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Abstract 

Researcher: Kenneth Stutts 

Title: Comparison of Methods for Estimating Instantaneous Turn Radius of 
Ackermann Steering Vehicles 
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Degree: Master of Science in Mechanical Engineering 

Year: 2023 

The instantaneous turn radius of an Ackermann steering vehicle is the distance to a point 

in space about which the vehicle will travel in an arc during a turn. There are at least six 

ways to estimate instantaneous turn radius and each method uses different inputs and has 

distinct advantages and disadvantages. In this thesis, six different methods will be used to 

estimate the instantaneous turn radius of a vehicle traveling on a closed circuit. This testing 

will clarify similarities and differences between the methods. This thesis clarifies which 

method will be the most appropriate for a given set of available inputs. The testing will be 

conducted with commonly available sensors. The research in this thesis will allow 

developers to choose the best method for their sensor suite.  

Keywords: Instantaneous Turn Radius, Ackermann Steering, GPS, Instrumentation, IMU, 

Encoder 
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Chapter I: Introduction 

 
Instantaneous turn radius, R, is used extensively in vehicle dynamics literature. Turn 

radius is a critical part of Gillespie’s graphical lateral acceleration derivation (Gillespie, 

1992) and is a single parameter that characterizes the degree to which a vehicle is turning 

at any time during driving. Estimating lateral acceleration from this classical derivation, 

𝑎௟௔௧ = 𝑣ଶ 𝑅⁄ , is a common vehicle dynamics question. Also, steering system design 

specifically uses turn radius as a design criterion while designing linkage and the turning 

mechanisms. 

 

1.1 Thesis Statement 

The purpose of this study is to determine which of the methods of estimating ITR is 

the most applicable depending on available sensors. The thesis statement is as follows. At 

least 6 different methods exist for estimating turn radius for Ackermann Steering vehicles 

depending on available sensors. This thesis statement can be divided into three sections: 

(a) description of an Ackermann steered vehicle, (b) the six methods for estimating turn 

radius, and (c) the required sensors for each of the estimation methods. The research in this 

thesis will allow developers to choose the best method for their specific sensor suite and 

vehicle setup. The testing will be conducted with commonly available sensors in order to 

highlight the accessibility of the methods to all types of researchers. While this paper is 

focused on Ackermann steering vehicles exclusively, there are methods that would be 

applicable to other types of vehicles. 
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1.2 Turn Radius and Curvature 

For straight-line driving the turn radius is infinite, so instead of R, the path curvature 

is preferred, 𝜌 = 1/𝑅. Sometimes Greek letter kappa is also frequently used to express 

curvature, 𝜅 = 1/𝑅. The lower-case Greek letter rho, 𝜌, will be used in this thesis. Using 

curvature rather than turn radius, Figure 1, illustrates why curvature is used in simulation 

using an example of a typical left-right turning sequence. Note that both R and 𝜌 are signed 

quantities to indicate left or right hand turning, assuming a right-handed SAE coordinate 

frame. 

 
Figure 1.8: Turn radius, R, for a RH-straight-LH turn sequence 

 

Notice the turn radius becomes infinite while driving straight. For this reason, 

sometimes curvature is used to express turn radius because during straight driving 

curvature is zero, as shown in Figure 1.9. 
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Figure 1.9: Curvature, 𝝆, for a RH-straight-LH turn sequence 

 

Since 𝑅 is seen so often in vehicle dynamics literature, this research aims to 

understand different ways of estimating turn radius and the various pros and cons of each 

method. 

 

1.3 Importance of Estimating the Real-Time Turn Radius 

Estimating the real-time turn radius of a vehicle is a key pillar of vehicle dynamics. 

The turn radius of a vehicle is important in fields like motorsports, autonomous vehicles, 

and vehicle maneuverability just to name a few examples. In motorsports generally the 

fastest and shortest path is the path with the minimum curvature possible. By comparing 

the real-time turn radius during different laps of a circuit an optimal path can be found. For 

autonomous vehicles, knowing the real-time turn radius of the vehicle will allow for better 

path planning and efficient traversal through complex environments. The maneuverability 
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of a vehicle is explicitly linked to the minimum turn radius of a vehicle and the majority of 

roadways are designed with a required minimum turn radius.  

Alternatively knowing the real time turn radius of a vehicle also allows for the 

determination of many other factors of the vehicle. One of the most common ways to 

determine difficult to obtain factors of vehicles like the understeer gradient, is to drive a 

fixed radius turn with a set speed and steer angle. With these parameters the method used 

in this paper can then be reconfigured to find these difficult to obtain factors. Likewise, if 

you know the turn radius and forward velocity of the vehicle you can also find the lateral 

acceleration and yaw rate of the vehicle. 

 

1.4 Ackermann Steering Vehicles 

Ackermann Steering is a method of steering a vehicle that turns the front tires of the 

vehicle at different rates in order to keep the tires from slipping during truing (Mitchell 

2006), see Figure 1.3. The inside tire turns at a greater angle than the outside tire so that all 

tires are perpendicular to the turn center. Figure 1.4 shows the difference the increased 

angle Ackermann steering geometry provides. 
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Figure 1.10 Geometry of an Ackermann Steering Vehicle during Turning, Gillespie (1992) 

 

Figure 1.11: Actual steering vs. Ackermann steering, Veneri (2021) 
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1.5 Methods for Estimating Turn Radius  

The 6 methods for estimating turn radius can be divided into 3 categories based upon 

the sensor required for their operation. These categories are the IMU Methods, Steer-Angle 

Methods, and the GPS Methods. The IMU Methods include the Yaw Rate Method and the 

Lateral Acceleration Method. These methods rely on data collected from an Inertial 

Measurement Unit (IMU) to operate. They specifically require the yaw rate and lateral 

acceleration of the vehicle. The Steer-Angle Methods are the Low-Speed Ackermann Steer 

Method and High-Speed Ackermann Steer Method. Both methods rely on the steer angle 

of the vehicle to operate. The GPS Methods include The Circle Method and the Cubic 

Spline Interpolation Method. These methods require GPS location points in order to 

operate.  

Method Number Method Name Sensors Required 

1 Yaw Rate Method IMU 

2 Lateral Acceleration Method IMU 

3 Low Speed Ackermann Steering 

Method 

Steer Angle Sensor 

4 High Speed Ackermann Steering 

Method 

Steer Angle Sensor 

and IMU 

5 Circle Method GPS 

6 Cubic Spline Interpolation Method GPS 

Table 1.1: Sensors required for each method.  

 
 



7 
 

 
 

1.5.1 Yaw Rate Method Derivation 

The Yaw Rate Method can be described as a general turn radius estimation method 

for a vehicle with nonzero velocity. The yaw rate method is derived by an overhead view 

of a simple 2D vehicle turning in the plane (Figure 1.5). 

 
Figure 1.12: Top view of simple 2D vehicle turning. 

 

By inspection, it is clear that the turning relationship is that the forward velocity is 

equal to the turn radius times the yaw rate or 𝑣௫ = 𝑅 ∙ 𝜓̇. Solving for 𝑅, yields Equation 1. 

𝑅 =
𝑣௫

𝜓̇
 (1) 

1.5.2  Lateral Acceleration Method Derivation 

The Lateral Acceleration Method is described as a constant speed method used for 

estimating a changing radius turn at constant velocity Gillespie (1992). Lateral acceleration 
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is equal to forward velocity squared divided by the turn radius or 𝑎௬ =
௩ೣ

మ

ோ
. By solving for 

𝑅 Equation 2 is formed. 

𝑅 =
𝑣௫

ଶ

𝑎௬
 

(2) 

 

1.5.3 Low-Speed Ackermann Steering Method Derivation 

The Low-Speed Ackermann Method is described by Gillespie as low speed turning 

and he likens it to parking lot maneuvers. During these low speed turns the tires develop 

little to no lateral forces with the center of the turn being projected from the rear axle. 

Likewise, the perpendicular from each of the front wheels should pass through the same 

point (the center of turn) Gillespie (1992). We can see from Figure 1.6 that turn radius is a 

factor in the steer angle of a vehicle. 

 

Figure 1.13: Depiction of Ackermann Steering 
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It is clear to see that tan(𝛿௔௖௞) =
௅

ோ
. Solving for R yields Equation 3 assuming small 

angles. 

𝑅 =
𝐿

𝛿௔௖௞
 

(3) 

 
1.5.4 High-Speed Ackermann Steering Method Derivation 

The High-Speed Ackermann Method is a modified version of the Low-Speed 

Ackermann Method that takes the velocity of the vehicle and the understeer gradient into 

account which allows higher operating speeds than the Low-Speed Ackermann Method. 

Gillespie describes that the understeer gradient “consists of two terms, each of which is the 

ratio of the load on the axle (front or rear) to the cornering stiffness of the tires on the axle.” 

Gillespie (1992). The Bicycle Model Figure 1.7 accurately shows all these parameters.  

 

Figure 1.14: Bicycle Model 
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By examining Figure 1.6 we can see that tire angle 𝛿௔௖௞ is explicitly connected to 

turn radius and from that we get 𝑡𝑎𝑛(𝛿௔௖௞) =
௕ା௖

ோ
+ 𝑎௙ − 𝑎௥. since the understeer gradient 

𝐾௎ௌ  is the ratio of the load on the axles (𝑊௙ and 𝑊௥) to the cornering stiffness of the tires 

(𝐶௔௙ and 𝐶௔௥)  on the axle (Gillespie, 1992) the following relationship can be formed 𝑎௙ −

𝑎௥ =
ௐ೑௩ೣ

మ

஼ೌ೑ ∙ ௚ ∙ோ
−

ௐೝ௩ೣ
మ

஼ೌೝ ∙ ௚ ∙ோ
= ൬

ௐ೑

஼ೌ೑
−

ௐೝ

஼ೌೝ
൰ ∙  

௩ೣ
మ

௚ ∙ோ
= 𝐾௎ௌ ∙  𝑎௬ From this relationship we can see 

that the understeer gradient of the vehicle is implicitly related to the slip angle of the tires 

(𝑎௙ and 𝑎௥) and that the lateral acceleration of the vehicle multiplied by the understeer 

gradient of the vehicle is equal to the difference between the front and rear slip angles; 

𝑡𝑎𝑛(𝛿௔௖௞) =
௕ା௖

ோ
+ 𝐾௎ௌ ∙ 𝑎௬. Looking back at Equation 2 we can deduce that 𝑡𝑎𝑛(𝛿௔௖௞) =

௕ା௖

ோ
+ 𝐾௨௦ ∙

௩ೣ
మ

ோ
. Finally, we solve for 𝑅, combine the lengths from the wheels to the center 

of gravity (𝑏 and 𝑐) into wheelbase, and assume small angles to get Equation 4. 

𝑅 =
𝐿 + 𝐾௨௦ ∙ 𝒗𝒙

𝟐

𝛿௔௖௞
 

(4) 

It can be observed that should the Understeer gradient of the test vehicle be equal 

to 0 then the High-Speed Ackermann and Low Speed Ackermann methods will be equal 

to each other. It can also be observed that during low-speed maneuvers the 2 methods will 

be roughly equivalent; regardless of the understeer gradient as shown by Figure 1.8. 
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Figure 1.15: Steer Angle vs Vehicle Speed 

1.5.5 Circle Method Derivation 

The properties of a circle are defined by Euclid’s Elements and shows us that from 

3 or more non collinear points, a unique circle can be formed that passes through all those 

points. If the given points are locations that the vehicle has passed through, then the radius 

of the resulting circle is the turn radius of the vehicle as it traveled through those points 

(Figure 1.9). 
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Figure 1.16: Circle Method 

In order to find these circles, the squares of the x and y coordinates of first and 

second points must be subtracted from each other than that sum added together as shown 

in Equation 5. The same must be done with the first and third points as seen in Equation 6. 

A matrix is then formed from twice the difference between the first and third and first and 

second coordinates like in Equation 7. Equation 8 provides the center of the circle using 

the transposed matrix form Equation 7 multiplied by a matrix of the results of Equations 5 

and 6. Finally, Equation 9 results in the radius of the circle. 

𝑘ଵଶ = 𝑥ଶ
ଶ − 𝑥ଵ

ଶ + 𝑦ଶ
ଶ − 𝑦ଵ

ଶ (5) 

𝑘ଵଷ = 𝑥ଷ
ଶ − 𝑥ଵ

ଶ + 𝑦ଷ
ଶ − 𝑦ଵ

ଶ (6) 

𝐴 = ൤
2(𝑥ଶ − 𝑥ଵ) 2(𝑦ଶ − 𝑦ଵ)

2(𝑥ଷ − 𝑥ଵ) 2(𝑦ଷ − 𝑦ଵ)
൨ 

(7) 

ቂ
𝑥௖

𝑦௖
ቃ =  𝐴ିଵ ൤

𝑘ଵଶ

𝑘ଵଷ
൨ 

(8) 

𝑅 =  ඥ(𝑥ଵ − 𝑥௖)ଶ + (𝑦ଵ − 𝑦௖)ଶ (9) 
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1.5.6 Cubic Spline Interpolation Method Derivation 

The Cubic Spline Interpolation Method is similar to the Circle Method in that it 

uses GPS data points to find the turn radius of the vehicle, but instead of using a circle, 

cubic spline interpolation is used to connect the points and find the curvature of the arcs 

created. “The fundamental idea behind cubic spline interpolation is based on the engineer’s 

tool used to draw smooth curves through a number of points.” McKinley (1998). 

For the Cubic Spline Interpolation Method there are 4 different methods for 

interpolating between the GPS data points. Those 4 methods are Piecewise Cubic Hermite 

Interpolating Polynomial, Cubic spline data interpolation, Modified Akima piecewise 

cubic Hermite interpolation, and Cubic Smoothing Spline. Piecewise Cubic Hermite 

Interpolating Polynomial is the most direct method resulting in nearly point to point 

interpolation by imposing local monotonicity in each interval as it computes the derivatives 

Fritsch (1985). Cubic spline data interpolation provides a very smooth interpolation by 

imposing the constraint of continuous second derivatives while computing the derivatives. 

Modified Akima piecewise cubic Hermite interpolation is an update made in 2017 to 

Akimas original formula published in his 1970 paper “A New Method of Interpolation and 

Smooth Curve Fitting Based on Local Procedures”. Makima specifically updates Akima's 

formula to improve the edge case of equal side slopes and to eliminate overshoot from 

consistent data between more than 2 consecutive nodes. The result is a middle ground 

between the Piecewise Cubic Hermite Interpolating Polynomial and Cubic spline data 

interpolation functions. (Moler, 2019) Figure 1.10 depicts the differences between 

Piecewise Cubic Hermite Interpolating Polynomial, Cubic spline data interpolation and 

Modernized Akima. 
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Figure 1.17: Differences between Spline Methods (Moler, 2019) 

The Cubic Smoothing Spline function weights each data point with an error 

measure that is balanced with a roughness measure that is a cost function that minimizes 

curvature. Finding the right balance between smoothness of the curve and its closeness to 

the data points Pollock (1993).  Equation 10 is the formula devised by Carl De Boor in the 

textbook A Practical Guide to Splines. 

 

 

(10) 

 

 The Cubic Smoothing Spline function has a fixed smoothing value p that is 

between 1 and 0. The higher this smoothing value is the closer the spline will fit to the data 

set as seen in Figure 1.11. The fit of a smoothing spline is not an exact fit to all data points 
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unless the smoothing value is equal to 1 because it is constrained by the roughness measure 

to smooth the spline. A Cubic Smoothing Spline can be seen as a sort of filter placed upon 

a dataset Peters (1981).  

 

Figure 1.11: Smoothing Splines with different values of p  
 
  

1.6 Usage of Methods in Literature 

In this section, the thesis will explore research and studies relevant to the methods 

used in the paper. The following sections will cover each of the 3 method groups.  

1.6.1 IMU Methods 

The IMU Methods are by far the simplest of the methods with only 2 inputs for 

each method. This makes them prime candidates for use where computational complexity 

is at a premium and as such are the easiest to use in modeling and simulation. These 

methods rely on the velocity of the vehicle being nonzero.  
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A paper by VBOX Automotive and Racelogic (2014) emphasizes the importance 

of being able to measure the turn radius of the vehicles at multiple points on the vehicle. 

The example given for this scenario is with a heavy vehicle in order to show that tail swing 

is not largely different compared to the front of the vehicle. Jagelčák (2022) uses the Lateral 

Acceleration Method to determine the turn radius on cargo vehicles in order to study long 

average accelerations (minimum 1 s duration time) acting on a vehicle and cargo when 

cornering. Wang (2013) used the accelerometers built into smartphones to sense the 

forward velocity and lateral acceleration regardless of the smartphone’s orientation. From 

this the turn radius can be determined as well as the position of the smartphone in the 

vehicle. These papers show other researchers using the IMU Methods to find the turn radius 

of vehicles as well as displaying the many applications of turn radius. 

In Park (2018) the Yaw Rate Method is used to estimate yaw rate from a targeted 

ITR and constant velocity for use in a pure pursuit tracking algorithm. In Xu (2022) the 

Lateral Acceleration Method is used to estimate lateral acceleration from radius of 

curvature and velocity to help predict vehicle rollover. Both of these papers are applicable 

in this thesis because they show that these formulae are used in the literature with turn 

radius or curvature prescribed as a constant in order to calculate other variables, 

particularly yaw rate and lateral acceleration.  

1.6.2 Steer-Angle Methods 

The Steer-Angle methods are the only methods that take the steering angle of the 

vehicle into account when estimating ITR. This allows these methods to estimate the ITR 

of stationary vehicles. In Gitay (2018) the Low-Speed Ackermann Method is used to 

estimate turn radius from the steering geometry as part of the optimization of the steering 
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system of their Formula Student car. In Pompakdee (2016) the High-Speed Ackermann 

Method is used to determine understeer gradient in a steady state turn of fixed radius. In 

Broggi (2012) the inverse of the High-Speed Ackermann Method is used to estimate the 

relationship between curvature and vehicle speed. These papers show how the Steer-Angle 

Methods can be used to find values that are typically hard to estimate like understeer 

gradient. 

1.6.3 GPS Methods  

The biggest flaw in the GPS Methods is the fact that they can only estimate the turn 

radius of the vehicle a few time steps in the past. This is due to the fact that they require 

multiple points to accurately estimate ITR. Figure 1.12 shows that in order to find the 

curvature of position 1 you must have both positions 2 and 3 which are in the future 

compared to position 1. 

 

Figure 1.12: Turning radius R2 from circumscribed circle of a triangle defined by three points on 
curve. Jagelčák (2022) 
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This is shown in Jagelčák (2022) where a 2 second interval is used with the Circle 

Method. The 2 second interval covers 400 data points with the 3 points needed to for the 

circle being the 1st data point, the 200th data point, and the 399th data point. This makes 

every result 2 seconds delayed to the Lateral Acceleration Method also used in their paper. 

Compere and Tucker (2022) logged the GPS data points of a 2016 Porsche Cayman 

GT4 around the MidOhio racetrack see Figure 1.13. These datapoints were then connected 

using cubic spline interpolation in order to find the ITR around the track. This is relevant 

as a proof of concept for the Cubic Spline Interpolation Method. 

 

Figure 1.13 Implementation of the Cubic Spline Interpolation Method. (Compere, Tucker, 2022). 
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1.7 Dubins Path 

Dubins Path developed by L.E. Dubins is the shortest arc connecting 2 points on a 

2D plane. Dubins Path uses the minimum radius in order to achieve the shortest path 

between points. A Dubins Vehicle is described by Chen (2020) as “A typical 

nonholonomic vehicle that moves only forward at a constant speed with a 

minimum turning radius.”  This method of pathing is exceedingly used by autonomous 

vehicles due to the simplicity of the resulting paths. An example of Dubins Paths can be 

seen in Figure 1.14 where the goal is to start at P1 move through P2 and P3 to reach P4. A 

second path is shown where the goal is to start at P1 and move through Q1 and Q2 to reach 

P4. The minimum turn radius of a vehicle almost entirely relies on the velocity of the 

vehicle. During low-speed maneuvers the easiest way to determine the minimum turn 

radius would be with the Low-Speed Ackermann Method. By dividing the wheelbase of 

the vehicle by the maximum left and right Ackermann steering angle the minimum turn 

radius for both directions can be found during low-speed maneuvers. As speed increases 

the High-Speed Ackerman Steering Method would replace the Low-Speed Ackermann 

Method. With the High-Speed Ackermann Method turn radius is directly associated with 

the forward velocity of the vehicle and thus the minimum turn radius is likewise linked to 

forward velocity. 
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Figure 1.14: Dubins Path Example (Dubins 1970)  

 
 
 
 
1.8 Potential Future Applications 

1.8.1 Torque Vectoring 

Fuse (2022) describes torque vectoring as a system of power delivery “...that freely 

generates a braking/driving torque difference between left and right wheels to direct control 

yaw moment applied to the vehicle, thus improving driving performance.” By changing 

the amount of power applied to each wheel the turn radius can be altered. The main 

application of torque vectoring is vehicle stabilization De Novellis (2012).  

 
1.8.2 4-Wheel Steering 

Bari (2014) describes 4-wheel steering as “…a method developed in automobile 

industry for the effective turning of the vehicle and to increase the maneuverability.”  4-
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wheel uses all 4 wheels for steering.  Arvind (2013) splits 4-wheel steering into 2 different 

sections, positive 4-wheel steering where the rear wheels turn in the same direction as the 

front wheels and negative 4-wheel steering where the rear wheels turn in the opposite 

direction as the front wheels. Singh (2014) explains that positive 4-wheel steering is used 

during higher speed maneuvers and that negative 4-wheel steering is used during low seed 

maneuvers. All of the methods covered by this paper would be applicable to 4-wheel 

steering vehicles apart from the Ackermann Steering methods which would need slight 

adjustments to accommodate the different steering geometry.  

1.8.3 Aircraft  

Aircraft are the target of many papers attempting to understand key performance 

variables like turn radius. These methods can be used to estimate the ITR of aircraft more 

accurately both fixed and rotary wing. 

Bender (2019) uses both the Circle Method and Dubins Path to estimate the radius 

of turn and flight path of an aircraft. The Lateral Acceleration method could also be applied 

to give critical redundancy to the system. In Sun (2019) aircraft turn maneuvers are 

reconstructed using the Automatic Dependent Surveillance-Broadcast (ADS-B). The 

methods used in this thesis could greatly reduce the complexity of the formulas Sun (2019) 

used to estimate turn radius. 
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Chapter II 

Methodology 

The Experiment will be conducted with commonly available sensors so as to show 

the ease in which any perspective team could uses these methods in their own experiments. 

While the results of the experiment would almost certainly be improved by using a 

laboratory grade IMU and a dual antenna GPS receiver, the integrated IMU and GPS 

receiver in a modern smartphone are sensors that are exceedingly common and are proven 

capable of being used for similar activities (Kwapisz 2011), (Ofstad 2008).  The encoder 

used is affordable for the vast majority of teams who would wish to replicate the 

experiment of this paper. 

The drive cycle to gather the data that will be used for each method will be conducted 

simultaneously using an instrumented vehicle. The experiment will be conducted on a 

closed course. It is assumed that any change in road surface has little to no effect on ITR. 

It is assumed that any change in road banking or angle has little to no effect on ITR. The 

vehicle used is a John Deere Gator 855D S4 see Figure 2.1 and 2.2. The vehicle has a rear 

mounted engine and was operated in rear wheel drive. This layout tends towards oversteer. 

It is important to acknowledge this tendency especially since the understeer gradient of the 

vehicle is assumed to be 1 which implies perfect neutral steer. 

 
 



23 
 

 
 

 

Figure 2.1: John Deere Gator 855D S4 

 

Figure 2.2: Mounting position for phone used as IMU. 
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Figure 2.3: CUI AMT-203 Encoder  

The IMU data is taken from the LSM6DSO of a Samsung Galaxy S10 Smartphone 

running the Hyper IMU App. The GPS data is also taken from the same Samsung Galaxy 

S10. The steering input is taken from a CUI AMT-203 Absolute Encoder attached to the 

steering column as depicted in Figure 2.3. These sensors were chosen due to their 

availability. 

2.1 The Course  

The experiment uses the Embry-Riddle Aeronautical University campus roads for 

the course. The course is easily broken up into 4 sectors as shown in Figure 2.4. The first 

sector represents driving the vehicle to the start of the course and is comprised of a few 

low-speed 90 degree turns. The second sector is comprised of high-speed large radius turns. 

The third sector consists of medium and low speed chicanes. The 4th and final sector 

consists of medium speed 90 degree turns. 
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Figure 2.4: Course with 4 Segments 

 

Figure 2.5: Satellite Image of Course 
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2.2 Sources of Data 

Sensors on the vehicle will collect vehicle velocity, yaw rate, lateral acceleration, 

Ackermann steering angle, wheelbase length, and GPS position of the vehicle. In order to 

capture yaw rate and lateral acceleration an IMU will capture the acceleration of the vehicle 

in the Society of Automotive Engineers (SAE) standard axis system as shown in Figure 

2.6. From the IMU data acceleration in the Y axis is considered lateral acceleration. The 

IMU can also detect the change in heading of the vehicle and from that determine the yaw 

rate.  

 

Figure 2.6: SAE Standard Axis System 

The Ackermann Steering angle will be calculated based on the value of an encoder 

placed on the steering column of the vehicle. The encoder in degrees multiplied by the 

Ackermann steering ratio results in the Ackermann steering angle. Wheelbase length will 

be measured for the vehicle while it is stationary before the data collection phase.  

  

2.3 Treatment of the Data  

The coding language used to perform each of the methods is MATLAB. Each method 

will use the same data collected during a single run of the course. Velocity is found from 

the NMEA (National Marine Electronics Association) GPS data. 
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The sampling rate of the NMEA is lower than the sampling rate of the other 

required variables. The velocity found from the NMEA data is interpolated to the sampling 

rate of the other variables using the Modernized Akima formula. All repeated GPS points 

are removed so that every GPS point is unique for the GPS methods to work properly. A 

filter is placed on the steering input data that removes consistently erroneous datapoints as 

shown in Figure 2.7. An FIR moving average filter with a 1st order time constant of 1.2. 

this filters out a most of the noise experienced through not having a perfectly stable 

attachment point to the vehicle see Figure 2.8.

 

Figure 2.7: Filtered Steering Input 
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Figure 2.8: Filtered vs Unfiltered Lateral Acceleration Results 

Chapter III 

Results, Discussion, and Conclusions 

3.1 Results 

The results of each Method are largely similar; however, each method has its own 

distinct difference. The results are expressed in terms of curvature vs distance traveled. 

Curvature is used to prevent discontinuities that occur with turn radius on straight sections 

of the course. Distance is used to more accurately gauge where on the course the results 

are generated. The Yaw Rate Method and Lateral Acceleration Method generally have 
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higher noise than the other methods. The Circle method is reliant entirely on the amount 

of unique GPS data points and as such its sampling rate is lower leading to a lower 

resolution. The Cubic Spline Interpolation Method remedies this problem by interpolating 

between the unique GPS points. The Cubic Spline Interpolation Method uses Cubic 

Smoothing Splines as the interpolation method and due to the smoothing nature of Cubic 

Smoothing Splines this data sets’ peaks and troughs are smoothed over compared to the 

other data sets.  

 

Figure 3.1 Graphs of the Results of Each Method (Curvature vs Distance) 
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Figure 3.2 All methods on same graph (Curvature vs Distance) 

 
3.2 Discussion 

Both GPS Method data sets are translated to the right slightly implying that the events 

take place later on the course than the other methods. The Ackermann Steering Method 

gives results that are translated slightly to the left implying that the events take place earlier 

on the course than the other methods. This discrepancy in the position of the turns in the 

data sets is due to the nature of each of the methods. The Ackerman Steering Methods 

direct link to the steering mechanism results in the curvature dictated by the driver. The 

IMU methods depict the curvature in relation to the forces acting on the vehicle. Lastly the 

GPS Methods show the curvature of the path that the vehicle has already taken.  
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Figure 3.3: Turn 3 

 

Figure 3.4: Data Through Turn 3 
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Figure 3.5: Curvature of Turn 3 

 
 

 
Figure 3.6: Turn 19 
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Figure 3.7: Data Through Turn 19 
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Figure 3.8: Curvature of Turn 19 

 

In comparing the 3 groups we see that the Ackermann Steering Methods predict the 

forces that act on the vehicle due to the time difference between when the driver turns the 

steering wheel and when the yaw rate and lateral acceleration begin affecting the vehicle. 

Likewise, since the GPS methods use the current and one previous step to calculate the 

curvature 2 time steps in the past the result will be delayed in comparison to the other 

methods. This phenomenon is showcased during Turn 19 in Figure 3.8. It is important to 
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note that the offset of the different methods increases with distance traveled as seen when 

comparing Turns 3 and 19 in Figures 3.5 and 3.8.  

Method Category Input Distance Offset 

IMU Methods Vehicle Kinematics Early 

Ackermann Steering Methods Driver Steering Neutral 

GPS Methods True Path Delayed 

Table 3.1 Distance Offset of the Methods 

 

3.2.1  Alternatively Steered Vehicles 

 The methods covered in this paper do not only work for conventional Ackermann 

steering vehicles or in zero slip situations. The GPS Methos should be applicable to any 

vehicle as they only require the path taken by the vehicle. A small addition would need to 

be added to the Circle method in order to account for vehicles that move in 3 dimensions 

such as aircraft and submersibles. The Lateral Acceleration Method would apply to any 

forward moving vehicle so long as the forward velocity and lateral acceleration inputs are 

oriented correctly. Similarly, The Yaw Rate Method would still be applicable so long as 

the yaw rate input is oriented correctly. The Ackerman steering Methods would not be 

applicable to these vehicles. 

 Likewise, in conditions where an Ackermann steering vehicle is moving with side 

slip for example during drifting, the same methods would be applicable given that the 

coordinate system take into account the different orientation of the vehicle. The only 

method that would not be applicable to drifting cars and aircraft would be the Yaw Rate 

Method. During drifting the vehicle yaws at different rates through a corner than the same 

vehicle would without drifting.  
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3.3 Conclusions 

 From the results of the test, it can be seen that each of the method groups has a 

niche that it fulfills. The IMU Methods have good sensitivity and low complexity, however 

even after the noise is filtered out the clarity of the data is not ideal. The GPS Methods 

result in very good clarity especially the Cubic Spline Interpolation Method with a Cubic 

Smoothing Spline. The downside to the GPS methods is their low sensitivity and high 

complexity. The Ackermann Steering Methods direct link to the steering column allows 

for increased sensitivity over the other methods. The clarity of the Ackermann Steering 

Method is also excellent and while there is some noise it is easily filtered out resulting in 

middling complexity compared to the other methods. The Ackerman Steering Methods are 

the only methods that can detect the change in turn radius of a stationary vehicle due to its 

direct link to the steering system. Due to all these reasons, it can be concluded that the 

Ackermann Steering Method is the best method to use for its excellent clarity and 

sensitivity and its acceptable noise and complexity in comparison to the other methods, 

provided the required sensor is available. 
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Method Noise Clarity  Sensitivity  Complexity 

Yaw Rate Method High Low Middling Lowest 

Lateral Acceleration Method Highest Lowest High Low 

Low Speed Ackermann 

Steering Method 

Middling High Highest Middling 

Circle Method Low Middling Low High 

Cubic Spline Interpolation 

Method 

Lowest Highest Lowest Highest 

Table 3.2: Conclusions  

 
3.4 Future Work 

Foremost amongst the necessary future work is recreating the test to corroborate 

and validate the results. Secondly it is important to recreate the test with higher sampling 

rates on all data collection sensors. It is not unreasonable to believe that higher sampling 

rate on the data collection devices could give a fuller picture of the methods at work.  

Tests should also be conducted with vehicles that have understeer gradients other 

than 0. Higher speeds like those achieved during travel on highways would also be a 

pertinent variable to test. These changes would allow a proper comparison of the High-

Speed Ackermann Steering Method and the Low-Speed Ackermann Steering Method. 

Another aspect that should be explored is using these methods for vehicles that do 

not use Ackermann steering. Specifically, both fixed wing and rotary wing aerial drones 

would be able to use one of the methods effectively as discussed in chapter 3.2.1.  
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It would also be pertinent to redo the test with vehicles that have access to 4-wheel 

steering as well as vehicles with torque vectoring to see how these technologies affect the 

methods. 
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Appendix B 

Code 

% post process HyperIMU log for GPS NMEA strings 
% 
% Ken Stutts, stuttsk@my.erau.edu 
% Marc Compere, comperem@erau.edu 
% created : 21 Jul 2023 
% modified: 13 Nov 2023 
 
 
clear ; clear all ; clear functions 
 
addTextAtEachPoint          = 0; % (0/1) add waypoint numbers? 
csv_file_steer_enc = '2023_07_21__18_28_31_data.xlsx';         % 2nd Gator 
drive around campus with HyperIMU and steering wheel data 
csvFname = 'HIMU-2023-07-21_18-28-13_clean.csv'; % gator drive around campus  
 
data = readtable(csvFname); 
dataTable_steer_enc = readtable(csv_file_steer_enc); % this skips text on the 
top line 
% data(1:5,:) 
% 
%    timestamp    MAC_address    Battery_level    Battery_status    Battery_ac    
lsm6dso_accelerometer_x    lsm6dso_accelerometer_y    lsm6dso_accelerometer_z    
lsm6dso_gyroscope_x    lsm6dso_gyroscope_y    lsm6dso_gyroscope_z    GPS_lat    
GPS_long    GPS_alt                  NMEA_a                     NMEA_b        
NMEA_c   
%    _________    ___________    _____________    ______________    __________    
_______________________    _______________________    _______________________    
___________________    ___________________    ___________________    _______    
________    _______    ___________________________________    __________    
__________ 
% 
%    1.69e+12         NaN             91                0               0                
-0.17228                    -1.5347                     10.12                          
0                      0                      0         29.189     -81.046     
3.6795     {'$PSMSG;magcal=FAIL;bluesky=0*00'}    {0×0 char}    {0×0 char} 
%    1.69e+12         NaN             91                0               0                   
1.573                    -1.2185                    10.168                  -
0.084221                0.03184               0.026266         29.189     -
81.046     3.6795     {0×0 char                         }    {0×0 char}    
{0×0 char} 
%    1.69e+12         NaN             91                0               0                 
0.73968                   -0.14835                    9.4017                  
-0.094605               0.041003               0.026877         29.189     -
81.046     3.6795     {0×0 char                         }    {0×0 char}    
{0×0 char} 
 
 
t_unix   = data.timestamp/1000;          % (s) seconds since the epoch, 01 Jan 
1970 
t        = t_unix - t_unix(1);           % (s) elapsed time 



 

 
 

Ax       = data.lsm6dso_accelerometer_x; % (m/s^2) accel x 
ay       = data.lsm6dso_accelerometer_y; % (m/s^2) accel y 
az       = data.lsm6dso_accelerometer_z; % (m/s^2) accel z 
gx       = data.lsm6dso_gyroscope_x;     % (rad/s) gyro x 
gy       = data.lsm6dso_gyroscope_y;     % (rad/s) gyro y 
gz       = data.lsm6dso_gyroscope_z;     % (rad/s) gyro z 
lat      = data.GPS_lat;                 % (dec deg) latitude 
lon      = data.GPS_long;                % (dec deg) longitude 
elev     = data.GPS_alt;                 % (m?)(ft?) altitude 
Z_origin = min(elev); % (m) GPS reports MSL, so remove this offset to show 
vehicle heights from ground 
elev     = elev - Z_origin; 
 
nmea_a = data.NMEA_a; 
nmea_b = data.NMEA_b; 
nmea_c = data.NMEA_c; 
 
 
 %% extract STEER data 
    tDT = 
datetime(dataTable_steer_enc.time,'ConvertFrom','posixtime','TimeZone','Americ
a/New_York'); 
    t_steer      = dataTable_steer_enc.time; % (s) GPS time, seconds since 01 
Jan 1970 
    t0_steer     = t_steer(1); 
    tACC_Steer   = t_steer-t0_steer; % (s) elapsed time, seconds since logging 
start 
    steer_raw    = dataTable_steer_enc.wrappedPos; 
 
%% combine timelines 
t_start=max(min(t_unix),min(t_steer)); 
t_end=min(max(t_unix),max(t_steer)); 
t_trim=t_unix; 
while t_trim(end) > t_end 
t_trim(end)=[]; 
 t_unix(end)=[]; 
 Ax(end)=[]; 
 ay(end)=[]; 
az(end)=[]; 
gx(end)=[]; 
gy(end)=[]; 
gz(end)=[]; 
lat(end)=[]; 
lon(end)=[]; 
elev(end)=[]; 
nmea_a(end)=[]; 
nmea_b(end)=[]; 
nmea_c(end)=[]; 
end 
 
 
 
while t_trim(1) < t_start 
t_trim(1)=[]; 
t_unix(1)=[]; 



 

 
 

Ax(1)=[]; 
ay(1)=[]; 
az(1)=[]; 
gx(1)=[]; 
gy(1)=[]; 
gz(1)=[]; 
lat(1)=[]; 
lon(1)=[]; 
elev(1)=[]; 
nmea_a(1)=[]; 
nmea_b(1)=[]; 
nmea_c(1)=[]; 
end 
t=t_unix - t_unix(1);  % (s) elapsed time 
% t=t_trim; 
%% pull out unique vehicle information 
reduce_to_unique_GPS_points=1; % (0/1) 0-->do nothing; 1-->downsample to 
remove repeated GPS points 
if reduce_to_unique_GPS_points==1 
    method=4; % use distance-based method to reduce to unique [X,Y,Z] points 
    [lat_sm,lon_sm,elev_sm,idx_keep] = 
reduce_to_unique_spatial_GPS_datapoints(lat,lon,elev,method); 
    t_sm       = t(idx_keep); 
    gx_sm       = gx(idx_keep); 
    gy_sm       = gy(idx_keep); 
    gz_sm       = gz(idx_keep); 
    ax_sm       = Ax(idx_keep); 
    ay_sm       = ay(idx_keep); 
    az_sm       = az(idx_keep); 
    str=sprintf('reduced %i redundant GPS points to a unique set of %i 
points',length(lat),length(lat_sm)); disp(str) 
else 
    lat_sm              = lat; 
    lon_sm              = lon; 
    t_gps_sm            = t_gps; 
    t_sm                = t; 
end 
 
 
figure(10),clf 
plot(t,ay,'r.-') 
xlabel('HIGH FREQ time (s)') 
ylabel('accel (m/s^2)') 
grid on 
 
figure(11),clf 
plot(t(1:(end-1)),diff(t),'b.') 
xlabel('HIGH FREQ time (s)') 
ylabel('dt (s)') 
grid on 
 
 
 
 
 



 

 
 

 
 
% ----------------- show trace on google map ----------------------- 
figure(20),clf 
plot3(lon_sm,lat_sm,elev_sm,'r.') 
xlabel('longitude (decimal degrees)') 
ylabel('latitude (decimal degrees)') 
zlabel('elevation (m)') 
grid on 
 
 
plot_google_map('APIKey','AIzaSyCstEH_eMsiqIk5JemUjVvjG8THE4EYuno') % 
Compere's Google Maps API key 
%plot_google_map('MapType','satellite') % 'roadmap' 'hybrid' 'terrain' 
plot_google_map('MapType','hybrid','ShowLabels',0,'Scale',2,'Resize',2,'Refres
h',1,'FigureResizeUpdate',1) % 'roadmap' 'hybrid' 'terrain' 'satellite' 
 
plot_waypoint_labels=0; % (0/1) put waypoint numbers on every N'th point? 
skipNth=10; % only put point markers every N'th to avoid cluttered plot 
 
if plot_waypoint_labels==1 
    for i=1:skipNth:length(t_sm) 
        %myStr=num2str(i); 
        myStr=sprintf('t=%0.1f(s)',t_sm(i)+t_unix(1)); 
        
text(lon_sm(i),lat_sm(i),elev_sm(i),myStr,'VerticalAlignment','bottom','Horizo
ntalAlignment','center'); 
    end 
end 
 
% if plot_waypoint_labels==1 
%     for i=1:skipNth:length(t_sm) 
%         
text(lon_sm(i),lat_sm(i),elev_sm(i),num2str(i),'FontSize',10,'VerticalAlignmen
t','bottom','HorizontalAlignment','center') %,'BackgroundColor','White'); 
%     end 
% end 
view(0,90) % top-down view 
 
 
 
%% convert from (lat,lon) to cartesian (X,Y) coordinates in meters and plot 
figure(21),clf 
[X_raw,Y_raw,utmzone,utmhemi] = wgs2utm(lat_sm,lon_sm); % convert from 
(lat,lon) to (X,Y) in meters 
X_origin=X_raw(1); % (m) 
Y_origin=Y_raw(1); % (m) 
X=X_raw-X_origin; % (m) 
Y=Y_raw-Y_origin; % (m) 
Z=elev_sm; %-Z_origin; 
plot3(X,Y,Z,'b.') 
view(0,90) 
xlabel('X-axis (m)') 
ylabel('Y-axis (m)') 
zlabel('Z-axis (m)') 



 

 
 

grid on 
axis equal 
%view(-25,30) 
 
%plot_waypoint_labels=0; % (0/1) put waypoint numbers on every N'th point? 
if plot_waypoint_labels==1 
    for i=1:skipNth:length(t_sm) 
        %myStr=num2str(i); 
        myStr=sprintf('t=%0.1f(s)',t_sm(i)+t_unix(1)); 
        
text(X(i),Y(i),Z(i),myStr,'VerticalAlignment','bottom','HorizontalAlignment','
center'); 
    end 
end 
 
 
 
nema=1; 
do_segment_path=1; % (0/1) segment path or not? 
if do_segment_path>0 
    segment_path 
end 
 
 
 
 
 
% walk through each GPS nmea string searching for GPRMC 
% http://aprs.gids.nl/nmea/#rmc 
% 
myStr='$GNRMC;223523.00;A;2911.278028;N;08102.791208;W;0.0;;210723;4.0;W;A;V*7
B' 
gps_t_unix=[]; 
gps_vel=[]; 
for i=1:length(nmea_a) 
    for j=1:3 
        if j==1, myStr = nmea_a{i}; end 
        if j==2, myStr = nmea_b{i}; end 
        if j==3, myStr = nmea_c{i}; end 
        if ~isempty( strfind(myStr,'RMC') ) 
            myDisp=sprintf('found RMC in i=%d, j=%d, str=[ %s ]',i,j,myStr); 
disp(myDisp)  
            gpsField = strsplit(myStr,';'); 
            gpsTimeStr = gpsField{2}; % '223523.00' --> hhmmss.ss    from: 
http://aprs.gids.nl/nmea/#rmc 
            dt = datetime(gpsTimeStr, 'InputFormat', 'HHmmss.SS'); % 21-Jul-
2023 22:28:13 
            gps_t_unix = [ gps_t_unix   ; posixtime(dt)          ]; % (s) 
unixtime 
            gps_vel    = [ gps_vel ; str2double(gpsField{8})*0.514444 ]; % 
(m/s) converted from knots, 1knot = 0.514444 m/s 
        end 
    end % for j=1:3 
end % for i=1:length(nmea_a) 
 



 

 
 

gps_t = gps_t_unix - gps_t_unix(1); % (s) elapsed time, from zero 
 
figure(100),clf 
plot(gps_t,gps_vel,'ko-','MarkerSize',4) 
xlabel('elapsed GPS time (s)') 
ylabel('GPS vel (m/s)') 
grid on 
%xlim([128 450]) 
 
% create a velocity vector at the higher frequency time 
% vq = interp1(x,v,xq) 
gps_vel_hi_pchip = interp1(gps_t,gps_vel,t,'pchip'); 
gps_vel_hi_spline = interp1(gps_t,gps_vel,t,'spline'); 
gps_vel_hi_makima = interp1(gps_t,gps_vel,t,'makima'); 
 
hold on 
plot(t,gps_vel_hi_pchip,'r.') 
plot(t,gps_vel_hi_spline,'g.') 
plot(t,gps_vel_hi_makima,'b.') 
legend('1Hz GPS velocity','velocity interpolated: pchip','velocity 
interpolated: spline','velocity interpolated: makima','Location','best') 
 
 
 
gps_vel_sm_pchip = interp1(gps_t,gps_vel,t_sm,'pchip'); 
gps_vel_sm_spline = interp1(gps_t,gps_vel,t_sm,'spline'); 
gps_vel_sm_makima = interp1(gps_t,gps_vel,t_sm,'makima'); 
 
 
 
 
 
 
 
dist = zeros(size(t)); 
dist(2:end) = (t(2:end) - t(1:end-1)) .* (gps_vel_hi_makima(1:end-1) + 
gps_vel_hi_makima(2:end))/2; 
dist = cumsum(dist); 
 
dist_sm = zeros(size(t_sm)); 
dist_sm(2:end) = (t_sm(2:end) - t_sm(1:end-1)) .* (gps_vel_sm_makima(1:end-1) 
+ gps_vel_sm_makima(2:end))/2; 
dist_sm = cumsum(dist_sm); 
distIC=dist_sm(1:end-2,:); 
 
 
 
 
%% Yaw rate method 
 
 
R1=(gps_vel_hi_makima./-gz); % (m/(rad/s)) turn radius 
rho1=1./R1; % (1/m) curvature 
figure(1), clf 
plot(dist,rho1,'.-'); 



 

 
 

title('Yaw rate Method') 
ylabel('Curvature \rho (1/m)') %Turn Radius (m)') 
xlabel('Distance (m)') 
xlim([128 2250]) 
ylim([-0.2 +0.2]) 
grid on 
 
%% Lateral Acceleration Method 
 
R2XP=((gps_vel_hi_makima.^2)./(Ax)); 
rho2XP=1./R2XP; % (1/m) curvature 
 
 
deltat=sum(diff(t))/(length(t)-1); % estimated sample time 
 
tau=1.2; % (s) 1st order filter's time constant 
 
windowLen = ceil((tau)/deltat); 
 
  
 
RHOP = fir(t,rho2XP,windowLen); % FIR moving average filter 
 
%Rho2F = iir(t,rho2XP,tau);       % IIR first order filter 
figure(2), clf 
 
 
hold on  
plot(dist,rho2XP,'g.-'); 
plot(dist,RHOP,'r.-'); 
 
 
title('Lateral Acceleration Method') 
ylabel('Curvature \rho (1/m)') %Turn Radius (m)') 
xlabel('Distance (m)') 
xlim([128 2250]) 
ylim([-0.2 +0.2]) 
grid on 
legend('Unfiltered','Filtered','Location','best') 
 
 
 
%% Ackermann Steering method 
figure(201), clf 
    plot(tACC_Steer+t_steer(1),steer_raw); 
    title('raw steer signal') 
    ylabel('Steer input') 
    xlabel('Time (s)') 
     
    steer = steer_raw; % duplicate the wonky data set 
    t_steer_unwonky = tACC_Steer; % duplicate the associated time array 
    wonky_numbers_to_remove = [-256,1445,0,-2651,-512,1296,512,256,-768,-
1024,-1536]; 
    for k=1:length(wonky_numbers_to_remove) 



 

 
 

        idx_wonky = find(steer== wonky_numbers_to_remove(k) ); % find indices 
where steer_raw is clearly incorrect 
        myStr=sprintf('removing %i numbers',length(idx_wonky)); disp(myStr) 
        steer(idx_wonky)=[]; % delete these weird points 
        t_steer_unwonky(idx_wonky)=[]; % delete corresponding times for wonky 
points 
    end 
    %1445 
    hold on 
    plot(t_steer_unwonky+t_steer(1),steer,'r.'); 
     
     
 L=2.896; %wheel base in m 
    steer_offset=100; 
    TireDeg=0.007875*(steer-steer_offset); 
    TireRad=TireDeg.*(pi/180); 
    R3=L./TireRad; 
    rho3=1./R3; 
  
figure(202),clf 
plot(t,dist,'ko-','MarkerSize',4) 
xlabel('elapsed GPS time (s)') 
ylabel('distance covered (m)') 
grid on 
%xlim([128 450]) 
 
% create a velocity vector at the higher frequency time 
% vq = interp1(x,v,xq) 
dist_hi_pchip = interp1(t,dist,t_steer_unwonky,'pchip'); 
dist_hi_spline = interp1(t,dist,t_steer_unwonky,'spline'); 
dist_hi_makima = interp1(t,dist,t_steer_unwonky,'makima'); 
 
hold on 
plot(t_steer_unwonky,dist_hi_pchip,'r.') 
plot(t_steer_unwonky,dist_hi_spline,'g.') 
plot(t_steer_unwonky,dist_hi_makima,'b.') 
legend('IMU Distance','Distance interpolated: pchip','Distance interpolated: 
spline','Distance interpolated: makima','Location','best') 
 
 figure(3), clf 
    plot(dist_hi_makima,rho3,'.-'); 
    title('Ackermann Steering Method') 
    ylabel('Curvature \rho (1/m)') 
    xlabel('Distance (m)') 
    grid on 
    xlim([128 2250]) 
    ylim([-0.2 +0.2]) 
figure(203) 
    plot(t_steer_unwonky,TireDeg); 
 title('Tire Angle') 
ylabel('tire on the ground (deg)') 
xlabel('Time (s)') 
% xlim([0 3600]) 
 %ylim([-0.2 +0.2]) 
grid on 



 

 
 

 
 
%% Circle Method 
 
N=length(X); 
A=zeros(2); 
k12=zeros(N-2,1); 
k13=zeros(N-2,1); 
x12=zeros(N-2,1); 
y12=zeros(N-2,1); 
x13=zeros(N-2,1); 
y13=zeros(N-2,1); 
R5=zeros(N-2,1); 
for i=1:N-2 
k12(i)=(X(i)^2)-(X(i+1)^2)+(Y(i)^2)-(Y(i+1)^2); 
k13(i)=(X(i)^2)-(X(i+2)^2)+(Y(i)^2)-(Y(i+2)^2); 
 
x12(i)=2*(X(i+1)-X(i)); 
x13(i)=2*(X(i+2)-X(i)); 
 
y12(i)=2*(Y(i+1)-Y(i)); 
y13(i)=2*(Y(i+2)-Y(i)); 
 
A=[x12(i) y12(i); x13(i) y13(i)]; 
 
C=[-k12(i);-k13(i)]; 
D=inv(A)*C; 
R5(i)=sqrt((X(i)-D(1,1))^2+(Y(i)-D(2,1))^2); 
end 
rho5=(1./R5).*(-sign(gz_sm(1:end-2,1))); % (1/m) curvature 
figure(5), clf 
plot(distIC,rho5,'.-'); 
title('Circle Method') 
ylabel('Curvature \rho (1/m)') 
xlabel('Distance (m)') 
xlim([128 2250]) 
ylim([-0.2 +0.2]) 
grid on 
 
 
 
 
 
 
 
 
%% Cubic Spline Method 
 
 nav_S(:,1)=X; % nav_S is the variable used for spline interpolation and 
curvature estimation  
 nav_S(:,2)=Y; 
 
 
nav_Ns = length(nav_S); 
 



 

 
 

 
% make splines for the entire path 
spline_select=4; % 1:spline(), 2:pchip(), 3:makima() 
% for N waypoints, spline generates (N-1) polynomials of 4 coefficients each  
% pp = spline(x,y) 
if spline_select==1 
    p_X = spline( [1:nav_Ns] , nav_S(:,1) ); % for N waypoints, spline 
generates 
    p_Y = spline( [1:nav_Ns] , nav_S(:,2) ); % (N-1) polynomials of 4 
coefficients each 
    spline_str='spline()'; 
elseif spline_select==2 
    p_X = pchip( [1:nav_Ns] , nav_S(:,1) ); % for N waypoints, spline 
generates 
    p_Y = pchip( [1:nav_Ns] , nav_S(:,2) ); % (N-1) polynomials of 4 
coefficients each 
    spline_str='pchip()'; 
elseif spline_select==3 
    % modified Akima's formula for smaller wigglies 
    p_X = makima( [1:nav_Ns] , nav_S(:,1) ); % for N waypoints, spline 
generates 
    p_Y = makima( [1:nav_Ns] , nav_S(:,2) ); % (N-1) polynomials of 4 
coefficients each 
    spline_str='makima()'; 
elseif spline_select==4 
    % pp = csaps(x,y) *smoothing* spline, fundamentally different than 
spline/pchip/makima  
    % values = csaps(x,y,p,xx), smoothing parameter, p=1 is closest to data, 
p=0 is flat-line average  
    %p=0.9; 
    %p=0.5; 
    p=0.85; % this works surprisingly well by changing (lat,lon) locations 
towards greater smoothness  
    p_X = csaps(1:nav_Ns,X,p); % generate smoothing cubic spline in pp form 
    p_Y = csaps(1:nav_Ns,Y,p); 
    spline_str='csaps()'; 
end 
 
% plot splines in parameter space 
figure(101),clf 
ds=0.1; % (%) sub-interval discretization length as a fraction on [0 1] 
%ds=0.5; 
X_spline = ppval(p_X,1:ds:(nav_Ns+1)); 
Y_spline = ppval(p_Y,1:ds:(nav_Ns+1)); 
subplot(2,1,1) 
    plot(1:(nav_Ns+0),X,'r.','MarkerSize',8) 
    hold on 
    plot(1:ds:(nav_Ns+1),X_spline,'b.-') 
    xlabel('waypoint number') 
    ylabel('X-value (m)') 
    grid on 
    legend('unique XY points (m)','spline interpolant 
(m)','location','southeast') 
subplot(2,1,2) 
    plot(1:(nav_Ns+0),Y,'r.','MarkerSize',8) 



 

 
 

    hold on 
    plot(1:ds:(nav_Ns+1),Y_spline,'b.-') 
    xlabel('waypoint number') 
    ylabel('Y-value (m)') 
    grid on 
    legend('unique XY points (m)','spline interpolant 
(m)','location','southeast') 
% compare unique XY points and interpolated points 
figure(102),clf 
hold on 
plot(nav_S(:,1),nav_S(:,2),'r.','MarkerSize',12) % (m) unique XY points from 
GPS data 
plot(X_spline,Y_spline,'b.')     % (m) interpolated XY points 
grid on 
if addTextAtEachPoint==1 
    for i=1:skipNth:nav_Ns 
        
text(nav_S(i,1),nav_S(i,2)+15,num2str(i),'HorizontalAlignment','Center','Verti
calAlignment','Middle','FontSize',14); 
    end 
end 
xlabel('X-axis (m)') 
ylabel('Y-axis (m)') 
title('Spline vs Waypoints') 
axis equal 
 
 
 
% plot cubic splines between every waypoint with different colors 
figure(103),clf 
hold on 
%cmap=colormap(jet(nav_Ns)); 
cmap=colormap(lines(nav_Ns)); 
 
kappa_full  = []; 
domain_full = []; 
length_full = []; L_base=0; 
for i=1:(nav_Ns-1) % step through each spline just created 
     
    domain=[i:ds:(i+1)]; 
    xx = ppval(p_X,domain); % evaluation along the i'th polynomial 
    yy = ppval(p_Y,domain); 
    plot(xx,yy,'.-','Color',cmap(mod(i,length(cmap)),:)); 
     
    [kappa_out,domain_out , p_X_deriv,p_Y_deriv] = computeCurvature(i, p_X, 
p_Y, ds ); 
    N=length(domain)-1; % estimate arc length with curvature discretization  
    [L,L_cumu] = computePolyLength( p_X , p_Y , [domain(1) domain(end)], N ); 
     
    kappa_out = -kappa_out; % sign change: RH-turn is (+) curvature 
    domain_full = [domain_full, domain_out(2:end)    ]; 
    kappa_full  = [kappa_full , kappa_out(2:end)     ]; 
    length_full = [length_full, L_base+L_cumu(2:end) ]; 
    L_base = L_base + L; 
     



 

 
 

end 
 
%plot(nav_S(:,1),nav_S(:,2),'bo') 
grid on 
if addTextAtEachPoint==1 
    for i=1:skipNth:nav_Ns 
        
text(nav_S(i,1),nav_S(i,2)+15,num2str(i),'HorizontalAlignment','Center','Verti
calAlignment','Middle','FontSize',14); 
    end 
end 
xlabel('X-axis (m)') 
ylabel('Y-axis (m)') 
title('Plot of Each Spline') 
axis equal 
 
% plot curvature as a function of time 
% figure(6),clf 
% plot(t_sm,kappa_full) 
% grid on 
% xlabel('Waypoint number') 
% ylabel('Curvature,\kappa (1/m)') 
% ylim([-0.04 +0.04]) 
 
% plot curvature as a function of waypoint number 
figure(104),clf 
plot(domain_full,kappa_full,'.-') 
grid on 
xlabel('Waypoint number') 
ylabel('Curvature,\kappa (1/m)') 
%hax=gca; % get current axes 
%hax.XTick=[1:1:nav_Ns]; % improve tick marks 
 ylim([-0.2 +0.2]) 
 
 
 
% plot curvature as a function of distance along the track 
figure(6),clf 
plot(length_full,kappa_full,'.-') 
grid on 
xlabel('Distance (m)') 
ylabel('Curvature,\kappa (1/m)') 
%hax=gca; % get current axes 
%hax.XTick=[1:1:nav_Ns]; % improve tick marks 
title('Cubic Spline Method') 
xlim([128 2250]) 
ylim([-0.2 +0.2]) 
 
 
% % compute spline polynomial length 
% N=100; 
% [L,L_cumu] = computePolyLength( p_X , p_Y , [1 nav_Ns], N ); 
%  
% fprintf('\npath length %0.2f(km)\n',L/1000); 
 



 

 
 

 
 
 
 
figure(7), clf 
hold on 
plot(dist,rho1,'r.-'); 
plot(dist,RHOP,'g.-'); 
plot(dist_hi_makima,rho3,'b.-'); 
plot(distIC,rho5,'c.-'); 
plot(length_full,kappa_full,'m.-') 
 
 
grid on 
xlabel('Distance (m)') 
ylabel('Curvature,\kappa (1/m)') 
title('Comparison of Methods') 
xlim([128 2250]) 
ylim([-0.2 +0.2]) 
legend('Yaw Rate Method','Lateral Acceleration Method','Ackermann Steering 
Method','Circle Method','Cubic Spline Inerpolation Method','Location','best') 
 
 
figure(8), clf 
tiledlayout(5,1) 
nexttile 
plot(dist,rho1,'r.-'); 
grid on 
xlabel('Distance (m)') 
ylabel('Curvature,\kappa (1/m)') 
title('Yaw Rate Method') 
xlim([128 2250]) 
ylim([-0.2 +0.2]) 
nexttile 
plot(dist,RHOP,'g.-'); 
grid on 
xlabel('Distance (m)') 
ylabel('Curvature,\kappa (1/m)') 
title('Lateral Acceleration Method') 
xlim([128 2250]) 
ylim([-0.2 +0.2]) 
nexttile 
plot(dist_hi_makima,rho3,'b.-'); 
grid on 
xlabel('Distance (m)') 
ylabel('Curvature,\kappa (1/m)') 
title('Ackermann Steering Method') 
xlim([128 2250]) 
ylim([-0.2 +0.2]) 
nexttile 
plot(distIC,rho5,'c.-'); 
grid on 
xlabel('Distance (m)') 
ylabel('Curvature,\kappa (1/m)') 
title('Circle Method') 



 

 
 

xlim([128 2250]) 
ylim([-0.2 +0.2]) 
nexttile 
plot(length_full,kappa_full,'m.-') 
grid on 
xlabel('Distance (m)') 
ylabel('Curvature,\kappa (1/m)') 
title('Cubic Spline Inerpolation Method') 
xlim([128 2250]) 
ylim([-0.2 +0.2]) 
 
 
 
 
 
figure(155),clf 
plot3(lon_sm,lat_sm,elev_sm,'r.') 
xlabel('longitude (decimal degrees)') 
ylabel('latitude (decimal degrees)') 
zlabel('elevation (m)') 
grid on 
 
 
plot_google_map('APIKey','AIzaSyCstEH_eMsiqIk5JemUjVvjG8THE4EYuno') % 
Compere's Google Maps API key 
%plot_google_map('MapType','satellite') % 'roadmap' 'hybrid' 'terrain' 
plot_google_map('MapType','hybrid','ShowLabels',0,'Scale',2,'Resize',2,'Refres
h',1,'FigureResizeUpdate',1) % 'roadmap' 'hybrid' 'terrain' 'satellite' 
 
plot_waypoint_labels=1; % (0/1) put waypoint numbers on every N'th point? 
skipNth=2; % only put point markers every N'th to avoid cluttered plot 
 
if plot_waypoint_labels==1 
    for i=1:skipNth:length(dist_sm) 
        %myStr=num2str(i); 
        myStr=sprintf('Dist=%0.1f(m)',dist_sm(i)); 
        
text(lon_sm(i),lat_sm(i),elev_sm(i),myStr,'VerticalAlignment','bottom','Horizo
ntalAlignment','center','FontSize',10,'Color','y'); 
    end 
end 
 
% if plot_waypoint_labels==1 
%     for i=1:skipNth:length(t_sm) 
%         
text(lon_sm(i),lat_sm(i),elev_sm(i),num2str(i),'FontSize',10,'VerticalAlignmen
t','bottom','HorizontalAlignment','center') %,'BackgroundColor','White'); 
%     end 
% end 
view(0,90) % top-down view 
 
 
%T3 = 420m to 600m 
%T19 = 1950m to 2100; 
 



 

 
 

T3_entrence = 1426; 
T3_exit = 1631; 
T19_entrence = 3307; 
T19_exit = 3525; 
 
T3_entrence_ack = 15199; 
T3_exit_ack = 17401; 
T19_entrence_ack = 35597; 
T19_exit_ack = 37964; 
 
figure(156),clf 
tiledlayout(4,1) 
nexttile 
 
plot(dist(T3_entrence:T3_exit),-gz(T3_entrence:T3_exit),'r.-') 
grid on 
xlabel('Distance (m)') 
ylabel('Yaw Rate (rad/s)') 
title('Turn 3') 
nexttile 
plot(dist(T3_entrence:T3_exit),Ax(T3_entrence:T3_exit),'g.-') 
grid on 
xlabel('Distance (m)') 
ylabel('Lateral Acceleration (g)') 
title('Turn 3') 
nexttile 
plot(dist(T3_entrence:T3_exit),gps_vel_hi_makima(T3_entrence:T3_exit),'b.-') 
grid on 
xlabel('Distance (m)') 
ylabel('Velocity (m/s)') 
title('Turn 3') 
nexttile 
plot(dist_hi_makima(T3_entrence_ack:T3_exit_ack),TireDeg(T3_entrence_ack:T3_ex
it_ack),'y.-') 
grid on 
xlabel('Distance (m)') 
ylabel('Titre Angle (deg)') 
title('Turn 3') 
 
 
 
 
figure(157),clf 
tiledlayout(4,1) 
 
nexttile 
 
plot(dist(T19_entrence:T19_exit),-gz(T19_entrence:T19_exit),'r.-') 
grid on 
xlabel('Distance (m)') 
ylabel('Yaw Rate (rad/s)') 
title('Turn 19') 
nexttile 
plot(dist(T19_entrence:T19_exit),Ax(T19_entrence:T19_exit),'g.-') 
grid on 



 

 
 

xlabel('Distance (m)') 
ylabel('Lateral Acceleration (g)') 
title('Turn 19') 
nexttile 
plot(dist(T19_entrence:T19_exit),gps_vel_hi_makima(T19_entrence:T19_exit),'b.-
') 
grid on 
xlabel('Distance (m)') 
ylabel('Velocity (m/s)') 
title('Turn 19') 
nexttile 
plot(dist_hi_makima(T19_entrence_ack:T19_exit_ack),TireDeg(T19_entrence_ack:T1
9_exit_ack),'y.-') 
grid on 
xlabel('Distance (m)') 
ylabel('Tire Angle (deg)') 
title('Turn 19') 
 
figure(158), clf 
hold on 
plot(dist,rho1,'r.-'); 
plot(dist,RHOP,'g.-'); 
plot(dist_hi_makima,rho3,'b.-'); 
plot(distIC,rho5,'c.-'); 
plot(length_full,kappa_full,'m.-') 
 
 
grid on 
xlabel('Distance (m)') 
ylabel('Curvature,\kappa (1/m)') 
title('Turn 3') 
xlim([420 600]) 
ylim([-0.2 +0.2]) 
legend('Yaw Rate Method','Lateral Acceleration Method','Ackermann Steering 
Method','Circle Method','Cubic Spline Inerpolation Method','Location','best') 
 
 
figure(159), clf 
hold on 
plot(dist,rho1,'r.-'); 
plot(dist,RHOP,'g.-'); 
plot(dist_hi_makima,rho3,'b.-'); 
plot(distIC,rho5,'c.-'); 
plot(length_full,kappa_full,'m.-') 
 
 
grid on 
xlabel('Distance (m)') 
ylabel('Curvature,\kappa (1/m)') 
title('Turn 19') 
xlim([1950 2100]) 
ylim([-0.2 +0.2]) 
legend('Yaw Rate Method','Lateral Acceleration Method','Ackermann Steering 
Method','Circle Method','Cubic Spline Inerpolation Method','Location','best') 
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