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1 Abstract

With recent advances in machine learning and deep learning technologies and the creation

of larger aviation-specific corpora, applying natural language processing technologies, espe-

cially those based on transformer neural networks, to aviation communications is becoming

increasingly feasible. Previous work has focused on machine learning applications to natu-

ral language processing, such as N-grams and word lattices. This thesis experiments with

a process for pretraining transformer-based language models on aviation English corpora

and compare the effectiveness and performance of language models transfer learned from

pretrained checkpoints and those trained from their base weight initializations (trained from

scratch). The results suggest that transformer language models trained from scratch outper-

form models fine-tuned from pretrained checkpoints. The work concludes by recommending

future work to improve pretraining performance and suggestions for downstream, in-domain

tasks such as semantic extraction, named entity recognition (callsign identification), speaker

role identification, and speech recognition.

2 Introduction

There have been noticeable and significant advancements in the general domain of artifi-

cial intelligence (AI) recently. Natural language processing and language modeling tech-

nologies, in particular, have made tremendous advances over the past two decades [1–4],

achieving performance levels good enough to be brought to consumer-facing products such

as personal assistants, search engines, phones, televisions, etc. Due to the success in the

general domain, applications have begun to spin off into problem-specific domains, such as

(and most notably for this work) aviation. For example, several speech recognition systems

with rule- and machine learning-based natural language processing, inference, and semantic

extraction algorithms have been implemented at EUROCONTROL simulation centers in

Europe to train air traffic controllers and study the potential effects of AI-augmented air
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traffic management (ATM) systems on controller workloads [5,6]. Preliminary studies have

found that AI-augmented ATM systems reduce controller workloads and fuel consumption

of aircraft by optimizing aircraft routes in the airspace and reducing departure/arrival times,

thereby reducing fuel consumption [5].

At the time of this writing, the current focus of general machine learning and deep

learning algorithms in the language modeling domains has been on a variety of deep

learning methods/architectures, namely, recurrent, convolutional, and transformer neural

networks, due to the availability of large natural language corpora such as WikiText [7] and

IMDB [8]. In contrast to the general domain, the aviation domain still prefers and sees

much success with traditional machine learning models for language modeling applications.

Typically, the most prevalent of the traditional models are N-grams, word lattices, and rule-

based approaches, depending on the application and operating environment of the models.

The most likely reason for this divergence between the domains is the difference and relative

lack of labeled data in the aviation domain. By comparison, the largest corpora in the general

domain are either WikiText or the BookCorpus, which contain trillions of tokens, whereas,

for aviation, the largest corpus is Air Traffic Control Complete with approximately 26 hours

of labeled data amounting to just over 300,000 tokens1. This disparity in data availability

is exacerbated by the fact that aviation English uses a specialized vocabulary in addition to

specialized pronunciation for some words to enhance understandability in a radiotelephonic

(R/T) medium [9]. This makes the data labeling process significantly more difficult because

it not only requires two types of data (audio and text) to create labels, but also requires

labelers to have domain knowledge and experience to create effective transcriptions. This,

in addition to the following facets, further contributes to the difficulty of transcription: (1)

the medium of communication, (2) the environment in which the communication occurs2,

(3) a noisy and active communication environment i.e. an active flight deck under the

1Air Traffic Control Complete has approximately 70 hours of audio data, however, about 26 hours of the
70 are labeled.

2For example, a noisy and possibly low fidelity medium, depending on the equipment used to transmit and
receive communications
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influence of wind, engine noise, etc., (4) an active Air Traffic Control (ATC) tower and

channels contributing to increased background noise on the ATC side, and (5) a rapid rate

of speech. Pilots are also operating sophisticated equipment during while communicating,

requiring significant attention and mental resources further contributing to the complexity

of the communications [9].

The potential for speech recognition and language modeling algorithms to reach better

than human performance (for example, the Stanford Question Answering Dataset (SQuAD)

benchmark has recorded results consistently better than humans since 20193) [10] suggests

that these NLP algorithms could have high utility in the aviation domain. If they can achieve

better-than-human performance in the aviation domain and be used with pilot and air traffic

controller systems, they could easily boost efficiency, reduce workloads, and reduce and

mitigate errors during normal operations.

The methods and results laid out in this thesis were done with the intention of creating a

streamlined process for training and testing deep learning-based NLP methods, specifically

language modeling. The results from the language models suggest that the volume of text

used to train the language models is not yet sufficient to produce results akin to those in the

conversational and/or literary English domains. Additionally, the results in Section 6.6.6

show that language models trained “from scratch” on in-domain data perform better than

models trained on out-of-domain data and transfer learned on in-domain data.

2.1 Problem Statement

Other work has shown that the word error rates of automatic speech recognition models

can and have been significantly reduced by using language models to determine the most

likely token at a time step in a sequence [3, 4]. Language models have also been shown to

be effective for natural language processing tasks such as named entity recognition [11,12].

Speech recognition and callsign detection (CSD) have become popular tasks for machine

3https://rajpurkar.github.io/SQuAD-explorer/
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learning applications in aviation [5,13,14]; callsign detection is a task analogous to named

entity recognition since the elements of a callsign in a transcription can be treated as named

entities in a sentence. For example, in the following transcription

skyshuttle one one four zero now descend flight level three three zero

the sequence “skyshuttle one one four zero” should be detected as the callsign. This is

similar to detecting “EU”, “German”, and “British” as named entities in the sequence

below.

EU rejects German call to boycott British lamb

The key component missing for both of these applications is an effectively pretrained

language model that can be used for these downstream tasks, so the goal of this thesis

is to run several experiments using transformer-based language models to determine the

most effective strategy for pretraining the model for downstream tasks. Recommended best

practice is to use a pre-existing language model checkpoint and fine-tune on additional

data [11,12,15], although recent work suggests that if domains are sufficiently different, the

performance of the fine-tuned model will be limited [16]. The main point of comparison in

this thesis will be the performance of pretrained models fine-tuned on in-domain (aviation)

data and models trained from scratch on in-domain data. The experiments and results

presented in this thesis are preliminary applications of end-to-end deep learning solutions

to Automatic Speech Recognition (ASR) and Natural Language Processing (NLP) problems

in aviation. The intention is for this work to provide knowledge and possibly checkpoints

for the ASR and language models which can be used for downstream tasks such as callsign

detection and beam search prediction decoding for ASR models.

2.2 Notation & Terminology

This section is included for the sake of clarity throughout this thesis. In pursuit of that, a

few terms and notations are defined below.
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Set notation (or set-builder notation)4 as defined in [17] is used in parts of this thesis,

particularly in equations and algorithms, to convey mathematical concepts. The shorthand

below is defined

A;x := A ∪ {x}

as the union of the set A and a set containing the element x. The equation below can be

read as adding the element x to the set A:

A← A;x

The following words (in bold) are used throughout the thesis as they relate to language

modeling and are defined concretely as follows:

The definition of words and sentences stem from their definitions in the English language,

succinctly, as defined in [18]:

• A word is the representation in writing of a sound or combination of sounds that

symbolizes and communicates a meaning.

• A sentence is a grammatical unit that is syntactically independent that is expressed

or understood and contains at least one finite verb.

In terms of the structure of individual samples in a corpus, we will consider each sample

in the corpus to be one sentence that is made up of words that are separated by whitespace

(one or more spaces) and/or punctuation. Structurally, we consider a word to be made up of

one or more characters as defined by the unicode standard [19] and a sentence to be made

up of one or more words.

• A token shall be defined as the smallest, fundamental component of a sequence; these

can be single characters, groups of characters, punctuation, etc. [11, 20, 21]

4That is, the notation used to denote sets and associated operations therein as it relates to the field of set
theory, in mathematics.
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• A sequence shall be defined as a set of tokens (distinct from a sentence).

As mentioned above, we consider each sample in a corpus to be a sentence, then as the

corpus is collated, processed, and tokenized, each sample will be processed into sequences

of tokens. These sequences are what will be analyzed and modeled by the language models.

The rules by which words in sentences are broken up into tokens are defined by to-

kenization algorithms, otherwise known as tokenizers (elaborated further in Section 6.5).

While tokens can be individual characters or words as they appear in the original sample,

this is not always the case. The intention of most tokenization algorithms is the flexibility

to break up unknown words into smaller tokens known to the tokenizer [20, 21].

3 Background & Literature Review

3.1 Transformer Neural Networks

The transformer neural network architecture (shown in Figure 1) was proposed in 2017 for

Neural Machine Translation tasks and immediately achieved state-of-the-art performance on

language translation tasks [22]. Transformer architectures are extremely effective at learning

representations and understandings of languages to predict token probabilities instead of

transforming one language into another [11, 12]. Transformers have also been found to

be very effective at other NLP tasks such as prompt completion and sentiment analysis

among others (i.e. auto-regressive and sequence classification tasks, respectively) [15, 23].

Devlin et al. [11] proposed pretraining methods such as masked language modeling and

next sentence prediction to improve natural language understanding for downstream tasks,

which was further expanded upon by Liu et al. [12] by training longer, with larger batch

sizes, and removing the next sentence prediction task.
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Figure 1: The transformer neural network architecture. Copied from page 3 of Vaswani et
al. [22, Fig. 1]

3.2 Tokenizer Algorithms

In language modeling and natural language processing tasks, the out-of-vocabulary (OOV)

problem is prevalent and has been addressed by the introduction of tokenizer algorithms.

WordPiece and Byte Pair Encoding (BPE) have been used to solve OOV problems while

simultaneously minimizing vocabulary sizes and maximizing the likelihood of tokens in

sequences [20, 21, 24].

3.3 Language Modeling & Natural Language Processing in Aviation

Various natural language processing methods have been applied to the aviation domain

to help deal with miscommunications and try to mitigate safety incidents [25–27]. Some

machine learning approaches have been implemented to analyze the text in aviation incident

and safety reports to predict contributing factors and topic models [26,27]. An ASR system
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with NLP post-processing has also been proposed to analyze Air-Traffic communications and

condense significant features (e.g. weather, runway, and heading info) into an XML language

structure [25]. Transformer language models such as BERT and RoBERTa have been applied

to notice to airmen (NOTAM) messages to perform named entity recognition (NER) tasks,

translation tasks (between notations; e.g. NOTAM notation to Airlang to make parsing

tasks easier) and reduce the workload for pilots during long-haul flights [28]. Transformer

models have also been used for speaker role identification tasks in the aviation domain

(e.g. identifying pilot versus controller in communications); specifically, a pretrained BERT

model was used and fine-tuned on problem-specific data and compared to other models that

performed well at speaker and role identification tasks in general [29].

3.4 Automatic Speech Recognition in Aviation

Automatic speech recognition (ASR) is seeing increased use in aviation for tasks such as

transcription, callsign detection, speaker identification, etc. A majority of these approaches

use machine learning approaches (as opposed to deep learning) where acoustic, pronuncia-

tion, and language modeling is used to transcribe speech [5,29–33]. Language models have

been used in the general domain (both neural and machine learning-based approaches) to

boost the performance of speech recognition models [4, 34, 35]. Machine learning-based

language models, usually N-grams and word lattices, have also been used in aviation along-

side semi-supervised approaches to automatic speech recognition to leverage unlabeled

data. However, none of the developed methodologies use neural language models for their

applications [32, 36, 37].

ASR and speech synthesis technologies have seen use for improving communications

and reducing pilot workload as early as 1981 [38–41]. Early approaches focused on

developing and improving speech synthesis technologies to shift pilot focus in military and

general aviation cockpits to urgent systems or alarms [38,41,42]. ASR system concepts and

technologies were also initially developed to reduce pilot workloads and automate simple
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tasks; these systems were somewhat rigid with fixed vocabularies and keywords, but were

able to successfully reduce workload and received positive feedback from pilots [39, 43].

Similar ASR technologies were later applied to Air Traffic Control (ATC) contexts to

reduce controller workloads and increase the efficiency of Air Traffic Management (ATM)

solutions [25, 44–46]. As ASR technologies have become more sophisticated and more

aviation-specific speech corpora have become available [14, 30, 33, 47–51] there have been

more applications of ASR to aviation [6, 32, 51–58].

3.5 Differences in Language

The use of the English language in aviation has been shown to be sufficiently different

enough to be classified under its own category (aviation English) [9]. The issue with

using pretrained checkpoints of transformer-based language models is characterizing the

similarity (or, conversely, the difference) between casual and technical English i.e., in this

case, the differences between written English, as in books and articles, and the spoken,

transcribed English used in aviation. If the two domains are sufficiently different, then

training the pretrained models on aviation English data would amount to transfer learning

between specific domains. Transfer learning between text domains has been shown to be

possible even with data volumes significantly lower than the original data used to train

the models [59]. Yadlowsky et al. [16] recently showed that if problem domains are

sufficiently different, model pretraining on out-of-domain data will negatively affect model

performance.

4 Datasets & Preparation

Four corpora are combined and used for the experiments in this thesis. The datasets

are primarily speech corpora intended for automatic speech recognition research in aviation

communications, linguistics research in aviation English, or both. All data in all four corpora
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ATCC Corpus Properties

Samples 9,556
Audio (hours) 72.48
Mean Sequence Length 11.90
Std. Sequence Length 7.22
Total Tokens 355,485
Unique Tokens 2,209

Table 1: Data statistics for the Air Traffic Control Complete (ATCC) corpus.

include both recordings and transcriptions, which are audio and text, respectively. The

transcriptions are used to pretrain and train the language models and tokenizers (described

in sections 6 and 6.5).

The four corpora selected and used for this work are briefly described below. Further

analysis is performed in Section 4.7.

4.1 Air Traffic Control Complete

The Air Traffic Control Complete (ATCC) corpus is a speech corpus consisting of audio

recordings with corresponding transcriptions. ATCC is a collection of three smaller corpora

recorded at Dallas-Fort Worth, Logan International, and Washington National airports and

transcribed by current or former air traffic controllers familiar with the respective areas.

Audio data was recorded by placing Very High Frequency (VHF) antennae configured to

monitor several frequencies at each airport, such as arrival, departure, approach, ground,

etc. The types of frequencies observed vary by airport, but the presence of departure,

approach, and ground frequencies is relatively consistent across subcorpora [47]. See Table

1 for corpus-specific statistics.

4.2 ATCO2

The ATCO2 dataset is a speech corpus comprising audio communications at Prague and

Brno airports in Czechia and corresponding transcriptions. The speech recordings and

13



ATCO2 Corpus Properties

Samples 874
Audio (hours) 1.10
Mean Sequence Length 12.28
Std. Sequence Length 5.78
Total Tokens 10,733
Unique Tokens 786

Table 2: Data statistics for the ATCO2 corpus.

transcripts are crowd-sourced from volunteers. The dataset was created and labeled, in part,

as an English language detection corpus. However, the labeling also includes transcripts

of speech segments, which makes it practical for ASR and language model development

in addition to language detection (although in this work, it is only used for ASR and LM

development) [48]. See Table 2 for corpus-specific statistics.

4.3 Air Traffic Control Simulation

The Air Traffic Control Simulation (ATCOSIM) corpus is a speech corpus consisting of

audio recordings and corresponding transcriptions. The data was recorded at the EURO-

CONTROL Experimental Centre for air traffic control simulation in Bretigny-sur-Orge,

France. In this corpus, only the controllers’ voices are included, and therefore, the tran-

scripts only include the controller’s side of each interaction. The audio data was transcribed

by one person, trained according to the guidelines and formatting requirements of the cor-

pus. After all data was transcribed, it was reviewed and corrected, and any remaining

problems were reviewed by an operational air traffic controller and resolved [33]. See Table

3 for corpus-specific statistics.

4.4 ZCU CZ ATC Corpus

The ZCU CZ ATC corpus consists of audio recordings and corresponding transcripts in

the Czech airspace. Both the controller and pilot sides of the communications are included

14



ATCOSIM Corpus Properties

Samples 9,556
Audio (hours) 10.69
Mean Sequence Length 11.29
Std. Sequence Length 4.17
Total Tokens 107,881
Unique Tokens 827

Table 3: Data statistics for the ATCOSIM corpus.

ZCU CZ ATC Corpus Properties

Samples 14,435
Audio (hours) 20.58
Mean Sequence Length 10.05
Std. Sequence Length 5.50
Total Tokens 145,107
Unique Tokens 3,100

Table 4: Data statistics for ZCU CZ ATC corpus.

in this data. Experienced transcribers/annotators created annotations, and labeled samples

were randomly selected for review during the annotation process. After the dataset was

completely labeled, all samples were checked, corrected, and unified [30]. See Table 4 for

corpus-specific statistics.

4.5 Data Preparation

All corpora listed above (see Section 4) are created at different times, for various purposes,

and by multiple authors. As a result, the data in these corpora all have different formats.

ATCC, for example, uses Lisp-style lists as below:

((FROM NERA3788) (NUM L02F1 -0001)

(TO F1-1)

(TEXT THOUSAND ONE NINETY WE (QUOTE LL) GIVE YOU THAT ON THE SPEED AND

WE (QUOTE RE) CLEARED FOR THE APPROACH AH NERA THIRTY SEVEN EIGHTY

EIGHT WE (QUOTE LL) HOLD SHORT OF TWO SEVEN)

(TIMES 1.49 6.57))
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ATCO2 and ZCU CZ ATC use XML to isolate transcribed segments of speech in the

audio recordings, although the format used between the two differs. ATCO2 uses a form

like below:

<data>

<segment>

<start >3.79</start>

<end>6.85</end>

<speaker>B</speaker>

<speaker_label >OK-PMB</speaker_label >

<text>level one hundred Oscar Kilo Papa Mike Bravo</text>

<tags>

<correct >0</correct>

<correct_transcript >1</correct_transcript >

<correct_tagging >0</correct_tagging >

<non_english >0</non_english >

</tags>

</segment>

</data>

ZCU CZ ATC uses a different nesting and labeling style, like below5:

<Trans audio_filename="e2_ACCU -0agmXf.wav">

<Episode>

<Section type="report" startTime="0" endTime="61.47">

<Turn startTime="0" endTime="61.47">

<Sync time="0.000"/>

[ground]Skyshuttle 1 1 4 0 now descend FL 3 3 0[speaker]

<Sync time="4.790"/>

[air]descending FL 3

<Sync time="6.650"/>

[air]K O Z

<Sync time="9.640"/>

5Some information is excluded for readability.
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[ground_|]Austrian 3 2 3 G climb FL 3 4 0 [|_ground][air_|]level 3 4 0

Austrian 3 2 3 G[|_air]

</Turn>

</Section>

</Episode>

</Trans>

Lastly, ATCOSIM uses a text-only format with transcriptions occurring on their own

lines in text files:

[FRAGMENT] contact geneva one two eight decimal one five good bye

Each text file corresponds to the audio file from which the speech was transcribed.

Due to the differing formats above, and the intention to aggregate and use all these

transcripts together, all transcripts need to be processed into a common format to be used

together.

All data was processed in Python using primarily built-in functions/modules6. The text

data is extracted from the corpus transcripts by reading each transcript into the main memory

of the system according to the format prescribed by the corpus. The text corresponding to

the transcript is isolated, copied, and stored to a separate region of memory (a Python list

of strings) that corresponds to the original corpus. The resulting isolated transcripts are

written to files that correspond to the original corpus as well as combined, shuffled, and

written to a file in the standard corpus format (an ASCII text file with one line in the file

corresponding to one sample from the corpus). The resulting output is four corpus files that

correspond to the original corpora in addition to a fifth corpus file with the samples from

all four corpora combined and shuffled for later use7.

6The re and xml modules were also used, although these are built into most Python distributions by
default.

7See the parse_transcripts functions in the files at https://github.com/AVanDeBrook/
msece-thesis/tree/main/source/data for implementation details.
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4.6 Handling Spelling Errors & Inconsistencies

By the nature of the data labeling process, there is a high likelihood of spelling errors

introduced by the annotators during corpora creation. This gets exacerbated by aggregating

several corpora with varying controls for correcting spelling errors and inconsistencies.

Nearly all of the mistakes are recoverable/correctable, given proper context. For example,

“possibility of tornado’s” should have been “possibility of tornadoes”, changing the

possessive form of “tornado” to the plural form. There are also instances of spelling

conventions that are consistent within corpora but become inconsistent when combined.

Manually reviewing every sample in the corpus is unrealistic, considering that there are

over 50,000 data samples and would be subject to the same human error that introduced

those errors in the first place. Instead, the frequency of token occurrence in the corpora,

combined with manual review thereafter, was used to detect and correct the most common

errors. Tokens with the lowest frequency across corpora (and lowest number of occurrences)

were manually reviewed and corrected where necessary. Tokens that needed to be corrected

typically occurred five times or less per corpus although all tokens with occurrences ranging

from 1-50 were reviewed. The relative frequency of those tokens varies by corpus (due to

the differing amont of tokens in total for each corpus) The frequency of occurrence of a

token is calculated using equation (1), below

fw =
ϕw(w)

Dtokens

(1)

where fw is the frequency at which a token occurs in a corpus, ϕw(w) is the number of

times a token, w, occurs, and Dtokens is the total number of tokens in the corpus.

An A → B mapping system was used to correct the errors, where A is the erroneous

token and B is the corrected or replaced token. As the text is parsed from the corpora, each

sample is analyzed. If an erroneous token, A, is found, it is replaced with the corrected

version, B. 22 unique errors were detected and subsequently corrected or removed using
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Phenomenon Definition

Hesitations Instances of spoken words for which the specific realization
is not defined (usually some special token is used instead).

Partial & cut-off words Partially pronounced words are indicated by a hyphen char-
acter where the pronunciation of the word is missing.

Filled pauses Hesitations with a verbal component that has been described
or otherwise defined by the corpus/annotator.

Table 5: Speech/transcription phenomena with corresponding convention for transcribing
or translating, depending on the corpus being processed.

Phenomenon Convention for representation

Hesitations [HES]

Partial & cut-off words -

Filled pauses (open-mouth) uh, um, ah

Filled pauses (closed-mouth) hm, mhm

Table 6: Conventions for transcript representation/translation of phenomena to keep tran-
scripts consistent across corpora.

this method. However, multiple instances of those errors typically occurred.

The mapping system described above is also used to make corpora conventions to be

consistent across corpora. Three areas are addressed here: hesitations, cut-off, or partial

words, and filled pauses within speech. These areas are defined differently between the

four corpora, which makes unifying the transcripts difficult. Hesitations, for example, are

defined by one corpus as incomplete or non-English speech sounds and left completely

undefined by another (despite annotators making notes about hesitations). The way in

which hesitations, pauses, and partial words are transcribed differs between corpora as well.

Two corpora prescribe special tokens to these phenomena, such as “[hes]”, “[hesitation]”,

“<pause>”, or similar. In contrast, the others transcribe the data as it sounds (i.e., “uh”,

“eh”, or “er” for filled pauses and “cir-” or “cir+” for instances that were cut-off mid

pronunciation). To facilitate the unification of the transcripts for all four corpora, the

conventions for transcribing these phenomena are redefined in Table 5.
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A special token represents hesitation when no other context is present regarding the

realization of hesitation. If other corpora use a special token to express hesitations, it is

translated to match the convention in Table 6. Partial/cut-off words are represented with

a hyphen (-) at the point where the pronounced word is cut off. For example, if the last

syllable of “approaching” is cut mid-transmission, it would be represented in the transcript

as “approa-” or, likewise, if the first syllable is cut off, it would be written as “-roaching”.

Lastly, if there is enough information in the original transcript to indicate the realization of

a hesitation, it is represented by the most appropriate token from “Filled pauses” in Table 6.

One of the intended downstream use cases of the language models developed from

this work is decoding speech recognition predictions into transcripts, so including as much

data as possible regarding spoken word realization is useful given the context. The [HES]

token is used as a fallback token if no knowledge about the utterance can be extracted from

the transcript. This usually occurs when the original transcript did not include any detail

regarding the special case of an utterance, for example, an [UNINTELLIGIBLE] token to mark

unintelligible speech, or [UNK] to mark an unknown word or utterance that could not be

transcribed. The [HES] token is therefore used as a way of unifying the different approaches

to mark hesitations, unintelligible speech, etc. when a special token was used with no

indication of the realized speech.

4.7 Data Analysis

To better understand the above four corpora, we calculate and tabulate their relevant corpora

statistics in Table 7. This includes the number of samples in the corpus, the mean sequence

length per sample, the number of unique tokens, and the total number of tokens in the

corpus. The same statistics were also calculated across corpora since all four corpora will

be combined for training and testing the language and speech recognition models. Note that

this is based on the raw data after loading and unifying the corpora before preprocessing

for model training/testing and outlier removal.
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Corpus Samples Mean Sequence Length (±σ) Unique Tokens Tokens
ATCC 29,862 11.90± 7.22 2,209 355,473
ATCO2 874 12.28± 4.12 786 10,733
ATCOSIM 9,544 11.23± 4.12 823 107,153
ZCU CZ ATC 14,435 10.05± 5.50 2,983 145,107

Total 54,715 11.30± 6.36 5,040 618,466

Table 7: The number of samples, mean sequence length, number of unique tokens, and total
number of tokens by corpus, including the cumulative total across all corpora.

The ATCC and ZCU CZ ATC corpora make up a significant portion of the data, ATCC

alone makes up more than half (approximately 54%) of the combined data, and ATCC and

ZCU CZ ATC together make up approximately 81% of the data. The sequence lengths of the

samples are fairly consistent across corpora with at most about an 18% percent difference

between sequence lengths (calculated using equation (2), below). The number of unique

tokens does not scale additively to the combined corpora, which is expected since there will

be an overlap of tokens. Aviation English generally conforms to and follows International

Civil Aviation Organization (ICAO) or Federal Aviation Administration (FAA) phraseology

standards8, so we expect many terms to be shared across corpora except geographic and

location-specific terms, such as city, landmark, airport, and airline names, which vary across

regions.

PD =
|V1 − V2|

V1+V2

2

× 100 (2)

In the equation above, V1 and V2 are the two numbers being compared.

4.8 Outlier Detection and Analysis

The Local Outlier Factor (LOF) algorithm [60] was used to detect and analyze outliers in

the corpora. The sequence lengths of the data samples were used to determine outliers.

8The applicable standard depends on the airspace and country. The ICAO and FAA standards are similar
but different, so both are included.
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Outlier Properties

Mean Sequence Length 47.30
Std of Sequence Length 11.82
Minimum Sequence Length 38
Maximum Sequence Length 73
# Samples 47

Table 8: Mean, standard deviation, minimum, and maximum sequence length of samples
detected as outliers.

Since all four corpora are aggregated, LOF analysis was performed on the aggregated data

instead of on the individual corpora.

Sci-Kit Learn’s [61] implementation of the LOF algorithm was used with a value of

K = 35 for the K-Nearest Neighbors algorithm; the value for K is arbitrarily chosen,

partially through trial and error and the size of the clusters for sequence lengths. Minkowski

distance is used for the distance metrics and is defined as

d(x, y) = (|x− y|p)
1
p (3)

where x and y are the points between which the distance is being measured and p is the order

on which to calculate the distance9. p = 2 is chosen in this case to make the Minkowski

distance equivalent to Euclidean distance:

d(x, y) =
√
|x− y|2 (4)

A total of 47 samples were detected as outliers and removed for analysis. They are summa-

rized in Table 8.

Although all of the outliers have longer sequence lengths than the typical sequence

lengths of the other samples in the data, going through the outlying samples manually and

reviewing each reveals that, for the most part, the samples are typical albeit somewhat

complex communications. Except for one outlier, all of the samples labeled outlying by the

9For the LOF algorithm, p can be arbitrarily chosen.
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LOF algorithm were kept in the data. Examples of the outliers are listed in Appendix A in

Section 10, including the removed sample.

5 End-to-End ASR Models & Experiment Results

Automatic speech recognition (ASR) or simply speech recognition is the process of trans-

lating spoken language to text i.e. transcribing spoken language. There have been a myriad

of approaches to ASR problems, including, but not limited to rule-based, machine learning,

and deep learning methods. For the purposes of this work, we will focus primarily on

end-to-end deep learning approaches to ASR tasks with a specific focus on transcribing

spoken language in aviation (following from the data accumulated, processed, and analyzed

in sections 4, 4.5, and 4.7).

5.1 Input Representation

Although the internal processing of data varies between architectures, the representation of

the models’ input for the models described below. ASR models have seen much success and

performance gains for speech-related tasks such as speech and speaker recognition through

the use of Mel-frequency Cepstral Coefficients (MFCCs) [62]. Since ASR is not the main

focus of this thesis, the process for computing the MFCCs will only be described from

a high level as it is described in [62]. Readers should refer to [62] for a more detailed,

matrix-based approach for computing MFCCs. Given an audio signal:

1. Multiply the audio signal by a tapered window such as a Hamming or Hanning

window to obtain windowed speech frames

2. Pad the windowed audio signal with zeroes to facilitate the fast Fourier transform of

the signal
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3. Multiply the zero-padded windowed speech frames by the twiddle factor matrix to

obtain the discrete Fourier transform (DFT) coefficients

4. Multiply each DFT coefficient with its conjugate to obtain the power spectrum of the

signal

5. Pass the signal through a triangular filter bank with linearly spaced filters in the Mel-

scale. Obtain the log-energy output by taking the log of the output — the filter bank

log energy

6. Finally, multiply the filter bank log energy from the previous step by the discrete

cosine transform matrix to obtain the MFCCs

The MFCCs are then used as input to the ASR models. It should be noted that MFCCs are

not the only input representation available for ASR models, just the most popular choice

among the models used here. Each model outputs a probability distribution of characters

or tokens (depending on the vocabulary the ASR model is initialized with) over a segment

of audio.

5.2 Training Objective

The ASR models listed below both use a Connectionist Temporal Classification (CTC) train-

ing objective [63]. For a dataset, D, made up of samples and labels, x and y, respectively,

defined as

D = {(x1, y1), (x2, y2), ..., (xN , yN)} (5)

where N is the number of samples in the dataset. The goal of the ASR model training

procedure is to predict the target, y, based on the input sequence, x. This can also be written

as maximizing the likelihood of p(y|x). More formally, the CTC objective function can be

written as
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OML(D,N ) = −
∑

(x,y)∈D

ln p(y|x) (6)

where N is the network being optimized to maximize the likelihood of predicting p(y|x).

Put simply, the goal of the ASR network is to maximize the log-likelihood of predicting a

label, y, given an input, x.

The novelty of the CTC objective is in the fact that the MFCC frames do not need to

be aligned with the letter-based tokens to train a network. Instead, the output layer of the

network has L+ 1 units, where L is the alphabet/vocabulary of the network. At each time

step in the audio signal, the network will predict either a token from its vocabulary or a

blank token, hence the extra unit in the output layer. Repeated predictions and blank tokens

are removed from the prediction, then scored against the ground truth label for the audio

signal [63]. Note that Graves et al. [63] defined the tokens predicted at each time step as

letters and the vocabulary, correspondingly, as the letters A through Z of the alphabet.

5.3 Jasper

Jasper is a family of deep convolutional neural networks (CNNs) developed by NVIDIA

as end-to-end ASR models to replace traditional ASR models that use separately learned

components for each stage of the pipeline (acoustic, pronunciation, language modeling,

etc.) [3].

Jasper models, shown in Figure 2 are designed with B blocks and R sub-blocks and

are named accordingly as Jasper BxR models. The Jasper architecture also contains four

extra convolutional blocks, one for preprocessing, shown at the bottom of Figure 2, and

three for postprocessing, shown at the top of Figure 2. Each convolutional sub-block

contains one dimensional convolutions. Li et al. [3] trained and tested a Jasper 10x5

model that produced state-of-the-art results on the LibriSpeech, Wall Street Journal, and

Fisher+Switchboard speech corpora.
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Figure 2: Block diagram of the Jasper architecture. Copied from Li et al. [3].

5.4 QuartzNet

The QuartzNet architecture is based on Jasper with some key modifications, namely, that the

one dimensional convolutions are replaced with “one dimensional time-channel separable

convolutions”, as shown in Figure 3. As with Jasper, QuartzNet models are denoted

as QuartzNet BxR with B and R representing the number of blocks and sub-blocks,

respectively. However, blocks are repeated S times and have a certain number of input

and output channels, cin and cout, respectively. Time-channel separable convolutions are

separated into two components: (1) convolutional layers that operate on each audio channel

independently across time frames and (2) convolutional layers that operate on time frames

independently across all audio channels [4].

In Kriman et al. [4] experiments with QuartzNet were conducted on the LibriSpeech and

Wall Street Journal speech corpora and achieved near state-of-the-art performance on both.

A transfer learning experiment was also performed (transferring between corpora). The

model was initially trained on LibriSpeech and Mozilla Common Voice, then fine-tuned

on the Wall Street Journal corpus and also achieved near state-of-the-art results [4]. These
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Figure 3: Block diagram of the QuartzNet architecture. Copied from Kriman et al. [4].

results suggest that the QuartzNet architecture not only performs well on in-domain tasks,

but can generalize and fine-tune well on related data.

5.5 Experiment Results

This section will summarize the experiment setup, evaluation metrics, and final results of

the two best performing ASR models. Two Jasper models with 10 blocks and 5 sub-blocks

and two QuartzNet models with 15 blocks and 5 sub-blocks were trained from scratch and

fine-tuned from pretrained checkpoints; four models were evaluated in total. Each model

used a vocabulary of 28 tokens; the English alphabet, an apostrophe, and a blank label.

5.5.1 Performance Metrics

This section defines the metrics used to track the performance of the ASR models during

training and the performance of the models on the test partitions of their datasets.

Word Error Rate (WER). This is, simply, the number of words predicted incorrectly

by the model. WER is based on the edit distance between the models prediction and the
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Parameter Value

β1 0.8
β2 0.5
ϵ 1× 10−8

Learning rate 0.01
Weight Decay 0.001

Table 9: NovoGrad optimizer parameters for the Jasper and QuartzNet ASR model training
procedures.

prediction target [64]. Let N , S, I , and D be the number of words, substitutions, insertions,

and deletions, respectively. Then the WER is calculated as

WER =
S +D + I

N
× 100 (7)

In this case, we calculate WER as a percentage by multiplying by 100. Note that it is

possible for the WER to be greater than 100% if S + D + I > N . This can occur, for

example, if the model predicts more words than are actually present in the audio signal.

5.5.2 Optimizer

The NovoGrad optimizer [65] is used with the parameters shown in Table 9.

The Jasper model trained from scratch performed best overall with about a 15% WER

on the test data. The pretrained QuartzNet model that was fine-tuned on the aggregated

data performed second best among the evaluated models reaching a WER of about 30%.

The best-performing ASR models are summarized in Table 10. These tests were run using

a greedy decoding method, meaning that at each time step, the most active neuron i.e., that

with the highest value after softmax was chosen as the prediction. These results can likely

be improved further by adjusting the parameters of the model. However we believe the

most significant boost in performance can be achieved using a well-performing language

model with a beam search decoding algorithm. Beam search-based decoding methods use

a language model and a beam search algorithm to determine predictions at each time step.
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Model WER (%)

Jasper (scratch) 15.3
QuartzNet (pretrained) 30.2

Table 10: WERs of the best-performing ASR models on the test partition of the corpus.

The most commonly used language model for these types of decoding methods is an N-gram

and is what PyTorch’s CTCDecoder10 [66] and NeMo’s BeamSearchDecoderWithLM [67] use to

decode predictions. The purpose of language models in beam search decoding algorithms is

to estimate the likelihood of the decoded sequence occurring based on the language models’

knowledge of sequence structures. The beam search algorithm is then used to select tokens

to maximize the likelihood of the sequence occurring. N-grams are left-associative language

models (see Section 6.1; assuming the model is being applied to the English language in

this case), which is an inherently limiting factor. A neural language model capable of

representing sequences bidirectionally, such as those covered in this work, is a significantly

more robust method of language modeling in speech recognition and has been used in the

past to improve word error rates [4, 35]. At least one instance of a deep learning-based

language model being used for beam search decoding in aviation applications. However, it

did not perform well, likely due to the small size of the dataset that it was trained on [13].

In the next section, the language model architectures, experiments, and results are defined

for the purpose of improving ASR model performance through the use of language models

and downstream tasks such as callsign detection.

6 Language Models and Experiment Results

This section introduces the chosen language model architectures and their pretrained check-

points. Two transformer-based architectures, BERT and RoBERTa, and one statistical/ma-

chine learning-based approach: N-gram language modeling.

10More specifically, the torchaudio package of PyTorch.
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The transformers are pre-trained using the same masked language modeling (MLM)

objective presented in Devlin et al. [11] to train BERT for bidirectional encoding repre-

sentation and likewise in Liu et al. [12] for training RoBERTa. Given the results of the

RoBERTa pretraining and downstream task training thereafter, it was decided to eliminate

the next sentence prediction (NSP) task that was used to pretrain BERT. MLM and NSP

pretraining are explained more in-depth in Section 6.3 below.

6.1 N-Gram

An N-gram language model estimates the probability of a token occurring in a sequence

based on the N tokens preceding or succeeding that token. In other words, for a sequence,

X , of T tokens

X = w1, w2, w3, ..., wT (8)

the probability of tokens occurring in order, in a sequence can be represented using the

chain-rule of probability:

P (X) = P (w1)P (w2|w1)P (w3|w2, w1)...P (wT |wT−1, wT−2, ..., w1)

P (X) = P (wi)
T∏
i=2

P (wi|wi−1, wi−2, ..., w1)
(9)

Except for the first token in the sequence, the probability of a token occurring at a specific

point depends on the tokens preceding it11. Due to this fact, N-grams are sometimes called

left-associative models (in a left-to-right language).

The probability of a token occurring at all is determined statistically as the number of

occurrences in a corpus divided by the total number of tokens.

P (w) =
ϕw(w)

Dtokens

(10)

11The most common use case for an N-gram model is the preceding tokens.
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where P (w) is the probability of a token, w, occurring anywhere in the corpus, ϕw(w) is

the number of times a specific token appears in the corpus, and Dtokens is the total number

of tokens in the corpus, D. Computationally, determining the probabilities of the individual

tokens in the corpus is typically referred to as training or fitting the N-gram model.

N is a predetermined value based on model or application requirements. While it can

technically take any value from one to infinity, its usability becomes very limited at the

minimum sequence length in the corpus and unusable at any value at or above the maximum

sequence length. Depending on implementation, the time and resources required to train a

model with a large value of N can be very expensive. Common values for N are one, two,

and three, sometimes called unigrams, bigrams, and trigrams, respectively.

6.2 Transformer

The transformer neural network uses an Encoder-Decoder architecture with multi-head self-

attention layers throughout the network. Details of the general design of the network will

be laid out here in more detail, including the construction of the layers, sub-layers, and

operation of the attention mechanism. The design discussed here is identical to the network

described in Attention Is All You Need [22] and is the base of the design of BERT and

RoBERTa models discussed in Sections 6.3 and 6.4, respectively.

The Encoder Stack. The encoding layers (referred to as the “Encoder Stack”; see Figure

4) are composed of N identical layers, each containing two sub-layers: (1) a multi-head

self-attention mechanism and (2) a position-wise fully connected feed-forward network.

Each sub-layer includes a residual connection that is added to the output of the sub-layer

and normalized. All sub-layers produce outputs of dimension dmodel. Vaswani et al. [22]

used N = 6 encoding layers and dmodel = 512 output dimensions. The feed-forward

network uses an inner dimension of dff = 2048

The Decoder Stack. The decoding layers are also comprised ofN layers (the “Decoding

Stack”; see Figure 5) with three sub-layers for each layer: (1) a masked multi-head attention
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Figure 4: The Encoder Stack of the transformer architecture. Modified from [22].
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Figure 5: The Decoder Stack of the transformer architecture. Modified from [22].

sub-layer, (2) a multi-head attention sub-layer over the outputs of the Encoder Stack, and (3)

a position-wise fully connected feed-forward network. The last two sub-layers are identical

to those in the Encoder Stack. Each sub-layer also includes a residual connection that

is added to the output of the layer and normalized. The first multi-head attention layer

is modified to a masked multi-head attention layer, masking off tokens greater than the

ith position. This, in combination with the output embeddings being shifted right by one

position, ensure that predictions for a token position, i, are only dependent on outputs for

positions less than i [22].

The Multi-Head Attention Mechanism. By the simplest of terms, attention mecha-

nisms can be described as mapping a query and a set of keys and values to an output. In
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the case of the transformer described by Vaswani et al. [22], a version of attention called

“Scaled Dot-Product Attention” is used. The query and keys are represented as vectors Q

and K, respectively, with dimensions of dk. The values are represented by a vector, V , with

a dimension of dv. A dot-product of the query and keys is computed, scaled by
√
dk. A

softmax function is then applied to the output, given by equation (11).

softmax(x) =
exp(xi)∑N
j=1 exp(xj)

∀i = 1..N (11)

Where x is a vector of dimension N . Scaled-dot product attention can then be given by

equation (12), below.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (12)

Multi-Head attention is defined as multiple scaled-dot product attention layers, running

in parallel. More specifically, the queries, keys, and values are linearly projected h times

with different learned linear projections to dk, dk, and dv dimensions, respectively. The

attention function is applied to each projection resulting in output vectors with dimensions

of dv. These are concatenated and linearly projected once more to produce the output for

the multi-head attention function [22].

MultiHeadAttention(Q,K, V ) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i , KWK

i , V W V
i )

(13)

Where WQ
i and WK

i are weight matrices for the projections of dimensions dmodel×dk, W V
i

is a weight matrix for the projection of dimension dmodel × dv and WO
i is a weight matrix

for the projections of dimension hdv × dmodel.

Vaswani et al. [22] used h = 8 attention heads and dk = dv = dmodel/h = 64.

Token Embeddings. Input and output tokens are converted to learned representations

of dimension dmodel by the model [22].
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Model Layers (N ) Hidden Layer Size (dff ) Attention Heads (h)

AIAYN 6 2048 8
BERTbase 12 768 12
BERTlarge 24 1024 16

Table 11: Number of layers, hidden layer sizes, and number of attention heads for the base
and large versions of the BERT model compared to the model used in Attention Is All You
Need (AIAYN) [11, 22].

6.3 BERT

The purpose of BERT (Bidirectional Encoder Representations from Transformers) is to

represent tokens in text sequences based on the tokens preceding and following the token in

question. Whereas an N-gram model represents token probabilities based on the N tokens

preceding a specific token or, conversely, theN tokens succeeding said token, BERT models

can predict the probability of a token based on both preceding and succeeding tokens; the

bidirectionality novelty.

BERT is based on the transformer neural network described in Section 6.2 and uses an

implementation that is nearly identical to that of the original model [11, 22]. The notable

differences between the original implementation and the implementation of the base and

large BERT models are shown in Table 11.

Representation of Inputs. BERT uses a summation of the token embeddings (token

IDs), segment embeddings (zero or one to represent the first or second sentence in a

sentence pair), and position embeddings (the index of the token in the sequence) to form

model inputs. Additionally, the WordPiece tokenizer algorithm (detailed in Section 6.5.2)

is used to segment tokens. The maximum sequence length of the model is 512 tokens and

the size of the learned embeddings corresponds to dmodel (768 for BERTbase and 1024 for

BERTlarge) [11].

Masked Language Modeling. The ability of BERT to represent text in a bidirectional

context is achieved through the Masked Language Modeling (MLM) pretraining task [11].

MLM pretraining chooses a certain percentage of token positions at random as labels for
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prediction; those tokens are then replaced with either a “mask” token, a random token,

or the original token according to preconfigured probabilities (BERT used 80% for the

mask token, 10% for random tokens, and 10% for the original/unchanged token). During

training, the masked sequences are used as input to the model, and the original is used as

the prediction target. The model prediction is scored against the target using cross-entropy

loss.

Next Sentence Prediction. While MLM conditions the model to represent tokens within

sequences and predict the most probable token based on its position in the sequence, NSP is

meant to condition the model to understand relationships between sentences/sequences to

support downstream tasks. Since the BERT training set consists primarily of literary works

and excerpts from Wikipedia, the model simply predicts whether two sentences appear

together (one after the other) in the original text, making this a binary classification task as

opposed to MLM, which is a multi-class classification task. Instead of a single sequence,

the input consists of two sequences separated by a “separation” token and beginning with

a “classification” token; these are represented by [SEP] and [CLS], respectively in Devlin et

al. [11].

The special tokens specifying the beginning and end of input sequences are shared

between tasks for symmetry between pretraining tasks. For both MLM and NSP objectives,

input sequences always start with a classification token and end with a separation token (see

Figure 6). Likewise, NSP inputs always begin with a classification token, and each input

sequence is concatenated with a separation token terminating each sequence (see Figure 7

and equation (14)).

[CLS], the, quick, brown, fox, [SEP]

[CLS], the, quick, brown, fox, [SEP], jumps, over, the, [SEP]
(14)
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Figure 6: An example of an input sequence for a masked language modeling pretraining
task. Modified from Devlin et al. [11].

Figure 7: An example of an input sequence for a next sentence prediction pretraining task.

6.4 RoBERTa

As the name implies, the Robustly Optimized BERT Pretraining Approach (RoBERTa) is

an iteration on BERT (described in Section 6.3, above). The results from Liu et al. [12]

indicate that BERT was initially significantly undertrained, so by training longer, with larger

batch sizes, on longer sequences, and dynamically changing the masking pattern applied to

the MLM pretraining task, the performance of BERT was improved. The new checkpoint

of this version of BERT was, therefore, called RoBERTa. The architecture and parameters

of the RoBERTa models are identical to that of BERT.

The pretraining methodology introduced by RoBERTa eliminated the NSP pretraining

task originally used in BERT and opted to increase the quantity of training data along

with the batch sizes and train the model longer. Lastly, there is a small difference in the

construction of input sequences as compared to BERT; input sequences always begin with

a classification token ([CLS]), and individual segments are separated by a separation token

([SEP]). Rather than having sequences end with a separation token, they are terminated

with an end-of-sequence token ([EOS]). See equation (15) modified from Liu et al. [12],

below.

[CLS], x1, x2, ..., xN , [SEP], y1, y2, ..., yM , [EOS] (15)
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6.5 Tokenization Algorithms

Tokenization is the process of separating or segmenting words in sentences into their

component “tokens”. The tokenized version of a sentence is referred to as a sequence. The

rules by which the tokens are created or segmented depend entirely on the algorithm used.

The simplest and most intuitive way to do this is by creating tokens based on whitespace,

i.e., each word in the corpus is treated as a token12. While this is simple and works in theory,

it does not consider that not every word in a language will occur in a corpus. The inevitable

possibility of a tokenizer seeing a word not in the original training corpus is known as the

out-of-vocabulary (OOV) problem [20]. Several different algorithms have addressed the

OOV problem. For brevity’s sake, only the tokenization algorithms used by the models in

this thesis are defined and explained.

6.5.1 WordLevel

The WordLevel [68] tokenization algorithm, mentioned briefly as an introductory example

above, is the most technically simple algorithm among those introduced in this section.

Tokens are extrapolated from words in a sentence based on the whitespace separating each

word. This means that contractions, hyphenations, etc. are treated as their own words,

i.e. “you”, “you’re”, and “you’ve” are all seen as unique, distinct words tokenized and

mapped to their integral representations.

An index of the words that appear in a corpus must be created to map individual tokens

to numerical values or IDs. The numerical values for each token are derived from this index.

For the WordLevel algorithm, this process is referred to as the tokenizer model training (see

Algorithm 1).

The first step of the training procedure is to index any specified special tokens, such as

mask, classification, or separation tokens (this is why special tokens often have low-valued

token IDs). The second step is to split the sentences in the training data into individual

12The Huggingface Tokenizer library implements this as the WordLevel tokenizer.
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Algorithm 1 Training procedure for the WordLevel tokenizer.
D = {s1, s2, ..., sN} ▷ D, si, and N are corpus, sentence, and corpus length
V ← {∅} ▷ V is the tokenizer vocabulary and is initialized to the empty set

for s ∈ D do
Split s into words using whitespace as a delimiter such that
W = {w1, w2, ...wM} ▷ w and M are words and sentence length

for w ∈ W do
if w /∈ V then

V ← V ;w ▷ Add w to the vocabulary
end if

end for
end for

Tokenization stage Representation

Input string: “the quick brown fox jumps over the lazy dog”
Tokenized string: [“the”, “quick”, “brown”, “fox”, “jumps”, “over”, “the”, “lazy”, “dog”]
Integral mapping: [5, 16, 9, 12, 13, 15, 5, 14, 11]

Table 12: A simple example of the tokenization process of the WordLevel tokenization
algorithm.

words. This is done by splitting each string based on whitespace; in other words, the

tokenizer treats sentences as lists of words delimited by space characters. Lastly, the

tokenizer iterates through each word in each sentence, indexing new words as it finds them

until all sentences in the training corpus have been analyzed. Token IDs are then derived

based on the word’s position in the tokenizer index or vocabulary.

Table 12 shows the different representations of the input sentence over the course of the

tokenization process.

The algorithm’s simplicity speaks for itself and serves as a good introduction to to-

kenization and an illustrative example of the OOV problem. Note that the values of the

integers representing the tokens are determined based on the order in which the tokens are

seen during the training process (special tokens are defined and, therefore, seen first), so

these results are completely reproducible as long as the data appears in the same order.

The tokenization of words with shared roots but different suffixes is shown in Table 13.
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Tokenization stage Representation

Input string: “you you’re you’ve”
Tokenized string: [“you”, “you’re”, “you’ve”]
Integral mapping: [18, 19, 20]

Table 13: The results of tokenizing three words with the same roots and differing suffixes.

Tokenization stage Representation

Input string: “you’ll”
Tokenized string: [“[UNK]”]
Integral mapping: [0]

Table 14: Results of running the WordLevel tokenizer on an unknown word similar to some
of those in the training data.

The tokenizer sees all three words as independent and unique words since they are mapped

to their own integer representations.

The tokenizer used to generate the examples in tables 12 and 13 was trained on two

sentences, notably lacking the word “you’ll”. Running the tokenizer on the word “you’ll”

alone results in the output in Table 14. Although the word shares a root with some of the

words in the training data (“you”, “you’re”, and “you’ve”) and is syntactically very similar,

the tokenizer does not recognize the word at all (represented by the “[UNK]” or unknown

token). This word would be considered out-of-vocabulary since it did not appear in the

training data and thus reveals one of the major downsides of this algorithm, as mentioned in

section 6.5. This problem can be alleviated to some extent by modifying the preprocessing

strategy of the tokenizer to partition contracted words into their component parts, e.g. the

word “you’re” would be partitioned to [‘‘you’’, ‘‘’’’, ‘‘re’’], however, it eventually

reappears, for example, when using the past, present, and future tenses of a verb (e.g. “go”

and “goes” in the training data, then encountering the future tense: “going”).
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6.5.2 WordPiece

Schuster and Nakajima [24] developed the WordPiece algorithm as a word segmentation

algorithm for language modeling in Japanese and Korean voice search systems. It is further

used by Wu et al. [20] for neural machine translation tasks. The algorithm demonstrated

proficiency and increased performance for the models used in both tasks and effectively

addresses the OOV problem.

One of the primary stipulations for this algorithm is effective and efficient handling of

OOV words such that none are produced during normal operation. To achieve this, during

training, the vocabulary of the tokenizer is initialized to a basic set of characters; since

WordPiece is designed to be language agnostic, the initial vocabulary is specified as all

basic unicode characters in addition to all ASCII characters.

The training procedure works by iterating over the vocabulary, combining two word

units to maximize the likelihood over the training data, and repeating until one of two stop

conditions are reached:

1. The predefined word limit is reached

2. The increase in likelihood falls below the predefined threshold

The training procedure is simple but computationally expensive. Schuster and Nakajima

calculated the algorithm’s time complexity at O(K2) where K is the current size of the

vocabulary [24]. Due to the high time complexity of the algorithm, the authors suggest the

following considerations to reduce the computational complexity:

• Test only pairs that actually exist in the training data

• Test only pairs with a significant chance of being best (high prior likelihood)

• Combine several clustering steps into a single iteration (for groups of pairs which

don’t affect each other)
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Tokenization stage Representation

Input string: “the quick brown fox jumps over the lazy dog”
Tokenized string: [“the”, “quick”, “brown”, “fox”, “jumps”, “over”, “the”, “lazy”, “dog”]
Integral mapping: [59, 98, 95, 88, 97, 91, 59, 90, 87]

Table 15: A simple example of the tokenization process of the WordPiece algorithm.

• Only modify language model counts for the affected entries

Table 15 shows an example of a WordPiece tokenizer model output on a sentence that

was seen during the training procedure (trained on the same data as the WordLevel tokenizer

in Section 6.5.1). Since this sentence was in the training data, the segmentation is identical

to that of the WordLevel tokenizer in Table 12, however, tokenization of similar words

(e.g. words with shared roots or similar contractions) are handled differently, as in Table

16. Since each word has a shared root word in the contractions (as well as an apostrophe

separating the contraction), the tokenizer segments each word and represents them as groups

of small, more common tokens (thus with higher probabilities of occurring). Additionally,

the WordPiece algorithm effectively handles OOV words. For example, the OOV tokens

in Table 17, with a shared root and similar contractions as those in Table 16, which appear

in the training data. The base of the contraction, “you”, occurs in the training data and the

apostrophe in the contraction, so the tokenizer segments those parts of the word as tokens.

The last part of the word, “ll”, does not appear at all in the training data, so it is broken down

into its component characters, which are represented as “l” (beginning of a word) and “##l”

(segmented part of a word that should be concatenated to the previous token when they are

recombined). Comparing this to the output of the WordLevel tokenizer on the same word in

Table 14, the WordPiece algorithm effectively addresses the OOV problem for words similar

to those in the training corpus and, according to the output of the WordPiece tokenizer in

Table 18, for words unlike those in the training corpus.
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Tokenization stage Representation

Input string: “you you’re you’ve”
Tokenized string: [“you”, “you”, “”’, “re”, “you”, “”’, “ve”]
Integral mapping: [56, 56, 5, 71, 56, 5, 72]

Table 16: Example of WordPiece tokenization of words with shared roots and differing
suffixes.

Tokenization stage Representation

Input string: “you’ll”
Tokenized string: [“you”, “”’, “l”, “##l”]
Integral mapping: [56, 5, 17, 54]

Table 17: WordPiece tokenization of an unknown word similar to some of those in the
training data.

Tokenization stage Representation

Input string: “anything”
Tokenized string: [“an”, “##y”, “##t”, “##h”, “##i”, “##n”, “##g”]
Integral mapping: [61, 49, 37, 53, 32, 36, 39]

Table 18: WordPiece tokenization of a word that does not appear in the training data and is
not similar to any of the words in the tokenizer vocabulary.

6.5.3 Byte-Pair Encoding

The Byte-Pair Encoding (BPE) tokenizer algorithm was adapted from a data compression

algorithm by Phillip Gage in 1994 [69]. The data compression algorithm works by replacing

common pairs of bytes in data with an unused byte to reduce the overall size of the data. The

tokenization algorithm works under the same principle, merging frequent pairs of characters

or tokens into one token [21].

The vocabulary of the tokenizer is initialized to the base set of characters (letters,

numbers, punctuation, etc. ). The training procedure begins by counting all pairs (“A”, “B”)

of characters that appear in the training data and combines the most frequently occurring

pair into one token (“A”, “B”→ “AB”). This process repeats until a specified vocabulary

size has been reached (or a specified number of merge operations have occurred; the final

vocabulary size is equal to the base character set plus the number of merge operations).
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Algorithm 2 BPE training algorithm implementation in Python. Modified from Sennrich
et al. [21].

import re, collections

def get_stats(vocab):
pairs = collections.defaultdict(int)
for word, freq in vocab.items():

symbols = word.split()
for i in range(len(symbols)-1):

pairs[symbols[i], symbols[i+1]] += freq
return pairs

def merge_vocab(pair, v_in):
v_out = {}
bigram = re.escape(’ ’.join(pair))
p = re.compile(r’(?<!\S)’ + bigram + r’(?!\S)’)
for word in v_in:

w_out = p.sub(’’.join(pair), word)
v_out[w_out] = v_in[word]

return v_out

vocab = {...}
num_merges = 10
for i in range(num_merges):

pairs = get_stats(vocab)
best = max(pairs, key=pairs.get)
vocab = merge_vocab(best, vocab)
print(best)

Tokenization stage Representation

Input string: “the quick brown fox jumps over the lazy dog”
Tokenized string: [“the”, “quick”, “brown”, “fox”, “jumps”, “over”, “the”, “lazy”, “dog”]
Integral mapping: [36, 70, 72, 66, 74, 69, 36, 68, 64]

Table 19: The Byte-Pair Encoding tokenizer output for a string that appears in the training
data.

Algorithm 2 shows a minimal Python implementation for the BPE training procedure.

Finally, comparing the BPE tokenization process with the WordLevel and WordPiece

algorithms, we can see that the outputs of the algorithm are nearly identical when the

sentences being tokenized have words that appear in the training data (i.e. the BPE outputs

in tables 19 and 20 are almost identical to the WordPiece output in tables 15 and 16 except the

numerical representation of the tokens) and very similar to that of the WordLevel tokenizer.
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Tokenization stage Representation

Input string: “you you’re you’ve”
Tokenized string: [“you”, “you”, “”’, “re”, “you”, “”’, “ve”]
Integral mapping: [34, 34, 5, 33, 34, 5, 37]

Table 20: Byte-Pair Encoding tokenizer output for syntactically similar words with shared
roots.

Tokenization stage Representation

Input string: “you’ll”
Tokenized string: [“you”, “”’, “l”, “l”]
Integral mapping: [34, 5, 17, 17]

Table 21: Byte-Pair Encoding tokenizer output for a word that did not appear in the training
data, but is similar to some of the words in the training data.

Tokenization stage Representation

Input string: “anything”
Tokenized string: [“an”, “y”, “t”, “h”, “i”, “n”, “g”]
Integral mapping: [39, 30, 25, 13, 14, 19, 12]

Table 22: Byte-Pair Encoding tokenizer output for a word that did not appear in the training
data and is not similar to any words in the training data.

When testing the BPE algorithm on words that did not appear in the training data, it is

clear that the BPE algorithm effectively deals with and processes OOV words (tables 21

and 22), even when no subunits of the word appear in the training data (Table 22).

Byte-Level Byte-Pair Encoding. This is a subset of the BPE algorithm that is also

commonly used for NLP tasks such as neural machine translation, language modeling,

and generative tasks (GPT-2 uses a byte-level BPE tokenizer [70]). As Huggingface’s

tokenizers library implements it, this is a preprocessing step for the tokenizer model that

maps all bytes in a string/sentence to their own unique and visible character. Functionally,

byte-level BPE is nearly identical to the standard BPE algorithm, described above, except

that the beginning of word symbol is rendered and represented by a visible character in the

tokenized sequence (see Table 23).
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Tokenization stage Representation

Input string: “anything”
Tokenized string: [“Ġa”, “n”, “y”, “t”, “h”, “i”, “n”, “g”]
Integral mapping: [36, 19, 30, 25, 13, 14, 19, 12]

Table 23: Example of the output of a byte-level Byte-Pair Encoding tokenizer with the
begging of a word represented with the “Ġ” character.

6.6 Experiment Results

This section will layout the experiment setup and results for the language modeling pretrain-

ing experiments. The language models are divided into two categories, with two models in

each category. The first category of models are those trained from scratch meaning that the

models weights are initialized according to a truncated normal distribution [71]. The second

category of models are based on pretrained checkpoints from BERT and RoBERTa [11,12].

Each category contains a BERT and RoBERTa model.

Considering the success of deep learning models with transformer-based architectures

for language modeling and natural language processing (NLP) tasks, more generally, in

the conversational and written English domains, it follows that transformer architectures

should see widespread use in aviation English for domain-specific NLP tasks. However,

the literature shows transformer-based language models have seen sparse use. The most

notable example of using a transformer neural network is the application of BERT for

knowledge extraction from notice to airmen (NOTAM) messages [28]. While both BERT

and RoBERTa have demonstrated that they perform well on English in general [11, 12],

it is expected that the pretrained models will have limited performance due to the highly

technical and domain-specific nature of aviation English as well as the differing forms of

the language; transcribed English speech as opposed to written English. We expect the

domain-specific terms and pronunciations will lead to a sufficiently different vocabulary

from that of written English such that the models trained from scratch will achieve better

performance than the pretrained models.
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A standard masked language modeling training procedure is used to pretrain the language

models, as described in Section 6.3. Tokens are masked at random as described in the MLM

process in Section 6.3. Input sequences are padded to the maximum length the models accept

with a special [PAD] token and truncated to the maximum length, if greater. The maximum

sequence length for BERT and RoBERTa models is 512 tokens [11,12]. Based on the data

analysis in Section 4.7, there are few, if any, samples that meet or exceed the maximum

sequence length for BERT and RoBERTa models.

6.6.1 Performance Metrics

The following metrics are defined and used to track the performance of the language models

over the course of the training procedures. They also serve as a means of measuring and

comparing the performance of the models over the course of training and on the test partition

of the corpus.

Cross-Entropy Loss. As mentioned previously, perplexity and cross-entropy loss (often

shortened to loss) are used to track the model’s performance on the training and validation

sets per epoch while training. Cross-entropy loss is defined below.

The cross-entropy loss between two probability distributions, p and q, is typically defined

as

H(p, q) = −
∑
x∈X

p(x) log q(x) (16)

where x is a single sample in the discrete distribution X . However, the way in which cross-

entropy loss is measured can differ depending on application. PyTorch [66], for example,

defines and measures cross-entropy loss as follows:

Let L(x, y) be the cross-entropy loss function that outputs a N × 1 vector, L, that

contains the loss values for each sample in a batch of N samples.

L(x, y) = L = {l1, l2, ..., lN}T (17)
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Where x is a 512 × N vector representing model inputs (a sequence of tokens) and y is a

1×N vector representing the target/label for each sample in the batch. The cross-entropy

loss for a single sample is then calculated as

ln = − log

[
exp(xn,yn)∑C
c=1 exp(xn,c)

]
∀n = 1..N (18)

where ln is the loss for an individual sample in the batch, and C is the number of class

labels. For language modeling, the set of class labels is equivalent to the vocabulary of the

tokenizer (and thus the language model). Numerical labels will correspond to token IDs.

The loss for a batch is calculated as the mean of the loss for each sample in the batch.

L(x, y) = 1

N

N∑
i=1

li (19)

Equation (19) can then be extended to find the mean cross-entropy loss over an epoch by

swapping li for batch means and L(x, y) for the epoch mean. N would then represent the

number of batches in an epoch rather than the number of samples in a batch.

In this case, it is important to note that cross-entropy loss is, basically, a measure of the

distance between a models prediction, ŷ, and the intended target for the prediction, y.

Perplexity. This metric measures a model’s ability to predict the most probable token

in a sequence. It will measure and track how well the language models can predict the most

probable token for a specific point in a sequence. Perplexity is typically defined as

PPL = 2−
1
N

∑N
i=1 log2 q(xi) (20)

where N is the number of samples in a sequence, x is an individual sample, and q is the

probability model (a language model, for the purposes of this thesis). This is, essentially,

the inverse of the probability of a sample appearing. A helpful way to view this is as

how “surprised” a probability model is to see a sample, thus the lower the probability of a

sample, the higher the perplexity will be.
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As with cross-entropy loss, the measure of perplexity can differ between implementa-

tions. PyTorch’s [66] implementation for perplexity is defined as follows:

Let P and Ŷ be vectors representing the perplexity for samples in a batch and non-

normalized output neurons in a neural network, respectively.

P = {p1, p2, ..., pN}T

Ŷ = {ŷ1, ŷ2, ..., ŷC}T
(21)

Where N is the number of samples in a batch and C is the number of class labels. Then,

the perplexity for each sample in a batch can be calculated as

pn = exp

[
1

T

C∑
i=1

− log(ŷi)

]
∀n = 1..N (22)

where pn is the perplexity for an individual sample in the batch, and T is the number of

tokens in the sample. The perplexity for the batch is then calculated as the mean of the

perplexities in the batch.

PPL =
1

N

N∑
i=1

pi (23)

Where PPL is the mean perplexity over a batch with N samples. This equation can then be

extended to find the mean perplexity over each batch in the epoch, swapping pi for batch

means and PPL for the epoch mean. N would then represent the number of batches in an

epoch rather than the number of samples in the batch.

6.6.2 Optimizer Settings

The models are trained with the AdamW optimizer [72] using the hyperparameters in Table

24 based on the most effective pretraining configuration presented in [11] and [12]. These

settings are kept constant across language model pretraining experiments.
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Hyperparameter Value

β1 0.9
β2 0.98
ϵ 1× 10−6

Learning Rate 4× 10−5

Weight Decay 0.01

Table 24: AdamW hyperparameters for training BERT and RoBERTa models.

Corpus split Split size (%) Samples

Train 68.99 34,470
Validation 6.999 3,830
Test 30.01 16,415

Table 25: Number of samples and percentage of overall corpus by split.

6.6.3 Data Splits

A train/test split of 70% and 30% and a validation split of 10% of the training data was used

for each model. A breakdown of the number of samples in each split is shown in Table 25.

The samples present in each split are kept consistent across language model experiments so

that the model performances are being compared based on identical data.

6.6.4 Results for the Models Trained from Scratch

The models trained from scratch were trained for 200 epochs. This value was found through

two rounds of trial and error by monitoring the curves of the loss and perplexity on the

training and validation partitions of the corpus. This value was chosen to ensure that the

pretraining procedure did not have an overall negative effect on the model performance.

Batch sizes of 16 were used over the course of training; this was the maximum batch size

that could be used with the hardware available13.

A graph of the average loss per step of scratch models on the training partition are shown

in Figure 8. Both models quickly converged to low loss values and maintained a relatively

13Values larger than 16 would sometimes cause Out of Memory errors on the GPU device used for training,
so 16 was used to ensure all models trained continuously without error or interruption. Models were trained
on a workstation with 64 GB of RAM and an NVIDIA RTX 3090 GPU with 24 GB of VRAM.
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Figure 8: Cross-entropy loss of the models trained from scratch on the training partition of
the corpus over time (steps).

stable loss curve for the duration of the training procedure. This suggests that the models

are converging on either local or global minima.

The graph of the perplexity of the models on the training partition of the corpus is

shown in Figure 9. The perplexity of the models over time is erratic and rarely settles to a

consistent trend over the duration of the training procedure. Also note that the perplexity of

the models is quite high throughout the training process. This is likely due to an issue with

the models rapidly overfitting to the training data as evidenced by graphs of the loss and

perplexity of the models on the validation partition of the corpus in Figures 10 and 11. This

problem of rapid overfitting and consistently high perplexity is present in the results of the

pretrained models as well (see Section 6.6.5). Theories as to why the models’ perplexities

are so consistently high and why the models are overfitting so quickly will be explored in
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Figure 9: Perplexity of the models trained from scratch on the training partition of the
corpus over time (steps).

Section 6.6.6.

6.6.5 Results for the Pretrained Models

The pretrained models were each trained for 100 epochs. As with the models trained from

scratch, this value was found through two rounds of trial and error by monitoring the loss

and perplexity values of the models on the training and validation partitions of the corpus to

find a value that would ensure (or at least minimize) the net negative effects of overfitting.

The batch size used for during training for the pretrained models is also 16 (for the same

reason as with the models trained from scratch).

The graph of the training loss over time for the pretrained models can be seen in Figure

12. Similarly to the models trained from scratch, the pretrained models quickly converge
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Figure 10: Cross-entropy loss of the models trained from scratch on the validation partition
of the corpus over time (steps).

to a consistent low loss value over the duration of the training procedure with little to no

deviation. The perplexity of the pretrained models on the training partition over the course

of training, however, is much more stable and exhibits a somewhat consistent trend. There

are still large spikes in the value of the perplexity throughout the training procedure and the

overall values of the perplexity per step are still extremely high (note the scale of 109 on the

y-axis). As mentioned in Section 6.6.4, this is likely due to overfitting of the models to the

data, evidenced by the rapid overfitting shown in Figures 14 and 15. A potential explanation

as to why this phenomenon occurs is proposed and explored in Section 6.6.6.
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Figure 11: Perplexity of the models trained from scratch on the validation partition of the
corpus over time (steps).

6.6.6 Comparison of Results

Both classes of models (scratch and pretrained) quickly reach a steady state in terms of

loss on the training partition of the corpus, although the initial loss values are considerably

different. Notably, the pretrained models start with a considerably lower loss, about 1.3,

compared to the models trained from scratch, which began with a loss value of just over 5.0.

This indicates that the models are training well and starting to converge on local or global

minima. Although, as the graphs of the loss on the validation partition show, the models

are quickly overfitting to the training data, causing the models to begin performing poorly

the validation data, which is not seen by the model during training.

Based on the trends exhibited by the cross-entropy loss of the models on the training and

validation data, we would expect to see similar trends with the perplexity on the training and
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Figure 12: Cross-entropy loss of the pretrained models on the training partition of the
corpus over time (steps).

validation partitions. However, the perplexity of the models on the training and validation

data yields interesting and somewhat unexpected results. Although the pretrained models

have a more stable curve over time, the models trained from scratch result in a lower

perplexity. The final perplexity values (over the training set) of the models trained from

scratch were markedly better than that of the pretrained models. At the end of training,

the BERT and RoBERTa models trained from scratch had perplexity values of 0.52 × 107

and 0.16 × 107, respectively, whereas the pretrained models reached perplexity values of

0.29 × 109 and 0.17 × 109, for BERT and RoBERTa, respectively. Using the following

equation

RD =
v − vref
vref

(24)
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Figure 13: Perplexity of the pretrained models on the training partition of the corpus over
time (steps).

where v is a tested value and vref is a reference value. The relative difference in perplexity

between the scratch and pretrained models on the final training epoch is 55.24 for the BERT

models, and 104.57, for the RoBERTa models. Using the following equation for absolute

difference,

AD = |a− b| (25)

this equates to an absolute difference of 28.74 × 107 and 16.43 × 107 for the BERT and

RoBERTa models, respectively.

The results from the training procedure show that the models trained from scratch

outperformed their pretrained counterparts. This initially indicates that pretraining models

on in-domain data may achieve the best language model performance, then continuing to
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Figure 14: Cross-entropy loss of the pretrained models on the validation partition of the
corpus over time (steps).

fine-tune on specific downstream tasks. This seems to be a direct contradiction of the

current recommended practice of using one of the pretrained checkpoints from Devlin et

al. [11] and Liu et al. [12] then fine-tuning on specific downstream tasks. However, this is

only partially upheld by the results of the model performance on the test partition of the

corpus (Table 26). For the BERT models, the pattern exhibited during training is consistent

with the results on the test partition, resulting in a relative difference of 8.62 and an absolute

difference of 1.24 × 107 (using equations (25) and (24), respectively). For the RoBERTa

models, however, the relative difference in perplexity is -0.34 with an absolute difference of

0.36×107. These results show that the pretrained RoBERTa model performed better during

pretraining than the corresponding model that was trained from scratch, unlike the BERT

models. The loss of each model over the test set is somewhat high, but they are around the
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Figure 15: Perplexity of the pretrained models on the validation partition of the corpus over
time (steps).

same values for each model, which is consistent with the loss statistics during training. A

higher loss value on unseen (test) data is expected.

The BERT model trained from scratch had the best performance among the tested

models followed closely by the pretrained RoBERTa model. The pretrained BERT model

used both MLM and NSP pretraining objectives to create the checkpoint used in this

thesis. The pretrained RoBERTa model, on the other hand, used only the MLM pretraining

objective. It is readily apparent from the results of [12] that RoBERTa’s modified pretraining

methodology resulted in better model performance for in-domain problems. However, it

seems that the pretraining method also allows RoBERTa to generalize better than BERT

when transfer learned to other NLP domains. It is conceivable that, given additional training

data in the future, the pretrained RoBERTa model could surpass the performance of the
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Model Loss Perplexity (×107)

BERT (scratch) 10.54 0.14
RoBERTa (scratch) 11.41 1.04
BERT (pretrained) 11.00 1.38
RoBERTa (pretrained) 11.80 0.68

Table 26: Results on the test set of data after pretraining the BERT and RoBERTa models
from scratch and pretrained checkpoints. Loss and perplexity values are averaged over the
test partition of the corpus. For both perplexity and loss; lower values are better.

BERT model trained from scratch. However, with the current volume of data available in

this domain, it is clear from the models’ results on the corpus test partition that a BERT

model trained from scratch will still be the best option for aviation English NLP tasks.

With the results and performance of the models established relative to each other, the

high perplexity of each model must be addressed. While the loss values converge nicely

during training, the perplexity is somewhat erratic and consistently high, rarely converging

to a consistent curve. However, it exhibits a clear trend as training progresses. Adjusting the

hyperparameters of the optimizer did not solve this issue, and changing the hyperparameters

of the model (e.g. sequence length, number of hidden layers, attention heads, etc. ) was

not desirable for performing a direct comparison between the pretrained checkpoints and

the base models to study the effectiveness of the models on orthographic transcriptions of

aviation English. The validation curves for each model (Figures 10 and 14) clearly suggest

that the language models are rapidly overfitting to the training data, which is what is causing

the loss on the validation partition to increase as the models are trained further. It is difficult

to determine what exactly is causing this phenomenon of the models rapidly and extremely

overfitting to the training data, so several theories were developed in an attempt to explain

it (some of which will be elaborated upon in Section 8):

Small volume of training data. Especially when compared to Attention is All You Need,

BERT, and RoBERTa, [11, 12, 22] the number of samples used in the training data dwarfs

that of the state-of-the-art. It has been exhaustively demonstrated that neural networks

perform better with large volumes of data. The inception of RoBERTa itself is based on the
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idea that BERT was not trained on enough data [12]. Increasing the volume of in-domain

data used for pretraining (and training) would be the most effective way to immediately

improve the performance of the models.

Different forms of English. The BERT and RoBERTa pretraining checkpoints were

created by training the models on literary works and typed articles such as those from

Wikipedia. The data used in this work are orthographic transcriptions of aviation English,

and while the two data sources share the common root of English, transfer learning from

the casual style of written English to the technical, highly specific use of aviation English

yields limited results, as evidenced above, especially with relatively small amounts of data.

Mixed regional data sources. As described in Section 4, the data aggregated for use

here comes from several different regions, namely international airports in the US [47]

and international and domestic airports in Europe [30, 33, 48]. During data processing, it

was ensured that only English transcriptions were included in the corpus. However, proper

nouns from each region will be present in the data. Additionally, dialectical differences

and varying levels of English proficiency will affect the structure of token sequences across

regions. All of these combined facets may contribute to the high perplexity of the language

models relative to other works. It should be noted that the varied regional data sources are

not necessarily bad. Depending on the application and desired robustness of the model, the

ability to interpret international sources and contexts can be desirable for model selection;

however, it will require significantly more data and proportionally balanced regional contexts

within the corpus for the pretraining process to be effective for downstream tasks.

Up to this point, we have followed a procedure for studying the effectiveness of the

models that is somewhat symmetrical to that of BERT and RoBERTa, so at this point,

the models should be trained for downstream tasks to measure the effectiveness of the

pretraining procedures further. In the aviation domain and for this particular data, that

would mean training for tasks such as callsign identification, speaker identification, flight

phase classification, clearance recognition, etc. However, labels for these tasks are not
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present in the corpora used here. Corpora with relevant labels for downstream tasks could

not be obtained within an appropriate time to run and include the experiments in this work.

Some potential algorithms were developed to mine labels from the corpora aggregated for

this work, which will be expanded upon in section 8. For these reasons, testing model

performance and effectiveness on downstream tasks must be left for future work.

7 Conclusions

Four aviation English corpora are aggregated and unified for use in neural language modeling

and speech recognition. A masked language modeling pretraining methodology is then

used to pretrain two classes of BERT and RoBERTa language models (models trained from

scratch and pretrained models transfer learned to aviation English). For ASR we used

MFCCs, calculated from the audio signals aggregated from the aviation English corpora,

and the transcripts used for language modeling to train and evaluate the models.

Contrary to the recommended best practice of using pretrained checkpoints and training

for downstream tasks, we find that, in the domain of aviation English, models achieve better

performance when pretrained from scratch than model checkpoints transfer learned from the

available BERT and RoBERTa pretrained checkpoints. Although the pretrained RoBERTa

model achieved better performance on the test partition of the corpus than expected, the

pretraining methods laid out in this thesis resulted in the BERT model trained from scratch

achieving the lowest loss and perplexity overall. This trend also emerges in the ASR models;

the Jasper model trained from scratch achieved the best performance among the models

evaluated, including those from pre-existing checkpoints.

The results from the experiments in this work indicate that models trained from scratch

for natural language processing tasks with limited data availability in the aviation domain

are more effective than transfer learning pretrained models. Thus, models trained from

scratch should be fine-tuned and used for downstream tasks over pretrained models. The
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most significant limiting factor to the performance of the models is the small volume

of aviation English data available for pretraining and downstream task use. Investment in

creating expansive, high-quality, openly available aviation English corpora with appropriate

formatting for developing machine learning applications is also highly recommended.

Based on the results from training both ASR and language models from scratch and

comparing the results with those fine-tuned from existing checkpoints, it is clear that, in

both cases, the models trained from scratch not only have better performance overall but will

also have a higher likelihood of reliable callsign detection/identification performance due

to the higher individual performance overall. For future applications of NLP tasks in the

aviation English domain, we recommend pretraining models from their base initializations

using in-domain data and fine-tuning on additional labeled in-domain data for downstream

tasks.

8 Future Work

This section is intended to serve as a brief proposal or set of suggestions for future work

based on the results of this work. The main focus of these suggestions is corpus-specific

algorithms and data augmentation techniques to enable testing and experiments to determine

the effectiveness of the pretraining procedures covered earlier in this thesis.

8.1 Next Sentence Prediction

This training procedure was introduced by Devlin et al. [11] as a pretraining procedure for

BERT and is described in more detail in Section 6.3. This can be used on top of masked

language modeling for language model pretraining. However, it requires a knowledge of

which sequences in the corpus appear next to each other. For pretraining transformer-based

neural language models for the aviation domain (with orthographic transcriptions), this

same procedure can be used to classify whether two transmissions occur in the correct
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order. Generalizing a bit, we can consider two individual transmissions to be A and B;

the training objective for the network is then to predict whether transmission B occurs in

response to transmission A. This would be considered a binary classification task; B either

occurs in response to A or it does not. In practice, for a true label (meaning B does, in

fact, occur in response to A), transmission A, for example, can be a pilot request to ATC

and transmission B would be ATC’s response. A false label (meaning B does not occur in

response to A) would be made up of transmissions randomly shuffled such that A and B do

not occur together in the corpus. Note that, since these are only two transmissions, neither

A nor B will necessarily be one side of the transmission i.e. A can be either a pilot or ATC.

Of the four corpora used in this work, ATCC is the only corpus that can be mined for an

NSP-like pretraining procedure since the raw transcripts have indicators for time (start and

end indicators), transmitting party, and intended receiver. With this information, we can

estimate the correct order of transmissions between two parties to a reasonable degree of

certainty (manually or programmatically). For example, using the following transmissions

from ATCC corpus, in which the Boston-Logan tower is communicating with PAA540.

The transmission below can be used as A:

CLIPPER SIXTY FIVE FORTY IS AH FOUR FROM RIPIT CLEARED FOR

THE I L S D M E TWO SEVEN APPROACH

and the response from PAA540 to the Boston-Logan tower can be used as B:

AH ROGER CLEARED FOR THE APPROACH AH CLIPPER FIVE FORTY

THANK YOU

In this case, A and B occur in the middle of an interaction. There are two transmissions

between PAA540 and the Boston-Logan tower that occur prior to the two above. We can

consider the two instances of A and B above as a true label, meaning they occur one after

the other in the corpus. To construct a false label, we can simply reverse the input of A and
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B, i.e. A becomes B and B becomes A, or choose another transmission at random from

the corpus to replace either A or B. For proper construction of the corpus for the NSP

pretraining task, the distribution of true and false labels should be evenly balanced. If there

are 500 samples labeled as true, then there should be 500 samples labeled as false.

8.2 Callsign Detection/Identification

This is the process of identifying an aircraft callsign from the transcription of the spoken

callsign. This is a popular subtask for automatic speech recognition applications in aviation,

but postprocessing speech recognition outputs can also be accomplished through a language

model. ATCC is a good candidate corpus for this task. There are two potential methods for

implementing this as a downstream task: (1) In transmissions from air-traffic controllers

to specific aircraft, use the receiver (the “TO” label in ATCC’s raw transcriptions) as the

label for each sequence or (2) Identify the sequence of tokens, in each transmission, that

correspond to the callsign of the aircraft and use those tokens as the labels for each sequence.

Each of these methods brings its problems. The first method effectively creates an ever-

expanding classification problem with infinitely many labels, so a tokenization or decoding

scheme must be created to address this. The second method requires manually labeling

every sequence in the corpus, which may not be feasible in all cases. Lastly, both methods

may lack sufficient context to predict aircraft callsigns correctly. Callsigns are agreed upon

between air carriers and air traffic control, but the callsign used will not always correspond

directly to the air carrier’s official three-letter designation for flights. For example, United

Airlines uses the three-letter designator “UAL”, however, the agreed upon spoken, and

therefore transcribed, callsign is “united”, so the flight “UAL774” will use the callsign

“united seven seven four”14. General aviation (GA) callsigns introduce more variability and

do not use previously agreed upon callsigns. Instead, for general aviation (GA) aircraft, the

14The FAA maintains a list of companies, callsigns, and three-letter designators at https://www.faa.
gov/air_traffic/publications/atpubs/cnt_html/chap3_section_4.html
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spoken information is based on the registration or tail number of the aircraft, but not every

element of the registration number is necessarily required information in communications.

For example, the FAA does not require the make or region of registration of the aircraft

in spoken communications, however, they can and do appear in communications. The

following transcript is taken from ATCC and is a communication from ATC to an aircraft

with the registration number “N01C”:

TWIN CESSNA ZERO ONE CHARLIE TURN RIGHT HEADING ZERO

NINER ZERO

Note that the make of the aircraft, though not required, is included and the region of

registration (the N at the beginning of the registration number) is excluded. The callsign that

should be identified in this case is “TWIN CESSNA ZERO ONE CHARLIE” and, ideally,

this should be mapped to the registration “N01C”, although this is difficult without additional

context such as the region of airport and make of the aircraft. Even with this information,

it does not guarantee correct identification of the aircraft; only an increased likelihood.

This variability of information present in callsigns highlights the difficulty of callsign

identification tasks. A well-trained language model with post-processing rules to map

callsigns to three-letter airline designators could achieve exceptionally high performance on

this task.

8.3 Speaker (Role) Identification

Generally, speaker identification is a task to classify specific speakers in a series of com-

munications. This subtask usually falls under automatic speech recognition, but it is also

feasible for language models under some circumstances. In aviation, this could be as simple

as identifying the side of the communication, i.e., an air-traffic controller or a pilot, or it can

be complex enough to be grouped under callsign identification tasks. In the simplest form,

this can be accomplished easily using ATCC since controller positions are labeled along
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with transmitting/receiving aircraft.
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10 Appendix A: Examples of Samples Detected as Outliers

The outlying sample that was removed from the corpus is below15:

uh uh have a nice evening thank you bye bye ciao yes to the irish pub you know

it uh you have to ask i have no idea where it is i’m just walking behind the others

uh no uh but you come in front and you ask and he will tell you but i really

don’t know i don’t even know the address okay it’s in paris definitely okay bye

This sample has a sequence length of 71 tokens, well above the mean of the aggregated

corpora. The decision was made to remove this sample because it has little relevance to

aviation communications, especially the ones being examined by the model in this thesis.

A few other samples, detected as outliers, but not removed are shown in Table 27.

15The preprocessing effects on the string, capitalization, punctuation, etc. are left unmodified for display
purposes
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Outlying Sample Sequence Length

ah they’re probably putting well i don’t know if they are are not the
weather is niner hundred scattered measured ceiling one thousand
five hundred broken two thousand five hundred overcast visibility
one zero temperature five three dew point five zero wind ah zero six
zero at three altimeter two niner niner seven

53

american eight forty six descend and maintain one thousand six
hundred turn left heading zero three zero join the localizer you’re
four from oxonn maintain one thousand six hundred till established
cleared i l s three six approach

38

t w a seven hundred traffic’s a helicopter below you at the pentagon
he’s no factor there’s a cessna at one o’clock three miles three thou-
sand five hundred v f r circling he’ll stay east of the river

38

yeah we’re supposed to ah the thing is now we’re going to get you a
way out of line for your profile ah in your turn you can continue right
around the left to ah zero four zero and then we’re going to have to
bring you all the way back around to the right

55

actually continental ten seventy two he’s just ahead a little bit to
your right now ten seventy two you’re five from ripit maintain two
thousand til established cleared i l s d m e approach runway two seven

38

continental three eighty two from the i loner cross loner at three or
above cleared i l s d m e two seven approach maintain one seven zero
knots to loner correction one seven zero knots until ripit

38

u s r sixteen fifteen turn left heading two niner zero three from loner
cross loner at three or above cleared i l s d m e runway two seven
approach maintain one seven zero knots until ripit

38

clipper sixty five forty seven miles from ripit heading three zero zero
maintain three thousand til established on the localizer cleared i l s d
m e runway two seven approach speed one ninety or greater to ripit

38

cessna three ten bravo whiskey boston tower ah move up and ah the
heavy jet’s going to runway two two left you’ll ah depart prior to
both heavies you can move up to the next avlable taxiway it’s just it’s
about a thousand feet ahead turn right and hold short of runway two
two right acknowledge hold

57

Table 27: A few examples of samples detected as outliers that were kept in the aggregated
corpus. Samples with sequence lengths significantly higher or lower than the average for
the aggregated corpus were detected as outliers and flagged for additional analysis.
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