
Journal of Aviation/Aerospace Journal of Aviation/Aerospace 

Education & Research Education & Research 

Volume 29 
Number 1 JAAER 2020 Article 5 

2020 

Design, Construction and Testing of a 3-Component Force Design, Construction and Testing of a 3-Component Force 

Balance for Educational Wind Tunnels in Undergraduate Balance for Educational Wind Tunnels in Undergraduate 

Aerodynamics Aerodynamics 

Milan Tomin 
Queens University of Charlotte, milantomin.ns@gmail.com 

Marco Scipioni 
Queens University of Charlotte, scipionim@queens.edu 

Benjamin Gatti 
Queens University of Charlotte, benjamingatti@gmail.com 

Follow this and additional works at: https://commons.erau.edu/jaaer 

 Part of the Aerodynamics and Fluid Mechanics Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Tomin, M., Scipioni, M., & Gatti, B. (2020). Design, Construction and Testing of a 3-Component Force 
Balance for Educational Wind Tunnels in Undergraduate Aerodynamics. Journal of Aviation/Aerospace 
Education & Research, 29(1). DOI: https://doi.org/10.15394/jaaer.2020.1809 

This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been 
accepted for inclusion in Journal of Aviation/Aerospace Education & Research by an authorized administrator of 
Scholarly Commons. For more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/jaaer
https://commons.erau.edu/jaaer
https://commons.erau.edu/jaaer/vol29
https://commons.erau.edu/jaaer/vol29/iss1
https://commons.erau.edu/jaaer/vol29/iss1/5
https://commons.erau.edu/jaaer?utm_source=commons.erau.edu%2Fjaaer%2Fvol29%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/222?utm_source=commons.erau.edu%2Fjaaer%2Fvol29%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jaaer.2020.1809
mailto:commons@erau.edu


Introduction 

Since the Wright Brothers’ first flight in 1903, the knowledge of how airplanes fly has 

increased significantly.  Most scientific progress in the airplane industry has been in safety, fuel 

efficiency, and in achieving higher economic performance.  Ribeiro et al. (2007) said that “most 

modern civil jet aircrafts are about 70% more fuel-efficient per passenger-km than 40 years ago.”  

Furthermore, an additional 40-50% progress in fuel efficiency is expected by 2050 (Ribero et al., 

2007).  Much of the improvements come from wing aerodynamics as well as engine efficiency.  

Much of the improvements come from wing aerodynamics as well as engine efficiency.  

However, while enhancing wing efficiency, aerospace engineers started introducing higher 

design complexity, and, after the 1990s, their focus shifted to simpler, yet still efficient designs.  

For example, airplanes with three-slotted wings were later replaced by airplanes with simple 

single-slotted wings (Anderson & Eberhardt, 2010).  To investigate and study aerodynamics of a 

specific airplane design, its aerodynamic components and devices are generally tested on scale 

models placed inside a wind tunnel to experimentally predict and extrapolate the aerodynamic 

performance of the life size-models.  Building a custom wind tunnel and equipping it with a 

force balance to capture aerodynamic data is a great learning experience for students seeking a 

deeper understanding of the core principles of lift, drag, aerodynamic movement, and airfoil 

design.   

Smaller universities and colleges not offering aerospace engineering do not have the 

appropriate facilities and equipment for studying aerodynamics.  To overcome this limitation, 

this article presents the novel design, construction, and testing of a 3-component force balance 

specifically intended for educational aerodynamics.  The work presented in this article is meant 

to facilitate the experience of building a force balance through a step-by-step guide for students 
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interested in wind tunnel experimentation.  Reynolds indicated that performing wind tunnel 

testing in the lab had a lasting and significant impact on his aviation, non-engineering 

undergraduate students (Reynolds, 2005).  The force balance, which is a fundamental part of any 

wind tunnel testing, allows students to conduct force and moment measurements and learn from 

their graphical visualization.  Rigby’s study included simulations in the instructional plan which 

can lead to improvement in students’ performance in aerodynamics and applied aerodynamics 

(Rigby, 2015).  Hands-on learning through wind tunnel experiments can improve the students’ 

theoretical knowledge and provide them with an opportunity to analyze the aerodynamic forces 

measured by the force balance.  In regards to the force balance presented in this article, the main 

requirements were to be a) to be inexpensive, b) being easy to build with simple tools, and c) 

being easy to replicate, which will allow students from universities without an aerodynamic 

research lab to build a force balance from scratch.  Project-based learning is engaging, and it 

empowers students to develop technical intuition, gain a deeper understanding of aerodynamic 

forces, and become passionate about aerodynamics in general.   

A sophisticated force balance is capable of measuring drag forces with 0.001% accuracy 

and lift forces with 0.1% accuracy (Advisory Group for Aerospace Research & Development 

[AGARD], 1992).  The force balance described in this work has an accuracy limited to 10% for 

both the drag and the lift forces but, at the same time, is easily buildable using basic materials 

and electronics.  The main force balance components were three load cells, a servo motor, and 

the acrylic frame.  Once built, the force balance is capable of measuring lift, drag, pitching 

moment about the leading edge, as well as their coefficients, and the position of the center of 

pressure.  To test the force balance and validate its measurements, the authors built a low-

Reynolds number wind tunnel from the ground up (a test section of 144 in2 squared cross-
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sectional area, contraction ratio of 9, a nozzle with a constant 12° expansion angle, a diffuser 

with constant 4° expansion angle and 256 in2 square cross-sectional area).  A data collection 

example is also included and explained in the article.   

Materials and Methods 

Components 

The main components of this external force balance are shown in Table 1.  

Table 1  

Components Used to Build the Force Balance 

Part Name Make Model Amazon SKU 

Servo motor Hitec RDC Inc. 33485S Deluxe HS-485HB B002HPUKS8 

load cells (5kg) Phoncoo 5KG Digital Load Cell Weight Sensor B07JWC85SN 

load cell (1kg) Phoncoo Digital Load Cell Weight Sensor 1KG B07JGJWY8L 

HX711 amplifiers FOR-Arduino HX711 Weighing Sensor Module - Green B07DWBDW2K 

Arduino Nano Arduino A000005 B0097AU5OU 

 

Load cells.  The thesis presented by Pravin Vadassery indicates that, in the case of 

internal and external force balances, strain gauges, piezoelectric films, and accelerometers are 

commonly used techniques for measuring forces in a wind tunnel (Vadassery, 2012).  

Additionally, in the same research, it is stated that Robinson, Schramm, and Hannemann (2007) 

found that external force balance shows to be more accurate; therefore, the authors decided to 

make an external force balance, which seemed easier to manufacture (Robinson et al., 2007).  

Two 5-kg load cells were used to measure lift and pitching moment while a 1-kg load cell was 

used to measure drag.  The load cells were selected on the advice of Gary Eaker – designer and 

founder of Aerodyn wind tunnel which is used by numerous NASCAR teams (G. Eaker, personal 

communication, February 11, 2018).  Based on lecture notes from Brown University, load cells 

can be used for precise force measuring (Bower & Xu, 2019).   
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A load cell is a transducer converting a mechanical force into an electrical signal by 

means of four metallic strain gauges interconnected to form a Wheatstone bridge.  When a force 

is applied to one load cell, the strain gauges’ electrical resistance changes in proportion to the 

experienced strain.  Subsequently, the Wheatstone bridge outputs a signal that is proportional to 

the externally applied force.   

 

Figure 1. Load cell and its four strain gauges forming a Wheatstone bridge to measure applied 

loads.   

 

Servo motor.  The force balance includes a servo motor.  The servo horn, which attaches 

to the motor’s shaft, is connected to the tested wing profile through thin and stiff piano wires to 

control and adjust the wing’s angle of attack (AoA).  Since the servo horn rotation is not linearly 

correlated with the wing’s AoA, a simple calibration procedure with a high-precision digital 

level is required to correctly map the AoA with the servo horn rotation.   
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Figure 2. Angle calibration using high precision digital level. 

 

Custom circuit board.  The aerodynamic forces exerted on the tested wing model are 

transformed by the load cells into electrical signals which are sent to an Arduino Nano 

microcontroller connected to a computer for data collection and analysis.  A custom design 

circuit board was fabricated to interconnect the three load cells and their HX711 amplifiers to the 

Arduino Nano microcontroller.  According to González et al. (2011), amplifiers are an 

indispensable component of the force balance as they increase the analog signal output produced 

by the load cells and convert it into a digital form (Gonzalez et al., 2011).   

Apart from minor modifications, additions, and corrections by the authors, most of the 

Arduino code was written by Itziar Bueno Tintoré and is available in her bachelor's thesis at 

University of Zagreb (Bueno Tintoré, 2018).  In her thesis, Bueno Tintoré uses Arduino Uno 

instead of a custom circuit board with Arduino Nano, like the authors of this article did.  Yet 

other microcontroller options are surely viable.  The corresponding author encourages readers 

interested in the full code to contact him directly via email.  The code controls the servo motor, 
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allowing it to maintain a fixed position or sweep through different positions at a predetermined 

speed.  After successfully uploading the code on the Arduino microcontroller, the three load cells 

must be calibrated using known weights to find the suitable calibration constant to produce 

accurate force balance measurements.  The determination of the calibration constant involves 

placing known weights on each of the load cells and adjusting the calibration constant until the 

measured weight output from the Arduino matches the applied weight.  Each load cell has a 

different calibration constant to account for.  More detailed information on calibration is 

provided in the code.   

 

Figure 3. Flow chart showing the basic principle how the force balance functions. 

 

Supplies 

The force balance assembly was built using basic materials such as clear acrylic with 

one-quarter of an inch thickness, aluminum, carbon fiber, foam, small springs, and piano strings.  

The acrylic frame components, cut with a laser cutter, are sufficiently rigid to resist any bending 

caused by the aerodynamic forces acting on the wing, thus allowing force transfer to the load 
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cells with minimal losses.  The acrylic parts connecting the wing and the servo motor to the force 

balance assembly were created out of a one-sixteenth of an inch-inch thickness aluminum sheet.  

Connectors for the wing support were additionally strengthened using thin carbon fiber strips.  

The vertical carbon fiber strips supporting the wing are also sufficiently rigid to avoid bending 

under the horizontal drag force to be able to transmit the physical forces acting on the wing 

model to the respective load cells located in the assembly.  The strips were positioned to create 

the least amount of drag, hence causing a smaller error in the collected data.  Post and Morris 

(2010) warn that the force balance support structure can impact model’s aerodynamics (Post & 

Morris, 2010).  The wing model, made of foam, was cut using a hot wire, smoothened using 

sandpaper, and finally covered with a thin balsa wood sheeting.   

Table 2  

Acrylic Parts Used for Constructing the Force Balance 

Part No. Part Name 

1 Bottom plate 

2 Top plate 

3 Top and bottom plate connector, rod and drag load cell holder 

4 Top and bottom plate connector and rod holder 

5 Middle section connector and drag load cell holder 

6 Middle section and load cell spacers 

7 Middle section connector and rod holder 

8 Top plate (middle section) 

9 Bottom plate (middle section) 

10 Side connectors and load cell spacers 

11 Bottom stand 

 

Construction Steps 

The force balance frame was created using acrylic components.  All parts used for the 

construction are listed in the Table 2 and shown in the Figure 4 are available at a local hardware 
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store.  The dimensions of the acrylic parts depend on size of the load cells and on the size of the 

wind tunnel’s test section where the force balance is positioned.   

 

Figure 4. Acrylic frame components necessary to build the force balance.   

 

Step 1.  The first step in the construction process consisted of interconnecting part 1, part 

3, and part 4.  The first load cell was attached to part 3 using part 6 as a spacer.  This load cell 

measures the horizontal drag force and must be oriented so that its 1-kg mark points in the same 

direction as the flow of air.   

 

Figure 5.  Part 5 attaches to the drag load cell which connects to part 3.   
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Step 2.  The middle section of the force balance was created by interconnecting the 

hexagonal parts 8 and 9 using part 7 and two aluminum rods.  The second load cell – the first for 

measuring lift – was attached to part 8 with the 5-kg mark pointing upward.  This load cell will 

eventually attach to the servo motor used to control the wing’s angle of attack.  This 

configuration does not constrain the entire drag load cell, allowing one of its ends to be pulled to 

measure the horizontal drag force acting on the test wing.  The middle section (part 7, part 8, part 

9), which connects to the test wing model, can slide and experience a pull force which is 

transferred to part 5 fixed to the drag load cell.   

 

Figure 6. Middle section consists of parts 8 and 9 which serve as a housing for two lift load cells.   

 

Step 3.  The third construction step involves assembling the wing support structure 

(Figure 7) which includes two thin vertical carbon fiber strips, the third load cell – the second 

load cell intended to measure lift – and two aluminum connectors.  The top connector serves to 

connect the test wing to the force balance while the bottom connector attached the load cell to 
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the carbon strips.  The arrow mark of the third load cell should also point upward.  The wing 

support structure is then connected through the third load cell to part 8 using part 10 as a spacer.   

 

Figure 7. Test wing support structure was installed on the 2nd lift load cell before the load cell 

was positioned into place.   

 

Step 4.  This last construction step incorporates the servo motor and the custom circuit 

board into the force balance.  The servo motor, which controls the wing’s angle of attack, is fixed 

to the second lift load cell using an aluminum connector while the servo motor horn connects to 

the top part of the wing support structure via a piano string.  The sum of the forces measured by 

the first and second lift load cells provides the net lift experienced by the test wing.  In addition, 

the two vertical forces can be used to calculate the pitching moment.   

The total lift force L acting on the wing is given by the vector sum of the two vertical 

forces F1 and F2 acting on the wing and measured by load cell 1 and load cell 2 respectively: 

𝑳 = 𝑭𝟏 + 𝑭𝟐 

The pitching moment MLE about the leading edge (LE) is calculated as the vector sum of 

the moments M1 and M2 about the leading edge due to the forces F1 and F2: 

𝑴𝑳𝑬 = 𝑴𝟏 + 𝑴𝟐 = 𝒙𝟏  ×  𝑭𝟏 +  𝒙𝟐  ×  𝑭𝟐 

2nd Lift Load Cell 
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where 

𝒙1 = vectorial distance between LE and 𝑭1  

𝒙2 = vectorial distance between LE and 𝑭2 

 

Figure 8. Schematic diagram of the force balance system and force measurement technique. 

 

The hexagonal part 11, which attaches to the bottom of the force balances, serves as a 

platform to support the circuit board hosting the microcontroller.   
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Figure 9.  The Force Balance before it was mounted onto the wind tunnel test section.   

Discussion 

After all the steps from the previous section are completed, the force balance can be 

attached to a wind tunnel.  Additionally, a wing model can be mounted on the force balance to 

test its aerodynamic properties.  Although testing is not the focus of this article, an example of 

data collection and analysis is included to show how data can be visualized and to inspire further 

research.   

Before testing, however, it is important to consider possible sources of error that can 

affect the experimental results, like the internal friction between the force balance components, 

noise fluctuations in the electronics, and an inaccurate calibration of the load cells.  For example, 

the friction between internal components along the horizontal direction can cause inaccurate 

measurements of the drag force.  Ideally, the friction between aluminum rods and the acrylic 

frame should be minimized as much as possible to remove any mechanical constraint on the 
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wing model.  Another important and possible source of error would be the onset of vibrations on 

the wing model due to high turbulence generated around it at high angle of attack.  Vibrations are 

highly dependent on the wind speed and can also lead to inconsistent drag and lift measurement.  

Force Balance Test Set-Up 

The purpose of Part 2 in Figure 4 is to join the force balance apparatus to the bottom of 

the wind tunnel test section.  The portion of the force balance including the load cells and 

electronics is hosted under the test section to minimize interference with the airflow and not 

compromise the quality of the collected data.   

 

Figure 10. Force Balance when installed below the test section of an educational wind tunnel.   

Data Collection Example 

After the force balance was fully assembled and calibrated, the authors performed a basic 

aerodynamics test.  The tested wing model was NACA 6412 foam wing having a 150 mm cord 

length and covered with balsa wood.  The airflow speed, measured with a Vernier spirometer, 

was approximately 12 m/s and was produced using a 1HP 5000CFM fan.  The wing’s angle of 
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attack (AoA), calibrated per procedure presented in the Figure 2, varied every 2 seconds from 

0.1° up to 21.6°.  In the code, the swept angular range for the AoA corresponded to the servo 

horn sweeping rotating from 0° to 30°, respectively.  For each different AoA, a total of 19 points 

were collected and later averaged into a single value.  The force balance data was output through 

the Arduino’s serial port monitor and later imported into Matlab for data analysis and 

visualization.   

 
Figure 91. Angle of attack (AoA) on x-axis was independent variable while the two dependent 

variables were Lift coefficient (Cl) in red and Drag coefficient (Cd) in blue and Pitching moment 

in green (Cm).   

 

The graph shows that as the angle of attack (AoA) increases, the lift coefficient (Cl), the 

drag coefficient (Cd) and the pitching moment (Cm) increase.  It is interesting to note the 

behavior of the lift coefficient at around 150 which suggests that wing is approaching stall 

condition.   
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Conclusion and Future Work 

The work presented in this article provides a clear step-by-step procedure on how to 

construct a force balance for educational purposes.  The described force balance can be 

manufactured with inexpensive components – a few load cells, a servo motor, and simple 

electronics.   

The authors’ future work will focus on a) using the force balance and wind tunnel to test 

different airfoil profiles and on b) expanding the system capabilities to be able to measure the air 

pressure distribution around the tested wing and visualize the flow streaklines through dye 

injection.  This experimental apparatus has the potential to be used for undergraduate level study 

of other interesting phenomena like animal flight aerodynamics, turbulence, etc.   
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