................................................................................................................ 8 

Electronic Shutters ................................................................................................................... 9 

Overview of Lenses ................................................................................................................... 10 

The Effect of Apertures on Depth of Field ............................................................................... 12 

Image Characteristics: Contrast and Intensity ........................................................................... 14 

Scope of Paper .............................................................................................................................. 14 

Related Works ............................................................................................................................... 14 

Martel et al. (2018) .................................................................................................................... 15 

Nagahara et al. (2011) ............................................................................................................... 18 

Discussion on Consumer-Grade Photography Components vs. Lab-Grade Photography 

Components ............................................................................................................................... 19 

Problem Statement .................................................................................................................... 19 

Methodology ................................................................................................................................. 19 

Overview of Fundamental Principles ........................................................................................ 20 

Fundamental Methodology ....................................................................................................... 22 

Blur Detecting Algorithms ........................................................................................................ 22 

Simulating Changing Optical Power in Software ..................................................................... 27 

Linear Rail Hardware Setup ...................................................................................................... 29 

Geared Lens Setup .................................................................................................................... 33 

Liquid Focus-Tunable Lens .......................................................................................................... 41 

Results ........................................................................................................................................... 44 



iv 

` 

Discussion ..................................................................................................................................... 48 

Future Works ............................................................................................................................. 49 

Conclusion .................................................................................................................................... 50 

References ..................................................................................................................................... 52 

 

 

 

  



v 

` 

Table of Figures 
Figure 1: A graphical representation of the baseline of a stereovision camera ...................... 4 

Figure 2: a) a green 20-inch cube attached to a red 10 x 10 x 70-inch rectangular prism. b) 

the same shape but from a different angle.................................................................................. 5 

Figure 3: Stationary Data from Accelerometer Z-Axis ............................................................. 7 

Figure 4: Stock icon showing a leaf shutter ................................................................................ 8 

Figure 5: A diagram of how the focal plane shutter works....................................................... 9 

Figure 6: A diagram illustrating how a rolling shutter works.................................................. 9 

Figure 7: a) A picture of helicopter's propellers taken with a global shutter camera. b) The 

same photo taken with a rolling shutter (Paul, 2016). ............................................................. 10 

Figure 8: A visual representation of a thin lens (Photonics Media, n.d.)............................... 11 

Figure 9: The anatomy of a modern camera lens (ExpertPhotography, 2023) ..................... 11 

Figure 10: A circle of confusion caused by a large aperture................................................... 12 

Figure 11: A circle of confusion caused by a small aperture (Vision Doctor, n.d.). ............. 13 

Figure 12: The lens setup used by Nagahara et al. (2011) ....................................................... 18 

Figure 13: Siamese_32.jpg from the The Oxford-IIIT Pet Dataset database (Parkhi, 

Vedaldi, Zisserman, & Jawahar, n.d.) ...................................................................................... 23 

Figure 14: Siamese_32.jpg with cells of random blur applied to it ........................................ 24 

Figure 15: Bombay_166.jpg with cells of random blur applied to it (Parkhi, Vedaldi, 

Zisserman, & Jawahar, n.d.) ..................................................................................................... 26 

Figure 16: The first and last image in a simulated focal stack ............................................... 28 

Figure 17: a) The front view of the sliding rail test rig. b) The side view of the sliding rail 30 

Figure 18: a) The first color image in the focal stack. b) The result of the LoG applied to 

the focal stack .............................................................................................................................. 32 

Figure 19: a) The front view of the geared lens setup. b) The side view of the geared lens 

setup ............................................................................................................................................. 34 

Figure 20: The graph of Equation 12 ........................................................................................ 37 

Figure 21: a) The composite image of the LoG of each image in the focal stack, multiplied 

by a factor of 20. b) A photo of the environment. .................................................................... 39 

Figure 22: Composite depth image from the geared lens setup.............................................. 40 

Figure 23: A diagram of the Cx Series Fixed Focal Length Lens provided by Edmund 

Optics (Edmund Optics). ............................................................................................................ 41 

Figure 24: a) The side view of the liquid lens setup. B) The front view of the liquid lens 

setup ............................................................................................................................................. 42 

Figure 26: do vs. Optical Lens Voltage ..................................................................................... 43 

Figure 25: An all-in-focus image of the checkerboard environment ..................................... 44 

Figure 27: a) The far distances in the environment are in focus, b) The mid-range distances 

are in focus. C) The close-range distances are in focus. .......................................................... 46 

Figure 28: Composite depth image from liquid lens setup ..................................................... 46 

Figure 29: A projection of the depth map seen in  onto an overhead view of the 

environment. ................................................................................................................................ 47 

Figure 30: A top-down view of the point cloud seen in Figure 29 .......................................... 48 



1 

` 

Abstract 
In this work, an initial prototype of a monocular camera system capable of retrieving depth-

from-focus using a liquid focus-tunable lens is constructed out of hobby-grade photography 

equipment. This concept has been explored previously in laboratory settings using specialized 

equipment; this work seeks to determine the feasibility of retrieving depth-from-focus using 

commercially available components. To achieve this, an iterative exploration of existing 

techniques was performed to verify their utility in the final ensemble of processes to retrieve depth 

from 2D images. Initially, blurry images were simulated by applying Gaussian blur to test images 

to verify the functionality of a Laplacian of Gaussian-based algorithm capable of determining 

image clarity, a sliding gantry was then constructed to move a camera through the environment 

and test the image clarity algorithm on real-world data as well as test methods to create a composite 

image of the most in-focus pixels from a focal stack of images collected while the camera was in 

motion. Following this, the depth retrieval algorithm was tested on a geared lens setup in which a 

gear-driven fixed focal length lens was attached to a camera and driven such that the distance 

between the lens and the imaging sensor in the camera was varied to change the optical power of 

the lens. This setup suffered from several limitations but provided significant insight into the 

fundamental principles governing depth-from-focus retrieval. Finally, 12mm, f/6, Liquid Lens Cx 

Series Fixed Focal Length Lens from Edmund Optics was attached to a Raspberry Pi Global 

Shutter camera to retrieve depth from an environment. This lens can vary its optical power by 

applying a voltage to the liquid lens which can be done automatically from a microcontroller at a 

high rate of speed. This operated with limited success and produced a very noisy depth map and 

point cloud of the environment. This work concludes with suggestions for future work to 

significantly improve the depth retrieval functionality of the liquid lens setup. 



2 

` 

Introduction 
Depth perception in machine vision is a core challenge within the field of robotics with 

many proposed solutions (Flyps, 2023). The ability to resolve the distance of an object to the origin 

of an imaging sensor is critical for many applications such as mobile robots navigating through 

cluttered environments, autonomous vehicle navigation, machines for material sorting and 

handling, and crowd monitoring to name a few. There have been numerous applications of depth 

cameras in the field of robotics and automation; some of the more prevalent examples include the 

Xbox Kinect sensor (Cruz, Lucio, & Luiz, 2012), which used depth mapping to track a person’s 

movement and the Hazard Avoidance Cameras (HazCams) on the Mars 2020 Perseverance Rover 

(NASA, n.d.).  

Depth Retrieval Sensors 
Generally, depth retrieving sensors fall into one of two categories: active or passive 

sensors. As the name implies, active sensors actively transmit energy into the environment. When 

discussing the energy transmitted by active imaging sensors, most emit infrared light into the 

environment. Structured light cameras, time-of-flight cameras, and all forms of LiDAR are active 

sensors. Stereovision cameras and traditional monocular cameras are passive sensors.  

Active Sensors 

Depth cameras present a unique way to garner information from the environment not 

readily available from traditional monocular cameras; primarily, they produce depth maps of the 

environment. A depth map is typically a 2D grayscale image that is the same size as the red-green-

blue (RGB) images they were created from. The grayscale intensity in the depth map image 

corresponds to the distance the object or surface the pixel represents is from the camera. Depth 

cameras generate depth maps in a variety of ways including projecting light in the form of infrared 

lasers into the environment to find the range to select points. Structured light cameras are another 
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method of capturing 3D data from an environment. These cameras use a specialized projector, 

whose spatial positioning relative to the camera is known, to illuminate a scene with a known 

pattern of light. In completely flat scenes, the camera will perceive a very similar pattern to the 

one projected. In nonplanar scenes, the pattern will deform, and the amount of deformation can be 

used to determine the shape of the surface causing the deformation (Geng, 2011). In addition to 

these cameras, time-of-flight cameras can also retrieve depth information from an environment by 

illuminating the environment with a pulse of light, typically an infrared light source, and measuring 

the time the reflected light takes to return to the sensor. This time can be translated into a distance 

to the surface the light reflected off. Emitting infrared light into the environment and measuring 

the time it takes to reflect back is also how Light Detection And Ranging (LiDAR) sensors work. 

However, LiDARs typically involve rotating optical components, such as mirrors, to rapidly 

transmit infrared light into the environment. This is not true of every LiDAR sensor; flash LiDARs 

are solid-state devices containing no moving pieces and function nearly identically to the time-of-

flight cameras discussed previously (Li & Ibanez-Guzman, 2020). 

Active sensors can suffer degradation in functionality in brightly lit and outdoor 

environments as the reflected return from their emitted pulse of light can be washed out in the 

ambient light. Additionally, multiple active sensors in an environment may destructively interfere 

with one another as the reflection of light emitted by one sensor may be detected by a different 

sensor thus causing incorrect depth values (FRAMOS, 2023).  Adding to this, LiDAR sensors can 

be costly sensors with high initial costs for sensor acquisition and integration. Despite this, active 

sensors, like LiDARs, are preferable in scenarios where precision and processing speed is of 

paramount importance (METTATEC, 2023). Measuring distance with a laser offers high precision 

measurements and point clouds from LiDARs typically have fewer data points to process. 
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Passive Sensors 

Passive sensors are characterized by the fact that they do not emit energy into the 

environment. One method of depth retrieval includes triangulating the same points in two different 

photos from two different image capturing sensors separated by a known baseline distance. This 

type of image capturing device is typically referred to as a stereovision camera (Dubey, 2020). 

Stereovision cameras and other passive sensors also suffer from setbacks primarily associated will 

lighting conditions in the environment. Similar to LiDAR and time-of-flight cameras, if the 

environment is saturated with light, a depth or stereovision camera will struggle to resolve the 

depth of the environment. Poorly lit environments will also illicit degraded performance in passive 

camera-based systems (Hesai Technology, 2023). However, camera systems are significantly more 

cost-effective and excel at supporting software for object classification when compared to LiDAR 

sensors (Vincent, 2023). Given their cost-effectiveness, it is a worthwhile endeavor to explore 

methods to maximize the utility of camera systems. While it might seem intuitive to only adopt 

use of stereovision cameras, they too suffer from some notable drawbacks; namely, the baseline 

of the stereovision camera directly determines the range at which the camera can resolve depth. 

The baseline of a stereovision camera is defined as the distance between the imaging surfaces. 

Typically, the two imaging sensors in a stereovision camera are separated by only one degree of  

freedom, as seen in Figure 1. Doubling the baseline distance of the imaging sensors yields an 

 
Figure 1: A graphical representation of the baseline of a stereovision camera 
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approximate 50% increase in the range of the camera (Dubey, 2020). Furthermore, stereovision 

cameras require more computational power as they are comprised of multiple imaging sensors. 

Motivation of This Work 
 To avoid the pitfalls of a system with a large baseline and coordinating the data collection of two 

imaging sensors, it would be ideal to retrieve depth from a monocular camera to ensure a compact 

design and a single imaging sensor from which to process data. To this end, the remainder of this 

work will discuss depth retrieval from one imaging sensor using a primarily hardware driven 

approach referred to as depth from focus. Prior to discussing depth from focus in detail, it is 

necessary to some fundamental attributes of camera systems and the two-dimensional (2D) images 

that they capture. 

 Overview of Scale Ambiguity 
One of the largest challenges associated with retrieving depth from a monocular imaging 

source is scale ambiguity. A rudimentary yet effective example of scale ambiguity can be seen in 

Figure 2.  Figure 2a gives the viewer a clear view of the compound structure formed between the 

green and red rectangles whereas Figure 2b, which is an image of the same structure viewed from 

a different angle, Figure 2b offers no information regarding the length of the red rectangle. This 

may lead an observer to incorrectly assume that the face of the red rectangle and green rectangle 

  
a) b) 

Figure 2: a) a green 20-inch cube attached to a red 10 x 10 x 70-inch rectangular prism. 

b) the same shape but from a different angle. 
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visible in Figure 2b are coplanar rather than separated by a great distance. The problem of scale 

ambiguity has been explored in a number of works (Hong & Lim, 2018), (Fanani, Stürck, Barnada, 

& Mester, 2017), (Wang, Shen, & Chen, 2023) with a large focus being put into scale retrieval for 

navigation and mapping algorithms such as visual odometry. Visual odometry in the use of vision 

sensors to locate obstacles and map them to real-world locations relative to the sensor. Once that 

has been done, the obstacles are tracked and, using these tracks, the vision sensors motion through 

the environment is computed. In such applications an accurate scale is critical to create accurate 

odometry estimates and avoid collisions.  

While research has been conducted into resolving scale ambiguity, many methods require 

diligent cooperation from an operator or a known reference during the initialization phase of the 

algorithm. For example, Klein and Murray (2007) devised an algorithm for tracking and mapping 

movement in a small environment using a monocular camera. However, the algorithm required a 

user to initialize it using the press of a key and then to move the camera as smoothly as possible 

through a translational movement and then press a key again to end the initialization process. This 

kind of initialization leaves much to be desired for a product developed for end-users and 

purchasers of commercial products. In a manner similar to a user led initialization of the algorithm, 

Bleser et al. (2006) propose a camera pose estimation algorithm that requires the user to manually 

adjust the position of the camera until it is approximately aligned with an object in the scene of 

which a line model has been previously constructed. The authors refer to this method as a semi-

automatic model-based approach due to the fact that the algorithm is not fully automatic, requiring 

the user to position the camera in an initial state that can view an object of which a 3D model has 

been created. From that 3D model, a 3D contour model is made which can be aligned with the 2D 

contours of the item in the monocular camera’s field-of-view (FOV). As with the algorithm 
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requiring a user to perform specified actions at every initialization of the algorithm, producing a 

3D contour model of an object and viewing that object every time one initialized the algorithm is 

unsuitable for end users of a commercial product and is generally unsuitable for most research 

cases as well. 

As one can observe, the issue of scale ambiguity has generated a great deal of research. 

Due to the elusive nature of a definitive solution to scale ambiguity resolution, some researchers 

have explored sensor fusion to overcome some of the practices mentioned previously, such as 

bringing an object of known size into the environment or manually moving the camera through 

some sequence of poses. Nützi et al. (2011) details the authors efforts to solve scale ambiguity 

issues on a moving vehicle using the combination of a camera and an inertial measurement unit 

(IMU). Using simulated data, the method works remarkably well; using real world data from the 

IMU shows a high sensitivity to dynamic bias in the acceleration data from the IMU when 

calculating the scale of 

the environment. To 

illustrate the dynamic 

bias of an IMU, Figure 3 

shows a plot of 

acceleration data from 

the z-axis of a stationary 

accelerometer. While this accelerometer, the MPU-6050, is a low-cost hobby-grade sensor and 

therefore may be more prone to bias, the data shown in the figure is indicative of bias even a 

commercial grade IMU may be subject to, albeit, to a lesser degree (VectorNav, n.d.). As the 

authors of the research describe in their work, this bias is difficult to quantify or express in a 

 
Figure 3: Stationary Data from Accelerometer Z-Axis 



8 

` 

reliable model. Therefore, its impacts will almost certainly be observed in any scale estimation 

that is dependent on the fusion between an IMU and a vision sensor. Additionally, the method 

proposed by the authors relied on an Extended Kalman Filter (EKF) to filter the acceleration data 

from the IMU; this filter took at least 15 seconds to converge using real world data. 

Investigation of Shutter Types 
Consideration of the type of shutter working with imaging systems is a critical aspect of the design 

as they determine how the images are affected by motion and light. There are several different 

types of shutters to consider with the main division coming between mechanical and electronic 

shutters and different subdivisions of those characterizations.  

Mechanical Shutters 

As mentioned, there are several types of mechanical shutters such as the leaf shutter which 

is comprised of several overlapping blades built into the lens that open and close to allow light to  

reach the imaging sensor. The leaf shutter is easily recognizable as it is one of the more common 

illustrations of a camera lens. For example, searching for camera 

images in the Microsoft 360 suite yielded the icon in Figure 4. The 

advantage to using leaf shutters lies in its ability to use much faster 

shutter speeds in conjunction with a flash in comparison to other 

shutters. This is because the leaf shutter exposes the entire imaging sensor to light at the same time 

(Brown, n.d.). However, leaf shutters are mechanically complex and as such have a limited 

lifecycle before failure. Similar to leaf shutters, focal plane shutters are also mechanical shutters. 

Unlike leaf shutters, focal plane shutters are typically built into the imaging sensor rather than lens 

making them compatible with any lens that works with the imaging sensor. The focal plane shutter 

provides the functionality of a shutter by moving two coplanar curtains, separated by a small 

vertical slit, across the imaging sensor. The slit travelling across the sensor allows for light 

 

Figure 4: Stock icon 

showing a leaf shutter 
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exposure to the sensor. As one might imagine, the motion of the slit across the imaging sensor can 

induce blurring, especially when imaging objects in motion (Brown, n.d.). Despite this, focal plane  

shutters are advantageous over leaf shutters when considering shutter speed, they are significantly 

faster than leaf shutters (Brown, n.d.). Figure 5 shows a 

diagram illustrating the functionality of a focal plane shutter. 

With both forms of mechanical shutter, the movement of the 

shutter can cause a phenomenon known as shutter shock 

which causes the imaging sensor to vibrate and cause the 

captured image to blur (Cromie, n.d.).  

Electronic Shutters 
An imaging sensor is usually comprised of a two-dimensional (2D) array of photoreceptors 

that capture incoming light with each element of the array 

corresponding to an individual pixel in the captured 

image. For certain imaging sensors, particularly sensors 

with small size formats, electronic shutters are beneficial 

in comparison to mechanical shutters. Electronic shutters 

function on a software level on the sensor. There are two 

primary types of electronic sensors, rolling and global shutters. Rolling shutters read a limited 

number of rows of the imaging sensor at a time until the entire sensor has been read. In similar 

fashion to the focal plane shutter, a rolling shutter can experience significant distortion and 

blurriness in environments with moving objects. Figure 6 illustrates how a rolling shutter works 

on an imaging sensor; the gray row is being read by the processor and once it has been read the 

next row will be read out. This process is repeated until all rows in the array have been read. In 

 
Figure 5: A diagram of how 

the focal plane shutter works 

 

Figure 6: A diagram illustrating 

how a rolling shutter works 
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contrast to the rolling shutter, a global shutter samples all the elements of the array simultaneously. 

This sampling strategy is incredibly advantageous in dynamic environments as the sampling of the  

array occurs quickly such that dynamic objects have little opportunity to move while the array is 

being sampled. This results in little to no blurring or distortion in the captured image and is 

generally regarded as preferable to a rolling shutter. An example of the distortion induced by a 

rolling shutter can be seen in Figure 7b. With both types of electronic shutters, however, the  

inability to sync a flash with the shutter can become problematic. Flashes in photography are 

typically very bright, very quick strobes of light that are shorter in duration than that of an 

electronic shutter’s sampling action (Nicholson & Summersby, n.d.). This requires sensors with 

electronic shutters to be properly illuminated from an external source. 

Overview of Lenses 
The simplest reduction of how a modern camera lens works is the thin lens theorem. This 

theorem can be described mathematically, as seen in Equation 1, where 𝑑𝑜 describes the distance 

to the plane of focus from the lens, 𝑑𝑖 describes the distance from the lens to the imaging sensor, 

and 𝑓 describes the focal length of the lens. More practically, it can be illustrated using the image 

in Figure 8. Figure 8 shows a thin lens viewing a real-world object and projecting it onto an image 

sensor plane. The 𝑑𝑜, 𝑑𝑖, and 𝑓 in the figure are the same as those detailed in Equation 1. It should 

be noted that, while they appear similar in Figure 8, 𝑑𝑜, and 𝑑𝑖 are typically not similar distances.  

  
a) b) 

Figure 7: a) A picture of helicopter's propellers taken with a global shutter camera. b) 

The same photo taken with a rolling shutter (Paul, 2016). 

1

𝑑𝑜
+

1

𝑑𝑖
=

1

𝑓
  (1) 
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Figure 8: A visual representation of a thin lens (Photonics Media, n.d.). 

This representation of a lens is sufficient for most cases; however, modern camera lenses are often 

comprised of multiple thin lenses which adds some nuance to Equation 1. To better illustrate this,  

Figure 9 shows an illustration of a modern camera lens and its components as provided by a 

photography website. As is evident in Figure 9, there are often many thin lenses in a modern 

camera lens; an additional important feature of modern camera lenses in the aperture size of the 

lens as a whole. As can be seen in Figure 9, the lenses aperture is 400 mm. The aperture can also 

be represented as an “f-number” or “f-stop” which takes the form f/#, where the # represents some 

number. This can be calculated by dividing the focal length by the number represented by the # 

symbol (Nikon, n.d.). The aperture size plays a critical role in photography as it, similar to the 

shutter speed discussed previously, determines how much light is able to reach the imaging sensor, 

 

Figure 9: The anatomy of a modern camera lens (ExpertPhotography, 2023). 
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as one would expect, a larger aperture allows a greater amount of light to reach the sensor when 

compared to a lens with a smaller aperture.  

The Effect of Apertures on Depth of Field 
Aperture size also directly impacts a phenomenon known in photography as the depth of 

field (DoF). The DoF can be described qualitatively by observing photographs; when one is taking 

a photo with a camera, the subject of the photograph is what one attempts to have as the most in-

focus object in the photo. While focusing on the subject, whether it be manually or using some 

auto-focus algorithm, one may notice a small range of focal adjustments values in which the 

subject remains acceptably in-focus without distinguishable blurriness developing between 

adjustments of the focal length. To simplify, for each step adjustment of the focal length of a lens, 

there exists some range of distances from the lens in which a subject will be acceptably in-focus, 

this is referred to as the depth of field of a lens. When considering aperture, the DoF is reduced in 

size as the aperture size is increased. Inversely, the DoF enlarges with a smaller aperture size 

(Nikon, n.d.). This is because light rays extending from an object and passing through a lens, 

converge at a small circle rather than a dot. The size of this circle can be adjusted by adjusting the 

aperture size or the focal length of the lens (Mateer, n.d.).  Graphics showing exactly what is meant 

by the circle of confusion is show in Figure 10 and Figure 11. In the figures, the object at the in-

focus position emits light rays that enter the aperture, pass through the lens and then converge at 

 
Figure 10: A circle of confusion caused by a large aperture. 
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the plane of the image sensor. The same object at an out of focus position in each figure emits 

similar light rays that pass through the lens and converge at a point behind the plane of the image 

sensor. The circle of confusion in the circle formed by these rays as they intercept the plane of the 

image sensor. A sufficiently small circle of confusion may be unnoticeable without serious effort 

and as such the object at an out of focus position may be clear enough in the image to be considered 

in-focus. As is evident in Figure 10 and Figure 11, the larger the aperture, the larger the circle of 

confusion; this indicates the distance between the in-focus and out of focus position in Figure 10 

is smaller than the same distance in Figure 11, this distance defines the DoF. The circle of 

confusion becomes noticeable as it begins to grow larger than the size of the pixels on the image 

sensor array. As this happens, the same information begins to spill across a larger number of pixels 

and the image begins to become blurrier (Mateer, n.d.). In traditional photography, it is often 

desirable to have a larger DoF to capture as much information as possible in the photograph; when 

attempting to retrieve the distance to objects from an image, the inverse is true. The equation for 

the DoF can be seen in Equation 2 where 𝐴 is the aperture size and 𝐶 is the size of the circle of 

confusion. 

𝐷𝑜𝐹 =
2𝑑𝑜𝐴𝑓𝐶(𝑑𝑜 − 𝑓)

𝐴2𝑓2 − (𝑑𝑜 − 𝑓)2𝐶2
 (2) 

 
Figure 11: A circle of confusion caused by a small aperture (Vision Doctor, n.d.). 
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Image Characteristics: Contrast and Intensity 
 An important discussion to be had when discussing image processing and image focus is 

the difference between intensity and contrast. Intensity refers to the amount of light a pixel 

represents  (Nixon & Aguado, Chapter 2: Images, sampling, and frequency domain processing, 

2012) whereas contrast relates to the disparity between high intensity and low intensity regions of 

an image, also referred to as the change in brightness (Nixon & Aguado, Chapter 1: Introduction, 

2012).  Both of these image characteristics can be used in a multitude of ways during image 

processing. In fact, measures of contrast, in conjunction with other metrics, have been used to 

determine image quality of images that have been altered in some way via an image processing 

filter very effectively, provided a reference image of the original image (Bhuiyan & Khan, 2015). 

Scope of Paper 
 This work will focus on the creation of an initial prototype of a hardware-based solution to 

resolving depth from a monocular imaging sensor using depth from focus algorithms. The 

hardware components used in this prototype will be hobby-grade photography components. 

Exploration of monocular depth retrieval using deep learning methods falls outside the scope of 

this paper. This circumvents the issues associated with the initial setup of a deep learning algorithm 

as well as the additional computational power required for such algorithms. 

Related Works 
 The concept of depth retrieval from a monocular imaging source has been previously 

studied by a diverse group of academics. In most of these works, laboratory grade or specialized 

photography equipment was used to retrieve the depth. Little work has been published on depth 

retrieval using hobby-grade components. Nevertheless, the same principles used on laboratory 

grade photography equipment can be applied to hobby grade components and, as a result, 

investigation of academic methods is a worthwhile endeavor. 
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Martel et al. (2018) 
Martel et al. (2018), one of the primary works in this area of study, achieved real-time 

depth retrieval by manipulating the focus of a lens attached to a focal plane processor. A focal 

plane processor is a processor which performs analog operations and processing on the same chip 

that the image sensor array is on. This eliminates the need for an analog-to-digital converter which 

often bottlenecks image processing algorithms (Etienne-Cummings, Kalayjian, & Cai, 2001), 

(Fossum, 1989). This results in massive data throughputs and allows for very quick processing of 

images, thus aiding in the authors ability to perform real-time data acquisition from a camera. In 

addition to using a programmable focal plane processor, the authors of the paper also made use of 

a focus-tunable lens attached to the processor. This lens is a liquid-filled membrane with embedded 

current-driven voice coils which actuate the membrane based on the applied current (Optotune 

Switzerland AG, 2023). When the membrane actuates it changes shape to adjust the effective focal 

length of the lens without any mechanical inputs from an external user. As the control is entirely 

electronic, it is capable of actuating the lens at a high rate of speed, with the rise time of the input 

response of the lens equivalent to approximately 5 milliseconds (Optotune Switzerland AG, 2023). 

The complete lens setup used by authors is comprised of the focus-tunable lens farthest from the 

camera, a lens of negative focal length, and then an objective lens with a manually tunable lens. 

The negative focal length lens was required to bring the images from the focus tunable lens into 

the focal range of the objective lens. With the combination of a focal plane processor and a focus-

tunable lens with a rapid response time, the authors were able to take several photographs in quick 

succession with photograph taken at its own unique optical power. This collection of photos is 

referred to as a focal stack. Once the focal stack was collected, each image was run through an 

algorithm which first blurred the image and then took the Laplacian of the image, in a process 

known as the Laplacian of Gaussian (LoG). The purpose of this was to first blur the image so that 
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noise in the image and artifacts such shadows or soft edges were blended with their surroundings. 

The resulting blurred image then only had the most prominent edges still visible in the image; the 

Laplacian of the image was then calculated to detect the edges. Once the LoG of each image was 

taken in the focal stack, the images in the stack were, in effect, overlayed on top of one another 

and composited together. The method for composition was to keep the pixel that maximized the 

response to the LoG and consider it the most in-focus pixel. By finding the most in-focus pixel at 

each possible pixel in the composite image, a depth cloud was constructed by correlating the in-

focus pixel to its image’s associated optical power and using Equation 1 to find the real-world 

distance to that pixel. There are some key issues associated with depth retrieval using this method 

and Martel et al. (2018) outline some methods for overcoming these challenges. One of the primary 

challenges with using a monocular imaging sensor with variable focal length to resolve depth of 

the environment is the range of real-world depths the sensor can sweep with good resolution. This 

is because the depth of field enlarges dramatically as the range of interest increases; this results in 

an increase of large error of depth values at larger ranges. Essentially, a point may be perceived as 

the most in-focus it can be at an image corresponding to an optical power associated with a distance 

from the camera of several meters and the DoF may be very large. For example, one of the lens 

configurations presented by Martel et al. (2018) had a DoF resolution of 0.225 m at a distance of 

4.5 m from the camera. To combat this resolution challenge, the authors proposed optimizing the 

objective lens at the rear of the lens assembly specifically for the target range of the sensor.  This 

is an effective solution because as the focal length of the rear objective lens increases so too does 

the maximum effective range of the lens apparatus (Martel, et al., 2018). However, doing so also 

reduces the field of view (FOV) of the overall image.  
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Martel et al. (2018) also mention in their work that they believe the proposed system will 

work on moving autonomous systems. This can be achieved by optimizing the speed of the focal 

stack collection by selecting the optimal number of images in the focal stack and prioritizing the 

speed at which they are collected, depth-retrieval can be done in real-time on a moving platform. 

Despite the promising nature of their work the authors further identify three major limitations of 

their proposed system. The first issue they discuss is what (Martel, et al., 2018) refers to as 

inpainting; this issue comes from the fact that the LoG method excels at finding edges in an image 

and nothing else. Therefore, very few pixels are detected as “in-focus” in each image. For example, 

when viewing a room with several objects in the FOV, Martel et al. (2018) observed that only 15% 

of the pixels in the final image were populated. This is because, essentially, only the outlines of 

objects were detected; they denote that determining the depth associated with missing pixels is 

referred to as inpainting in computer vision. The second issue discussed was that there was no 

denoising mechanism implemented in the algorithm. High intensity light sources may also produce 

a high LoG response which would detrimentally affect the depth estimation of the light source. 

Finally, due to the nature of the camera and lens system, it is impossible to acquire a continuous 

depth estimation for the environment as the depth is sampled at discreet intervals by way of taking 

a picture. (Martel, et al., 2018) proposes a potential solution, by way of assuming that depth values 

in between the depth retrieved from the focal stack is relatively close to the depth values around 

it, they refer to this solution as densification.  

 It is important to note after discussing the work presented in Martel et al. (2018) that the 

focal plane processing array used in the work is not a widely used instrument and, as such, there 

are few commercially available focal processor arrays (FPAs) (Teledyne FLIR, n.d.). This makes 
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reproduction of the work presented therein somewhat difficult due to the uniqueness of the 

hardware.  

Nagahara et al. (2011) 
While the work conducted by Martel et al. (2018) has been discussed at length, there have 

been other similar efforts from other authors. One such example is Nagahara et al. (2011) in which 

the authors make use of the same fundamentals of lens employed by Martel et al. (2018). Nagahara 

et al. (2011) also makes use of Equation 1; however, rather than varying the focal length, or optical 

power, of the lens, Nagahara et al. (2011) varied the value associated with the 𝑑𝑖 term in Equation 

1. This was accomplished by way of a linear micro-actuator attached to the lens which slid the lens 

away from the imaging plane, the setup used can be seen in Figure 12. This setup produces the 

same effect as the one described in Martel et al. (2018); but as Martel et al. (2018) points out, this 

setup suffers from some key setbacks. Namely, the difficulty in actuating the lens small distances, 

on the order of micrometers, quickly and accurately. This is where the benefit of using a current 

or voltage driven focus tunable lens, such as the one used in Martel et al. (2018), becomes 

beneficial. As is evident by Figure 12, the setup used by Nagahara et al. (2011) was custom 

 
Figure 12: The lens setup used by Nagahara et al. (2011) 
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designed for their proposed solution which has an increased design complexity when compared to 

the design proposed by Martel et al. (2018). 

Discussion on Consumer-Grade Photography Components vs. Lab-Grade Photography 

Components 
In this work, extensive use is made of consumer-grade photography components; 

consumer-grade photography components differ from lab-grade photography components in that 

they are readily available to the average consumer. Empirically, one might distinguish consumer-

grade photography components from lab-grade by the cost of the component. Typically, consumer-

grade photography components are orders of magnitude less expensive than lab-grade and one 

does not usually have the opportunity to negotiate the price of consumer-grade photography 

components. Consumer-grade photography components are rarely custom made and, as a result, 

they are typically designed to interface with a large variety of other photography components by 

way of standardization.  

Problem Statement 
Given that perception on autonomous and semi-autonomous systems in a continuous 

challenge with no holistic solution, investigations into the real-world applications of vision 

systems such as the one proposed in Martel et al. (2018) are necessary. This work seeks to 

investigate the feasibility of depth retrieval from a small format consumer-grade camera system 

controlled by a small computer. 

Methodology 
The method to retrieve depth from a monocular camera system, presented in this work, 

evolved in many stages. After a brief preliminary evaluation of available options, it was decided 

the best course of action would be to use a focus-tunable lens similar to the one used in Martel et 

al. (2018). However, prior to proceeding directly to purchasing a focus-tunable lens, several forms 

of verification had to occur to ensure a proper baseline understanding of the fundamentals of lenses 
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utilized heavily in the reference literature. Initial investigations focused on developing algorithms 

to detect blurriness and eventually progressed to camera systems on sliding rails moving relative 

to the environment, to a geared lens, not unlike Nagahara et al. (2011), to finally integrating the 

focus-tunable lens into the system.  

Overview of Fundamental Principles 
Many electronically controlled focus-tunable lenses exist which can sweep through a large 

range of focus lengths, or optical power; these lenses are readily commercially available through 

retailers of optics equipment (Edmund Optics, n.d.). As a clarifying note for future discussions in 

this work, optical power is defined as the inverse of the focal length as described in Equation 3.                       

Equation 3 is a more concise method of describing the change of focal length. When observing the 

process outlined in Martel et al. (2018) in the context of Equation 1, one can see that the effect of 

changing the optical power while keeping the distance between the lens and the imaging sensor 

the same, i.e., not unscrewing the lens while changing the optical power, is to change the distance 

to the plane of focus. That is to say, each image in the focal stack corresponds to a unique distance 

from the camera at which the scene is acceptably in focus. To apply a Laplacian filter to an image 

is to find the second spatial derivative of the image (Fisher, S, Walker, & Wolfart, 2003) (Nixon 

&  Aguado, Chapter 4: Low-level feature extraction (including edge detection), 2012). The filter 

is effective at finding edges as edges produce a high intensity value variation between pixels lying 

on the edge and adjacent pixels. Taking the first derivative of the image would yield a local 

maximum at pixels along an edge and as a result, the second derivative of the image is equal to 

zero at points of high intensity (OpenCV, n.d.). In practice, applying the Laplacian filter to the 

image is a simple task which typically involves applying a 3x3 kernel to the image. One of the 

most common kernels is the kernel seen below which is the same kernel used Martel et al. (2018). 

𝑃𝑜𝑡𝑝𝑖𝑐𝑎𝑙 =
1

𝑓
 (3) 
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 This kernel is defined as the trace of a Hessian matrix. As mentioned in the discussion of Martel 

et al. (2018), the objective lens plays a key role in the DoF. This can be expressed mathematically 

using equations typically used to describe microscopes and telescopes. Equation 4 describes the 

magnification of a compound lens on a telescope with 𝑓𝑡𝑒𝑙𝑒𝑠𝑐𝑜𝑝𝑒 describing the focal length of the 

lens closest to the environment, typically the objective lens, and 𝑓𝑒𝑦𝑒𝑝𝑖𝑒𝑐𝑒 describing the focal 

length of the lens closest to the eyepiece used by a human observer (Hawkins, 2017), (Onah & 

Ogudo, 2014).  The FOV of the image captured by the camera discussed Martel et al. (2018) can 

then be calculated by modifying Equation 4 to produce Equation 6. Magnification can also be 

defined using the 𝑑𝑜 and 𝑑𝑖 terms from Equation 1 to yield Equation 7. From Equations 4 and 7 

one can see that the working distance, or the distance to the object in focus, is increased with a 

greater objective lens focal length. Thus, the compound lens system can be optimized for a selected 

range. However, as discussed when reviewing the work proposed in (Martel, et al., 2018), the 

objective lens typically is only optimized for a select range depending on the application of the 

system. Future works may consider a system with a controllable objective lens in addition to the 

primary lens. 
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Fundamental Methodology 
  The simplest reduction of underlying algorithm in all camera setups in this work is 

described Algorithm 1. Steps 2 through 6 are relatively invariant; however, Step 1 is determined 

by in the setup used to collect the focal stack. The method by which the images are collected in 

Step 1 is crucial and is the primary focus of this work. 

Blur Detecting Algorithms 
 Prior to purchasing any imaging hardware, an effort was made to detect blurriness in an 

image to verify that such an algorithm would work on images captured in a focal stack. As is 

customary for evaluation of computer vision algorithms, this algorithm was tested on a standard 

test image, in this case the image was “Siamese_32.jpg” from the Oxford-IIIT Pet Dataset database 

(Parkhi, Vedaldi, Zisserman, & Jawahar, n.d.). The image depicts a Siamese cat sitting on a chair; 

it can be seen in Figure 13. While the database this image was retrieved from is typically used to 

train neural networks on object classification, the image works sufficiently well for the purpose of 

this work as it is feature-dense and has a discernible foreground and background. To begin work 

on a blur detection algorithm, the image was resized into a square, 512x512 pixel image and 

Algorithm 1: Fundamental Algorithm of this Work 

1)  Acquire a focal stack of images 

2)  Apply a LoG filter to each image in the stack 

3)  Composite the filtered images together by keeping the highest pixel value response to 

the LoG filter for each picture 

4)  Use the index of the image corresponding to the highest pixel value to determine the 

focal power of the image containing the pixel 

5)  Use the focal power to determine the working distance to the pixel 

6)  Optional: Create a depth map or point cloud from the working distance 
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converted to grayscale. From there, the image was discretized into a 4x4 array of even size cells, 

after this, 16 images were created, each with one unique cell that was left unblurred, with a random 

Gaussian blur kernel being applied to the cells in the image that were not left unblurred. The result 

was a batch of 16 images that looked similar to the image seen in Figure 14. Note: the cell numbers  

were not included in the produced test images, those are only for clarity purposes. As one can see 

in Figure 14, one cell up from the bottommost-right cell, was left unblurred in the creation of the 

image. Once these 16 images had been created, various methods of blur detection were performed 

on the images; for example, the root mean square (RMS) and Michelson contrast were calculated 

for each cell in each of the 16 images. Additionally, the LoG of each cell in each image was 

calculated to evaluate whether it could also be used as a metric of image clarity. This was done to  

 
Figure 13: Siamese_32.jpg from the The Oxford-IIIT Pet Dataset database (Parkhi, 

Vedaldi, Zisserman, & Jawahar, n.d.) 
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Figure 14: Siamese_32.jpg with cells of random blur applied to it 

measure the effectiveness of each contrast measure and identify shortcomings of each method. 

Initial investigations used root mean square (RMS) contrast measurements to detect which cell in 

each of the 16 images was left unblurred. Following RMS contrast measuring, Michelson contrast 

was also used to attempt to detect the unblurred cells. Finally, the LoG of each cell in each of the 

images was taken to detect the unblurred cell. The equation for RMS contrast can be seen in 

Equation 8 where the image dimensions is a X-by-Y two-dimensional array, 𝑓(𝑥, 𝑦) is the 

normalized intensity at pixel (x, y) and µ is the mean of the normalized pixel intensities (Bhuiyan 

& Khan, 2015). The equation for the Michelson contrast is expressed via the equation in Equation 

𝐶𝑅𝑀𝑆 = √
1

𝑋𝑌
∗ ∑  

𝑋−1

𝑥=0

∑[𝑓(𝑥, 𝑦) − µ]2

𝑌−1

𝑦=0

 
(8) 



25 

` 

9 where 𝐿𝑚𝑎𝑥 and 𝐿𝑚𝑖𝑛 refer to the maximum and minimum luminance in the image (NASA 

AMES Research Center, n.d.). 

In this case, intensity is used as the measurement of luminance and Equation 9 can be rewritten in 

terms of intensities in Equation 10 with 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 being the maximum and minimum 

intensities in the image. When calculating the contrast, each cell was treated as its own image; for 

initial investigations, MATLAB was used to evaluate the contrast measurements. When evaluating 

RMS contrast on Siamese_32.jpg as a method of evaluating image clarity, the algorithm was 

consistently able to achieve an average accuracy of 87.5% over 20 epochs when attempting to find 

unblurred cells. This translates to consistently missing two unblurred cells in a batch of 16 images. 

While this is acceptable for most cases, higher accuracy was desirable for use with depth 

resolution. To that end, the Michelson contrast metric was evaluated after evaluation of the RMS 

contrast metric.  

 The Michelson contrast was much less consistent than the RMS contrast with accuracy 

ranging from 75% to 87.5% per run and an average of 80% accuracy over 20 epochs. This is likely 

due to the fact that the Michelson contrast metric can be greatly impacted by a single spot of high  

or low intensity (Peli, 1990). Thus, as the image gets blurrier and the contrast between different 

regions begins to lessen, the Michelson contrast measurement becomes less and less effective.  

 Finally, the LoG of each cell was used to determine the clarity of the cell. This is the same 

method for finding image clarity used in Martel et al. (2018). It is important to note that the LoG 

does not measure contrast as the RMS and Michelson contrast equations do. Instead, the LoG is a 

𝐶𝑀𝑖𝑐ℎ𝑒𝑙𝑠𝑜𝑛 =
𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛

𝐿𝑚𝑎𝑥 + 𝐿𝑚𝑖𝑛
 

(9) 

𝐶𝑀𝑖𝑐ℎ𝑒𝑙𝑠𝑜𝑛 =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛
 (10) 
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high-pass filter for edge detecting. This means that as edges become sharper in an image, i.e., the 

image is closer to being in-focus, the values produced by the LoG filter increase. Other edge 

detecting algorithms, such as Sobel and Canny, were not considered due to Sobel’s sensitivity to 

noise and Canny’s complexity (Sharifi, Fathy, & Mahmoudi, 2002). Of the three methods used for 

calculating the clarity of the cell, the LoG metric was by far the most accurate. Over 20 epochs, 

the LoG maintained an average of 100% accuracy. This is not to say the LoG metric is perfect in 

every situation and every image as it relies primarily on edges to detect clarity. Thus, situations 

such as staring at a blank wall or featureless room may reduce the accuracy of an algorithm using 

the LoG metric as a measure of clarity. A great example of one such situation also comes from the 

Oxford-IIIT Pet Dataset database, the image titled “Bombay_166.jpg” depicts a Bombay cat 

against a white background (Parkhi, Vedaldi, Zisserman, & Jawahar, n.d.). One of the generated 

test images using Bombay_166.jpg can be seen in Figure 15 and as one can see, cell 1 in the image 

has zero contrast in it which likely contributed to a lower average accuracy of 92.5% over 20 

epochs using the LoG metric. 

 
Figure 15: Bombay_166.jpg with cells of random blur applied to it (Parkhi, Vedaldi, 

Zisserman, & Jawahar, n.d.) 
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Interestingly, of the 20 epochs conducted on test images generated from Bombay_166.jpg, 

the LoG had the lowest overall average accuracy of the three metrics tested.  The Michelson 

contrast performed well on the test images with an average accuracy of 93.75% over 20 epochs 

but the RMS contrast again outscored the Michelson contrast with an average accuracy of 96.88%. 

Table 1 has been made to succinctly capture the results of testing image clarity metrics on 

Siamese_32.jpg and Bombay_166.jpg. Despite its decreased performance on tests using 

Bombay_166.jpg, the LoG metric was selected as the method for finding image clarity and, 

eventually, determining focus of pixels in a focal stack. This was because of the robustness of the 

LoG operation. Not only is it capable of determining when an image is in-focus by finding when 

edges are maximally sharp, it also can quickly perform 2nd-order derivatives on the image to find 

the edges and localizing them correctly within the image (Bhairannawar, 2018), (Sharifi, Fathy, & 

Mahmoudi, 2002). Given the results in Table 1, enough confidence in the using the output of the 

LoG filter as a way to measure image clarity was established to proceed. 

Simulating Changing Optical Power in Software 
After evaluating the clarity metrics and selecting to proceed with the LoG metric, a 

modification to the cell-based test was conducted to confirm that the LoG would be able to detect 

in-focus planes in a focal stack. To verify this, the test images were subjected to a gradient of 

Gaussian blurs at a global level to simulate a focal stack taken while the focal power of the lens is 

being adjusted. This was accomplished by starting with a stack of the original test image and 

Table 1: A side-by-side comparison of image clarity metrics tested on the two images. 

Image Name Clarity Metric 
Average Accuracy over 20 

epochs with a batch size of 16 

Siamese_32.jpg 

RMS Contrast 87.5% 

Michelson Contrast 80% 

LoG 100% 

Bombay_166.jpg 

RMS Contrast 96.88% 

Michelson Contrast 93.75% 

LoG 92.50% 
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applying a Gaussian blur with a small sigma, the standard deviation of the Gaussian blur, of 0.6 to 

the first image in the stack and linearly increasing the sigma of the blur for sequential images in 

the stack such that the first image in the stack was the least blurry and the last image in the stack 

was the most blurry. However, each time a simulated focal stack was created one image, selected 

at random in the stack, was left unblurred. It was this image that served to simulate an in-focus 

image that the LoG algorithm was seeking to find. Running one such test on Siamese_32.jpg  and 

Bombay_166.jpg for 20 epochs yielded a 100% accuracy for both tests. An example of the first 

and last images in one of the focal stacks tested using the Siamese_32.jpg image as a base can be 

seen in Figure 16. 

  
a) b) 

Figure 16: The first and last image in a simulated focal stack 

The sigma of the Gaussian blur was set to 0.6 times the index of the image in the focal stack; so, 

with a batch size of 16, the first image in the stack had a Gaussian blur with a sigma equivalent to 
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0.6 and the last image had a Gaussian blur with a sigma equivalent to 9.6. As one can see in  Figure 

16a, the image blur is nearly imperceptible whereas in Figure 16b, the blur is makes distinguishing 

the cat difficult.  

This is most analogous to manually zooming a lens on a large format camera while trying 

to find the appropriate optical power. Once the focal stack had been successfully simulated in 

software and a basis had been established for the effectiveness of using the LoG to detect the most 

in-focus image in a focal stack, it became necessary to begin testing on real-world hardware. 

Linear Rail Hardware Setup 
 Due to its readily available nature and the ease of its use, the main computer used to drive 

the real-world cameras in this work was a Raspberry Pi 4 Model B. Two different compatible 

cameras were used in this work as well as two different lenses. Initial work began with the 12.3MP 

Raspberry Pi High Quality camera. However, this is a rolling shutter camera and as discussed 

previously, rolling shutters can produce significant blurring while capturing motion; additionally, 

it was thought to potentially be detrimental when varying the focal length and capturing images 

with a rolling shutter. Thus, a Raspberry Pi Global Shutter camera was ordered. Additionally, a 

6mm 3MP lens was purchased for use with both cameras. 

While awaiting the arrival of the global shutter camera, a simple test rig was developed to 

move the camera through the environment to begin investigations into the principles defined by 

Equation 1. The test rig consisted of a vertical camera mount fixed to linear bearings on a linear 

track, a weight was attached to the mount via a string draped over a pulley to induce motion in the 

rig and move the camera through the environment; additionally, an inertial measurement unit 

(IMU) was mounted to the vertical camera support to trigger the camera and measure its 

acceleration through the environment. A front and side view of the sliding rail test rig can be seen 
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in Figure 17, the weight drawn over the pulley is not pictured Despite not being pictured, the 

weight to pull the mount is of some importance as the camera setup can only be sampled so fast; 

 

 
a) 

 
b) 

Figure 17: a) The front view of the sliding rail test rig. b) The side view of the sliding rail 
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as a result, it is important to optimize the weight such that the camera moves at a rate at which 

sampling the desired number of images can be achieved before the end of travel. The test rig 

functioned by starting the camera as far from the pulley as possible and then releasing the weight 

attached to the vertical mount. As the weight fell, the IMU would detect a sudden spike in 

acceleration and begin to take pictures such that approximately 50 images were captured by the 

time the vertical mount reached the end of travel. When viewing this with respect to Equation 1, 

this is the equivalent of varying the 𝑑𝑜 term in the sense that the camera is moving relative to the 

environment. As is evident from Figure 17, the sliding rail test rig is not a practical device as it 

would be difficult to automate and actuate rapidly enough to be useful. Additionally, when 

considering integration not a moving vehicle or platform, the sliding mechanism becomes a bigger 

challenge to design as it must move significantly faster than the vehicle it is integrated into. These 

challenges indicate a more robust design is required for real-world applications.  

The sliding rail design does, however, serve useful to validate some of the principles 

discussed in Martel et al. (2018). Primarily the application of the LoG on a focal stack; by using 

open-source code provided by OpenCV, a Python script was used to perform Steps 1 through 3 in 

Algorithm 1. For most of the tests with the linear rail system, the camera was pointed towards a 

kitchen area, the original color image in the stack and the final image after the LoG had been 

applied to the focal stack can be seen in Figure 18. It is in Figure 18b that it becomes most apparent 

that a rolling shutter was used to collect the data; the streaking seen in some of the edges is 

indicative of this. However, the benefit of using the LoG is also apparent in Figure 18b as it is 

there that one can also observe the LoG’s ability to resolve small details in images such as the 

pattern on the floor tiles as well as the edges of the carpet. This served as a proof of concept for 

actuating the lens of the camera and served as a steppingstone into the next phase of the 
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development. While moving the camera relative to the environment is a valid method for 

manipulating optical power according to Equation 1, moving the lens relative to the imaging plane 

is a far more compact method of achieving the same effect. Despite this, there are few commercial 

options for motorized lenses in the size range necessary for the Raspberry Pi cameras. 

 
a) 

 
b) 

Figure 18: a) The first color image in the focal stack. b) The result of the LoG applied to 

the focal stack 



33 

` 

Geared Lens Setup 
Taking inspiration from some hobbyist’s efforts to create auto-focusing camera (Szczys, 

2012), a gear system to actuate the lens of the Raspberry Pi Global Shutter camera was created so 

that the lens could be adjusted by the Raspberry Pi while it was capturing images. A system was 

created such that a 1:1 simple gear train driving the 6mm lens for the global shutter camera. The 

input gear is rigidly attached to a 28BYJ-48 Stepper Motor which is controlled by the Raspberry 

Pi 4 via inputs to the ULN2003 Stepper Motor Driver. The driver also requires 5-12V of DC power 

supplied to it to drive the stepper motor. The stepper motor has a stride angle of approximately 

0.088°  (Kiatronics) and the lens, as it is a C-Mount lens, has a pitch of 32 threads per inch which 

is approximately equivalent to a 0.794 mm pitch. Images of this system can be seen in Figure 19. 

The geared lens setup functioned by varying the 𝑑𝑖 term in Equation 1; the 6mm lens for the 

Raspberry Pi camera is a fixed focal length camera, meaning the 𝑓 term in Equation 1 is invariant; 

in fact, the 6mm in the name of the lens refers to the focal length of the lens. Given that the camera 

is stationary, unlike the linear rail test rig, the 𝑑𝑜 term is not a term that is manipulatable by the 

camera system. So, in order to adjust which plane in the environment is in focus, the rear of the 

lens must be moved relative to the imaging plane. Given this, the step angle of the stepper motor, 

and the pitch of the threads for the C-mount lens, an expression can be created to describe the 

change in 𝑑𝑖 based on the number of steps input from the stepper motor. This expression can be 

seen in Equation 11 where ∆𝑑𝑖 refers to the change in 𝑑𝑖, 𝑛𝑠𝑡𝑒𝑝𝑠 is the number of steps input from 

the stepper motor, 4096 is the total number of steps required for the stepper motor to make one 

full revolution, and 0.794𝑚𝑚 is the pitch of the camera lens. From Equation 11, it is clear that a 

stepper motor capable of exceptionally small step sizes would be ideal for this scenario.  

∆𝑑𝑖 =
𝑛𝑠𝑡𝑒𝑝𝑠

4096
∗ 0.794𝑚𝑚 (11) 
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a) 

 
b) 

Figure 19: a) The front view of the geared lens setup. b) The side view of the geared lens 

setup 
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Algorithm 2: Auto-focus of the geared lens setup 

Input: 𝑖𝑚𝑖𝑛𝑖𝑡, 𝑛𝑠𝑡𝑒𝑝𝑠 = 0, 𝐿𝑜𝐺𝑖𝑛𝑖𝑡 = 𝐿𝑜𝐺(𝑖𝑚𝑖𝑛𝑖𝑡) 

(Capture an initial image, the stepper 

motor has moved 0 steps, get the LoG of 

the initial image) 

𝑛𝑠𝑡𝑒𝑝𝑠 = 𝑛𝑠𝑡𝑒𝑝𝑠  − 1000 
(Move the stepper motor 1000 steps in 

some direction) 

𝐿𝑜𝐺𝑐𝑢𝑟𝑟 = 𝐿𝑜𝐺(𝑖𝑚𝑐𝑢𝑟𝑟) (Get the LoG of the current image) 

If:  𝐿𝑜𝐺𝑐𝑢𝑟𝑟 > 𝐿𝑜𝐺𝑖𝑛𝑖𝑡 (If the LoG of the current image is greater 

than the initial log) 

     𝐿𝑜𝐺2𝑐𝑢𝑟𝑟 = 0, 𝐿𝑜𝐺1𝑐𝑢𝑟𝑟 = 𝐿𝑜𝐺(𝑖𝑚𝑐𝑢𝑟𝑟) 
(Initialize two LoG variables, one at zero 

and one at the LoG of the current image) 

     While: 𝐿𝑜𝐺1𝑐𝑢𝑟𝑟 > 𝐿𝑜𝐺2𝑐𝑢𝑟𝑟: (While the LoG1 is increasing) 

          𝐿𝑜𝐺2𝑐𝑢𝑟𝑟 = 𝐿𝑜𝐺1𝑐𝑢𝑟𝑟 (Set the LoG2 variable equal to LoG1) 

          𝑛𝑠𝑡𝑒𝑝𝑠 = 𝑛𝑠𝑡𝑒𝑝𝑠 − 20 (Drive the stepper motor by 20 steps) 

          𝐿𝑜𝐺1𝑐𝑢𝑟𝑟 = 𝐿𝑜𝐺(𝑖𝑚𝑐𝑢𝑟𝑟) (Set LoG1 equal to the LoG of the current 

image) 

     end (The image is focused) 

Else: (If the image got blurrier after moving the 

motor 1000 steps) 

     𝑛𝑠𝑡𝑒𝑝𝑠 = 𝑛𝑠𝑡𝑒𝑝𝑠 + 2000 (Move the motor the opposite direction by 

2000 steps) 

     𝐿𝑜𝐺2𝑐𝑢𝑟𝑟 = 0, 𝐿𝑜𝐺1𝑐𝑢𝑟𝑟 = 𝐿𝑜𝐺(𝑖𝑚𝑐𝑢𝑟𝑟) 
(Initialize two LoG variables, one at zero 

and one at the LoG of the current image) 

     While: 𝐿𝑜𝐺1𝑐𝑢𝑟𝑟 > 𝐿𝑜𝐺2𝑐𝑢𝑟𝑟: (While the LoG1 is increasing) 

          𝐿𝑜𝐺2𝑐𝑢𝑟𝑟 = 𝐿𝑜𝐺1𝑐𝑢𝑟𝑟 (Set the LoG2 variable equal to LoG1) 

          𝑛𝑠𝑡𝑒𝑝𝑠 = 𝑛𝑠𝑡𝑒𝑝𝑠 + 20 (Drive the stepper motor by 20 steps) 

          𝐿𝑜𝐺1𝑐𝑢𝑟𝑟 = 𝐿𝑜𝐺(𝑖𝑚𝑐𝑢𝑟𝑟) (Set LoG1 equal to the LoG of the current 

image) 

     end (The image is focused) 

end (End algorithm) 

Using this setup, an auto-focus algorithm was created which would serve as the basis for 

the remainder of this work. Similar to simulations prior to any hardware setup, the LoG was used 

to determine image clarity in the geared lens setup. The algorithm for auto-focusing the lens can 

be seen in Algorithm 2. Essentially, the algorithm guessed a direction to spin the lens by 1000 
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steps of the stepper motor and monitored if the image became blurrier, if not, it kept spinning the 

lens in that direction until the image was maximally clear, checking every 20 steps of the stepper 

motor. If the image did get blurrier, the algorithm spun the lens 2000 steps in the opposite direction 

and then kept spinning the lens in the same direction until the image was maximally clear, checking 

every 20 steps of the stepper motor. It is interesting to note, with small changes between checks, 

occasionally the algorithm will incorrectly pick the direction to spin the lens, especially when the 

initial lens is very blurry. It is as this point, a human must manually seed the initial lens position 

such that the image is nearly in focus. This is due to the lack of absolute positioning mechanisms 

in the setup, i.e., if one were to power cycle the system the driver nor the Raspberry Pi would know 

the absolute position of the lens relative to the imaging plane, nor would they know if it had been 

moved while the system was powered off. This is a critical shortcoming of this geared lens setup 

as it requires any testing of the system to be initialized by focusing on a plane of known distance 

away from the camera. The most obvious solution is to point the camera at a reference on the 

sliding rail gantry; however, this would impede the perception of the camera. So, to remedy this, 

a 152.4mm x 152.4 mm square was printed on a piece of paper and taped to a wall near the table 

the setup was resting on. This added a feature to the wall the LoG algorithm could detect and made 

auto-focusing to a known depth rather simple as once the camera had been focused on the square, 

the distance between the wall and the front of the camera could be measured, yielding the 𝑑𝑜 term 

from Equation 1. Given that the focal length was fixed at 6mm, the lens could then be pointed in 

any direction and the most in-focus plane was known. From there the lens could be moved via the 

stepper motor while pictures were taken at discrete, known intervals at which the ∆𝑑𝑖 could be 

calculated and summed to the previous intervals’ ∆𝑑𝑖s such that the total change in 𝑑𝑖 could be 

calculated and, as a result, the 𝑑𝑜 at which the in-focus points lay could also be calculated. Before 
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proceeding, it is critical to discuss another limitation of the geared lens setup. If one were to solve 

Equation 1 for 𝑑𝑜 in terms of 𝑑𝑖, it would yield the expression seen in Equation 12, which is an  

asymptotic function. This presents a unique challenge for manipulating the 𝑑𝑖 term; to help 

illustrate the challenge, the graph of Equation 12 with 𝑓 equal to 6mm is shown in Figure 20. The 

two points on the graph show the difference, in millimeters, between the 𝑑𝑜value at a 𝑑𝑖 equivalent 

𝑑𝑜 =
1

1
𝑓

−
1
𝑑𝑖

 
 

to 6.1mm and a 𝑑𝑖 where the lens has been moved 20 steps of the stepper motor closer to the 

imaging plane, which is equivalent to 6.096mm. The difference between the 𝑑𝑜 values is 

approximately 14 mm. The issue with the asymptotic nature of the function lies in the fact that this 

difference does not linearly scale based on the number of steps taken by the stepper motor. 

𝑑𝑜 =
1

1
𝑓

−
1
𝑑𝑖

 
(12) 

 
Figure 20: The graph of Equation 12 
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Meaning, if the initial 𝑑𝑖 measurement in the graph in Figure 20 were closer to the focal length, 

6mm, then a 20 step movement of the lens closer to the imaging plane would yield a greater 

difference in the 𝑑𝑜 values. Due to backlash in the gears in the geared lens setup, it was noted 

empirically that it was difficult to move the camera lens at smaller increments than 20 steps. 

Additionally, the phenomenon denoted above would quickly reach a point where the change in 𝑑𝑖 

to yield a reasonably small difference in 𝑑𝑜 values would be so small that it would not be 

achievable within a single step of the stepper motor. Issues such as this could be mitigated, to a 

degree, via half-stepping or micro-stepping; however, such explorations fall outside the scope of 

this work. The fact that small changes in 𝑑𝑖, when 𝑑𝑖 is near the focal length, yield large changes 

in corresponding  𝑑𝑜 values also effectively limit the maximum distance from the camera that the 

depth can reasonably be inferred. This distance is sometimes called the working distance. For small 

focal length lenses such as the ones used in this work, this distance is relatively short at less than 

5 meters. 

 With a good understanding of the geared lens setup, testing began with it at short ranges. 

Tests were initially conducted in a densely cluttered room with a length of nearly 8 meters. It was 

during these tests that the limitations of the lens began to materialize as error in the data and, for 

the sake of brevity, they have been omitted from this work. As mentioned above, the geared camera 

lens setup required some initialization to properly begin its depth estimation. This process is 

described above; once the camera had been focused and the distance to 152.4mm x 152.4mm 

square the camera had been focused to had been measured. The initial  𝑑𝑖 was calculated using 

Equation 1; the camera was then positioned in a desired location such that it was pointing at a 

cluttered environment. From there, the camera’s lens was spun to focus on progressively farther 

planes and, at each plane, an image was captured. The LoG was taken of each image was taken 
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and the highest responding pixels to the LoG algorithm were placed in their respective positions 

in the final composite image. One such composite image can be seen in Figure 21a in which the 

values for all pixels in the grayscale image have been multiplied by 20 to increase the clarity of 

the image. As one can see in the image, there is a significant amount of noise in the image; one 

 
a) 

 
b) 

Figure 21: a) The composite image of the LoG of each image in the focal stack, multiplied 

by a factor of 20. b) A photo of the environment. 
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may observe that the edges of the objects in the environment, seen in Figure 21b, tend to compound 

and thicken in the composite image. This may be an artifact of a non-constant magnification as the 

lens was moved via the gear or it is possible that it was induced by some small wobble in the lens 

as the lens was manipulated by the gear. When filtering for the noise and mapping the pixels to 

their corresponding depth via a color map, the image seen in Figure 22 is obtained. The areas of 

dark blue are intended to represent areas nearest to the camera whereas green is supposed to be 

indicative of areas farther away. As one can see, the depth mapping is largely error prone and 

susceptible to noise. This is likely caused by large overlaps in the depth of field of the images in 

the focal stack which would cause the same sections of an edge to be in-focus in multiple images 

and thus be incorrectly binned into the wrong depth values multiple times.  

 

While there were significant errors associated with using the setup, the geared lens setup did 

however yield valuable insight into the process for use with a liquid focus-tunable lens. 

 
Figure 22: Composite depth image from the geared lens setup. 
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Liquid Focus-Tunable Lens 
Using the same vertical mount as the geared lens setup, a 12mm, f/6, Liquid Lens Cx Series 

Fixed Focal Length Lens from Edmund Optics was affixed to the Raspberry Pi Global Shutter 

camera. The liquid lens in this setup was a Corning Varioptic A-25H0 Variable Focus Lens. A 

diagram of the lens, provided in the manual by Edmund Optics, can be seen in Figure 23. The 

figure depicts a fixed focal length lens without the liquid lens; the liquid lens slots into the opening 

labelled “Easy Access to Integrate Accessories Like Liquid Lenses, Filters, and Aperture Stops”.  

 
Figure 23: A diagram of the Cx Series Fixed Focal Length Lens provided by Edmund 

Optics (Edmund Optics). 

The base lens is a 12mm focal length lens that can be mounted into the global shutter camera. The 

liquid lens is comprised of a liquid-filled meniscus that can be actuated via a voltage controller 

driven by a software package provided in the development kit. Changing the voltage applied to the 

lens changes the optical power of the lens, much like the current driven lens used in Martel et al. 
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(2018). The complete camera setup can be seen in Figure 24. As the figure depicts, this setup is 

the most compact of all setups thus far. Future design can increase the compactness of the design 

by better packaging the driver board of the lens. For efforts detailed in this work, the liquid lens’ 

optical power was adjusted manually using a Windows application that came with the lens. 

However, the lens also came with a driver board that could be used to drive the lens via code 

automatically from a microcontroller. In future works, this could allow for an auto-focus 

algorithm, similar to the auto-focus algorithm created for the geared lens setup, to be created for 

the liquid lens setup. 

  
a) b) 

Figure 24: a) The side view of the liquid lens setup. B) The front view of the liquid lens 

setup 

This camera system setup was placed in an environment containing checkerboards on the 

ground and the 154.2mm x 154.2mm reference square in the background. An all-in-focus image 

of the environment can be seen in Figure 25 where the checkerboard progresses away the camera 

and at the wall on which the reference square is hung. Using this environment, a focal stack was 

collected by varying the optical power of the lens manually and collecting images at focal powers 

corresponding to every 0.01V increment in a voltage range that was optimized for the depth of the 
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environment. From experimentation with the lens kit, an equation relating the working distance 

and the voltage applied to the lens was created. This equation is the slope of the line seen in Figure 

26 and can be used to calculate the working distance at a voltage applied to the liquid lens. The  

 
Figure 26: 𝒅𝒐 vs. Optical Lens Voltage 
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Figure 25: An all-in-focus image of the checkerboard environment 
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images collected in the focal stack then had the LoG algorithm applied to them to isolate the in- 

focus pixels in each image, these images were then composited together to get the result of all the 

images’ response to the LoG. Once this was done, the index of the image associated with each 

pixel’s highest response to the LoG algorithm was used to assign a color value to pixels that 

correlated to their depth as it relates to the index of its original image. 

Results 
 As stated previously, the environment used to evaluate the depth from focus can be seen in 

Figure 25. In that environment, the 152.4mm x 152.4mm reference square was 1065mm away 

from the front face of the lens housing. In the first image, the far distances, seen in a, of the 

environment are most in focus. This is evident from the top border of the reference square in the 

background being detected by the LoG algorithm. Notably, there is a significant amount of noise 

stemming from the near distance ranges in this image. In b, the mid ranges in the environment are 

most in focus; this image comes from the middle of the focal stack. One can observe the nearly 

noiseless image in the areas of the image corresponding to greater depth ranges. However, this is 

not true of ranges closer to the camera as b still has significant noise from the near ranges. Finally, 

the nearest ranges of the environment are in focus in c. Much like b, the areas of the image in c 

corresponding to ranges greater than those that are in focus are largely noiseless. A composite 

depth image from a focal stack can be seen in Figure 28; this depth image is also prone to error 

but less so than the depth image seen in Figure 22. To produce the depth map in Figure 28, a simple 

thresholding technique was applied to remove the noise produced by weaker responses to the LoG 

algorithm. This proved effective at removing significant amounts of noise in regions where little 

to no edge features were present. The depth cloud seen in Figure 28 was projected onto an overhead 

2D image of the environment and can be seen in Figure 29; as one can see in the figure, the noise 
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seen in Figure 28 greatly impacts the accuracy of the point cloud projection. However, it is 

important to note that the point cloud does have many linear discontinuities in it that appear to be  

 
a) 

 
b) 
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c) 

Figure 27: a) The far distances in the environment are in focus, b) The mid-range 

distances are in focus. C) The close-range distances are in focus. 

 
Figure 28: Composite depth image from liquid lens setup 
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close to the edges formed by the squares in the checkerboard. These discontinuities can be better 

seen in the image in Figure 30. The fact that the depth map and point cloud contain so much noise 

indicates a need for improvements to the system.  

 

 

 
a) 

 
b) 

Figure 29: A projection of the depth map seen in Figure 28 onto an overhead view of the 

environment. 
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Discussion 
The discontinuities seen in Figure 30 are consistently 32 mm apart; the squares in the 

checkerboard pattern are 25 mm x 25 mm indicating a consistent 7 mm error in the edge detection 

of the LoG algorithm. Solving for the equation of the line in , a change in 0.01V, the smallest 

increment of change possible with the liquid lens, corresponds to a change in 𝑑𝑜 of 3.57 mm 

indicating that a 7mm error could be the result of the incorrect binning over the course of two focal 

power changes.  

 

 

 
Figure 30: A top-down view of the point cloud seen in Figure 29 
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The liquid lens is significantly better at resolving the depth of the environment as it is 

capable of changing the voltage applied to the liquid lens, and thus changing the optical power, to 

a much finer degree than the geared lens setup was able to resolve the distance between the camera 

lens and the imaging plane. This can be attributed to the fact that there was backlash in the geared 

setup and the physical limitations of the stepper motor’s step size. The liquid lens was driven by a 

voltage driver capable of manipulating the voltage by 0.01V corresponding to an optical power 

change of 0.0797, indicating that very small changes in optical power and 𝑑𝑜 distances are 

achievable with the lens. This may have proved to be more detrimental than beneficial as it yielded 

overlapping depths of field.  

The control of the optical power of the liquid lens was fine enough to have different regions 

of the environment in focus at different optical powers and thus create a depth map. The depth 

map in Figure 28, however, is subject to a significant amount of noise. The sharpness of the edges 

in the foreground persists throughout nearly all images in the focal stack; this likely indicates that 

an aperture of greater size is necessary to reduce the DoF. In addition to this, an objective lens 

such as the one used in Martel et al. (2018), would increase the utility of the liquid lens setup and 

allow it to resolve depths at greater distances by increasing the focal length.  

Future Works 
 In future works, work should begin with a liquid-tunable lens and greater effort should be 

dedicated to selection of an objective lens for the liquid-tunable lens. Greater effort in this design 

area has a strong impact on the depth of field of the overall system and increases the depth 

resolution of the system. For example, when solving for the DoF of the current liquid lens setup, 

at a working distance of 500 mm and assuming the focal length of the lens is fixed at 12 mm, or 

the liquid lens is adding zero additional optical power, the DOF is approximately 150mm. 
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However, if the 35mm, f/7, Liquid Lens Cx Series Fixed Focal Length Lens from Edmund Optics 

is used with the same assumptions, the DoF falls to 13.67mm due to its increased focal length and 

aperture size. Table 2 has been compiled to show the DoFs corresponding to several liquid lens 

kits offered from Edmund Optics assuming an object of interest at a working distance of 500mm 

using Equation 2.  

Table 2: A table of DoFs of Various Liquid Lenses offered by Edmund Optics 

Name 𝒇 [mm] 𝒅𝒊[mm] 
𝑨𝒑𝒆𝒓𝒕𝒖𝒓𝒆 

[mm] 𝑪 [mm] 𝑫𝒐𝑭 [mm] 
12mm, f/6, 
Liquid Lens 
Cx Series 

Fixed Focal 
Length Lens 

12 12.29508 2 0.007 145.2765 

35mm, f/7, 
Liquid Lens 
Cx Series 

Fixed Focal 
Length Lens 

35 37.63441 5 0.007 18.60644 

50mm, f/7, 
Liquid Lens 
Cx Series 

Fixed Focal 
Length Lens 

55 61.79775 7.857143 0.007 7.208639 

 

Additionally, in future works, greater consideration must be given to a thresholding method 

or sampling function for the response to the LoG algorithm to reduce the noise captured in the 

depth map. 

Conclusion 
 This work has examined depth-from-focus techniques presented in other works (Martel et 

al., 2018) to determine their efficacy on commercial-grade photography equipment. An initial 

proof-of-concept was presented that demonstrates the techniques are sound and commercial-grade 

equipment is capable of generating a depth map. This work has also identified that manipulation 
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of focus-tunable, electronically controller lenses are likely one of the only viable hardware-based 

methods to generate a depth map from a monocular source. This work has validated that the LoG 

algorithm is a reliable method of detecting edges as well as determining image clarity. This was 

useful in detecting in-focus pixels in focal stacks. Furthermore, a depth map was generated from 

the focal stack collected using the focus-tunable lens. Finally, this work identifies that greater 

consideration for the objective lens and aperture size used with the focus-tunable lens are critical 

for future works. A better sampling function is also required for reducing noise in the depth map. 

While the depth maps generated in this work were not as error-free as the depth maps produced in 

Martel et al. (2018), the proof-of-concept shows significant promise for depth-from-focus from 

commercial-grade photography equipment.  
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