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Asymmetry of magnetosheath flows and magnetopause shape
during low Alfvén Mach number solar wind

B. Lavraud,1,2 E. Larroque,1,2 E. Budnik,3 V. Génot,1,2 J. E. Borovsky,4 M. W. Dunlop,5

C. Foullon,6 H. Hasegawa,7 C. Jacquey,1,2 K. Nykyri,8 A. Ruffenach,1,2

M. G. G. T. Taylor,9 I. Dandouras,1,2 and H. Rème1,2

Received 23 October 2012; revised 10 January 2013; accepted 18 January 2013; published 8 March 2013.

[1] Previous works have emphasized the significant influence of the solar wind Alfvén Mach
number (MA) on magnetospheric dynamics. Here we report statistical, observational results that
pertain to changes in the magnetosheath flow distribution and magnetopause shape as a
function of solar windMA and interplanetary magnetic field (IMF) clock angle orientation. We
use all Cluster 1 data in the magnetosheath during the period 2001–2010, using an appropriate
spatial superposition procedure, to produce magnetosheath flow distributions as a function of
location in the magnetosheath relative to the IMF and other parameters. The results demonstrate
that enhanced flows in the magnetosheath are expected at locations quasi-perpendicular to the
IMF direction in the plane perpendicular to the Sun-Earth line; in other words, for the special
case of a northward IMF, enhanced flows are observed on the dawn and dusk flanks of the
magnetosphere, while much lower flows are observed above the poles. The largest flows are
adjacent to themagnetopause. Using appropriate magnetopause crossing lists (for both high and
lowMA), we also investigate the changes in magnetopause shape as a function of solar windMA

and IMF orientation. Comparing observed magnetopause crossings with predicted positions
from an axisymmetric semi-empirical model, we statistically show that the magnetopause is
generally circular during high MA, while is it elongated (albeit with moderate statistical
significance) along the direction of the IMF during lowMA. These findings are consistent with
enhanced magnetic forces that prevail in the magnetosheath during lowMA. The component of
the magnetic forces parallel to the magnetopause produces the enhanced flows along and
adjacent to the magnetopause, while the component normal to the magnetopause exerts an
asymmetric pressure on the magnetopause that deforms it into an elongated shape.

Citation: Lavraud, B., et al. (2013), Asymmetry of magnetosheath flows and magnetopause shape during low Alfvén
Mach number solar wind, J. Geophys. Res. Space Physics, 118, 1089–1100, doi:10.1002/jgra.50145.

1. Introduction

[2] The response of the Earth’s magnetosphere to the
continuous flow of the solar wind is highly variable. Of
particular importance are the solar wind velocity and the

direction and strength of the interplanetary magnetic field
(IMF). These ingredients combine into the solar wind
electric field, a prime parameter affecting the coupling at
the dayside magnetosphere through magnetic reconnection,
which may lead to geomagnetic storms during strong
driving [e.g., Gonzalez and Mozer, 1974; Perreault and
Akasofu, 1978; Kan and Lee, 1979]. Another important
parameter in solar wind-magnetosphere interaction is the
solar wind Alfvén Mach number MA: the ratio of the
bulk solar wind to Alfvén speeds [Lavraud and Borovsky,
2008; Borovsky, 2008]. This is because MA directly
controls the bow shock compression ratio and the value
of the plasma b (ratio of the thermal plasma to magnetic
pressures) in the downstream magnetosheath, which in
turn changes which of the magnetic or thermal plasma
forces dominates the dynamics in the magnetosheath
[Lavraud and Borovsky, 2008; Borovsky et al., 2009;
Lopez et al., 2010, 2011]. As a buffer region between
the solar wind and magnetosphere, the magnetosheath
plays a pivotal role in the global interaction. When the
solar wind MA is high, thermal plasma forces dominate.
When it is low, magnetic forces dominate. This basic
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change leads to a dichotomy in the type of solar wind-
magnetosphere interaction, in many respects, as synthe-
sized in Lavraud and Borovsky [2008] (see also
Vasyliunas [2004] and Siscoe [2011] for complementary
discussions to this topic).
[3] Among the various magnetosheath flow properties

reported in previous works [e.g., Howe and Binsack, 1972;
Petrinec et al., 1997; Paularena et al., 2001; Nĕme�cek
et al., 2000, 2003; Šafránková et al., 2004; Longmore
et al., 2005, 2006; Lavraud et al., 2007; Rosenqvist et al.,
2007; Lavraud and Borovsky, 2008; Nishino et al., 2008;
Erkaev et al., 2011, 2012], a particularly drastic change in
flows can occur along the magnetopause as first noted by
Chen et al. [1993]. While in the high MA case plasma
acceleration in the magnetosheath is axisymmetric with
respect to the Sun-Earth line (e.g., the hydrodynamic
case; Spreiter et al. [1966a, 1966b]), for low MA plasma
flow acceleration in the magnetosheath is asymmetric.
Owing to the preponderance of asymmetric magnetic
forces, with an acceleration directed perpendicular to the
magnetic field, plasma flows in the magnetosheath are
expected to be significantly lower in the spatial quadrants
of the magnetosheath that are aligned with the IMF direc-
tion; i.e., above and below the magnetosphere for a
north-south oriented IMF. The flows along the flanks
for a north-south IMF are, by contrast, much larger and
have even been shown to exceed the solar wind speed
itself by up to 60% in several cases [Lavraud et al.,
2007; Rosenqvist et al., 2007]. Utilizing global magneto-
hydrodynamic (MHD) simulations, Chen et al. [1993]
and Lavraud et al. [2007] have shown that it is indeed
possible to attain magnetosheath speeds that exceed that
of the solar wind thanks to increased magnetic forces in
low b plasma. The process is akin to a slingshot-type
effect. Despite several case studies noted above, no statis-
tical confirmation and quantification has been performed
regarding this process. It is one of the purposes of the
present study.
[4] Apart from some debate related to the presence of an

indentation at high latitudes near the polar cusps [Zhou
and Russell, 1997; Dunlop et al., 2000; Lavraud et al.,
2002, 2004; Zhang et al., 2007] and dawn-dusk asymmetries
[Dmitriev et al., 2004; Suvorova et al., 2005; Nishino et al.,
2008], the shape of the magnetopause is often assumed to be
axisymmetric about the aberrated Sun-Earth line, i.e.,
circular. This hypothesis has been used in most empirical
models of the magnetopause [e.g., Sibeck et al., 1991;
Petrinec and Russell, 1996; Shue et al., 1997; Kawano
et al., 1999], although models using Artificial Neural
Network techniques [Dmitriev and Suvorova, 2000] or
fits to asymmetric shapes from theoretical expectations
[e.g., Zhuang et al., 1981; Boardsen et al., 2000] have
also been devised (cf. Shue and Song [2002] for a
review). Lavraud and Borovsky [2008] suggested that,
in addition to accelerating flows tailward along the
magnetopause, enhanced magnetic forces in the magne-
tosheath during low MA exert an asymmetric pressure
on the magnetopause so that it may deform and get
elongated in the direction of the IMF. This conclusion
was based on global MHD simulations alone. It is the second
purpose of the present study to test this expectation using
spacecraft observations.

[5] In section 2, we present the instrumentation and data
used in the study. The methodology and main results are
discussed in section 3. Section 4 provides the conclusions.

2. Instrumentation and Model

[6] We primarily use data from the Cluster 1 spacecraft in
the 2001–2010 era. The spacecraft flew through the
magnetopause and magnetosheath roughly from winter to
summer each year. We make use of the ion and magnetic
field data from the Cluster Ion Spectrometry (CIS) [Rème
et al., 2001] and FluxGate Magnetometer [Balogh et al.,
2001] instruments, respectively. The ion data come from
the Hot Ion Analyser, which allows measurements of the full
3-D ion distribution functions and moments up to a
resolution of 4 s (spin). However, for the statistical analyses,
the data are averaged as described in the next sections. Solar
wind conditions are mainly taken from the Advanced
Composition Explorer (ACE) near L1. A significant part of
the data analysis was performed using the functionalities of
the AMDA (Automated Multi-Dataset Analysis) web-based
tool (http://cdpp-amda.cesr.fr).
[7] To further highlight the phenomena of interest here,

we performed 3-D global MHD model runs for an event that
occurred on 10 November 2002. We used the BATS-R-US
model of the solar wind-magnetosphere-ionosphere interac-
tion [Gombosi et al., 2000; Ridley et al., 2004], which is
available at the Community Coordinated Modeling Center
(http://ccmc.gsfc.nasa.gov/). The model is based on the
equations of ideal single-fluid MHD. These equations are
solved on a three-dimensional grid wherein the cell size
increases away from Earth. Further details on the boundary
conditions used are given in the next sections.

3. Observations and Discussion

3.1. Magnetosheath Flows and Magnetopause Shape:
Case Study

[8] Although case studies of magnetosheath flow acceleration
have been reported in past work, these were mainly using
stable IMF orientation intervals. To illustrate the asymmetry
of magnetosheath flows and the deformation of the magneto-
pause shape that may occur during low MA, we first analyze
a case when Cluster was suitably located in the magnetosheath
during an interval characterized by a low MA and a slow
rotation of the IMF. Figure 1 shows solar wind data for the
interval 6:00–19:00 UT on 10 November 2002. Figure 1a
shows that this interval was characterized by two distinct
periods with high (MA> 10 before 8:20 UT) and low (MA< 5
after 8:20 UT) MA. The solar wind speed is relatively steady
during this interval (Figure 1b; 340–400 km/s). The MA

change comes from a significant drop in density (Figure 1c)
and an increase in magnetic field strength (Figure 1e) at the
boundary between an interplanetary coronal mass ejection
(CME; with low MA) and its leading sheath (high MA). The
plasma b has a low value (Figure 1d) inside the structure,
and the smooth IMF rotation is marked in Figure 1e. These
properties make this CME qualify as a magnetic cloud (MC)
[Burlaga et al., 1981; Lepping et al., 1990].
[9] Figure 2 shows Cluster 1, ACE, and global MHD

simulation results for the Cluster magnetosheath interval
8:45–13:30 UT on 10 November 2002. The global MHD
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simulation run uses actual ACE solar wind data as input, and
the resulting simulated data shown in red are those at the
Cluster 1 location. Figures 2a and 2b display the ion energy
spectrogram and densities from Cluster during the interval.
These data show characteristics typical for the magnetosheath,
despite a rather low ion density at Cluster (i.e., not much
higher than that measured at ACE), as is expected for low
MA and a lower compression ratio at the bow shock. Focusing
on Figure 2c, we note that the lagged solar wind measured by
ACE shows a fairly constant speed of ~300–350 km/s during
this interval and that during the first part of the MC the magne-
tosheath speed at Cluster is almost as large as that in the solar
wind itself, on average. Several bursts are observed in the
magnetosheath at Cluster with speeds even higher than in
the solar wind itself. These may correspond to times of closest
approach to the magnetopause, since the speed in the
magnetosheath is largest close to the magnetopause (cf. next
paragraph), and their intermittent observation may be due to
small-scale changes in the distance from the magnetopause
to the spacecraft not accounted for in the MHD simulation.
The reader is referred to Lavraud and Borovsky [2008] for
aspects related to enhanced flows and associated magneto-
pause wave activity during low MA (see also Chen et al.
[1993], Lavraud et al. [2009] and Taylor et al. [2012]).
However, this topic is beyond the focus of the present study.
[10] Figure 3 shows 2-D cuts of the flow speed in the

equatorial plane from the global MHD simulation for two
times representative of high (MA = 9.4 at 8:00 UT during
the MC sheath) and low MA (MA= 3.6 at 10:30 UT during
the MC itself). The shock and magnetopause positions are
identified in the figures, with a shock position farther
upstream from Earth as expected for lower MA. What stands

out in those figures is the appearance of strong flows in the
magnetosheath (red parts; larger than the solar wind speed it-
self) adjacent and largest close to the magnetopause during
the low MA MC (Figure 3b), while flows are much smaller
during the high MA sheath (Figure 3a). The fact that the
flows are observed on the flanks at 10:30 UT during a
primarily northward oriented IMF makes this particular time
within the MC very similar to the case studied in Lavraud
et al. [2007].
[11] Coming back to Figure 2c, we note a significant drop

in the magnetosheath flow speed at Cluster around 11:20
UT, from ~350 to ~200 km/s. This flow change is concor-
dant with changes in the BZ (Figure 2d) and BY (Figure 2e)
components at Cluster in both data and MHD simulation
results. It is also consistent with the change in IMF direction
observed at ACE within the MC. As can be seen in Figure 2c,
a flow decrease is observed in the MHD simulation result
at Cluster location, but it is not as large as that actually
measured at Cluster.
[12] This change in magnetosheath flow speed is

explained by the asymmetry in the dominant magnetic
forces in the low b magnetosheath during low MA. This is
illustrated in Figure 4 where GSM Y-Z cuts of the plasma
flow at the Cluster location in the simulations are shown
during primarily northward (at 10:00 UT; Figure 4a) and
north-dawnward (at 13:00 UT; Figure 4b) IMF clock angle
orientations. Figure 4a shows enhanced flows just adjacent
to the magnetopause along the flanks, while no such flows
are observed above the north and south poles of the magne-
tosphere (blue regions). This signature is characteristic of the
asymmetric magnetic forces that exert forces on the plasma
along the flanks but much less over the poles [cf. Lavraud

Figure 1. OMNI solar wind data for the interval of interest on 10 November 2002, comprising a low
MA MC with a smooth magnetic field rotation and the high MA sheath ahead of it. (a) Solar wind
MA, (b) proton bulk speed, (c) proton density, (d) plasma Beta, and (e) magnetic field components in
GSE coordinates.
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et al., 2007]. As the IMF rotates from mainly northward to
north-dawnward during the passage of the MC, the location
of the flows changes accordingly, so that Cluster moves out
from the enhanced flow region into a slower flow region
(Figure 4b). The location of the spacecraft with respect to
the enhanced flow region is thus a function of the angle
between the IMF orientation and the Earth-centered position
vector of the spacecraft, as denoted by θ in Figure 4. As is
observed in Figure 4a, Cluster is located slightly outside of
the largest flow region, i.e., Cluster is in the greenish region
rather than in the narrower red region of enhanced flows just
adjacent to the magnetopause. The fact that global MHD
results at Cluster location do not reproduce flows as intense

as those actually observed by Cluster in Figure 2c may
stem from the magnetopause being somewhat closer to
Earth in the simulation than in reality. The grid resolution
used for simulations also impacts the magnitude and
width of the flow channels, as highlighted by Lavraud
and Borovsky [2008]. Another factor is that global ideal
MHD simulations cannot produce as intense a plasma
depletion layer (PDL) [Zwan and Wolf, 1976] as observed.
This may owe to ion kinetic or pressure anisotropy
effects being important to generate PDLs, as noted by
Meng et al. [2012].
[13] In addition to demonstrating the role of IMF orientation

in controlling the location of enhanced magnetosheath flows,

Figure 2. Cluster 1, ACE, and global MHD run data, in GSM coordinates, for the Cluster magnetosheath
interval on 10 November 2002. (a) Cluster omnidirectional ion spectrogram. (b) Cluster ion density
(black), together with the ACE ion density (blue) and the Global MHD run plasma density (red) at Cluster
location. (c) Bulk speeds from Cluster, ACE, and the global MHD run at Cluster location, with same color
coding. (d) GSE BZ and (e) BY components of the magnetic field from Cluster, ACE, and the global MHD
run at Cluster location, again with the same color coding. ACE solar wind data are lagged by 4000 s to
account for advection from ACE to Cluster. The vertical dashed line shows the times used in Figure 4.
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this case study permits to highlight the influence of magnetic
forces on the shape of the magnetopause. Figure 5 shows
GSM Y-Z cuts of the current density (used as a proxy for the
magnetopause location) from the global MHD simulation
respectively at 8:00 UT during the high MA sheath interval
and at 10:30 UT during the low MA MC interval. This figure
is similar to Figure 8 of Lavraud and Borovsky [2008] by
showing a rather circular magnetopause cross-section for high
MA and a more oblate, elongated shape for low MA. The
elongation occurs along the direction of the IMF and is
deemed to result from asymmetric magnetic forces in the
low b magnetosheath with enhanced magnetic forces exerted
normal to the magnetopause on its flanks. In order to be more
quantitative, we show the estimated magnetopause distance as
a function of the angle θ—angle away from the northward
direction—for both MA cases in Figure 6. Figure 6 shows
the results from an automated search of the peak current
density (shown by the dots) in the north-dawn (upper-left)
quadrant of the magnetosphere in the simulation. It shows that
the magnetopause radius can vary by several RE as a function
of location during lowMA. In section 3.3, wewill compare this
with a statistical analysis of magnetopause crossings. Note that
the angle defined in Figures 5 and 6 is also called θ because it
is not fundamentally different from the angle θ defined in
Figure 4. The angle in Figures 5 and 6 is indeed the same
(clock) angle but for the special case of a virtual spacecraft
located at a given magnetopause position and for the special
condition of a due northward IMF orientation.

3.2. Statistical Study of Magnetosheath Flows

[14] Together with previous works, the case study of
section 3.1 gives strong evidence for the asymmetric flows
and associated strong enhancements often seen in the
magnetosheath to be the result of the asymmetric magnetic
forces that become dominant for low MA solar wind and low
b magnetosheath. This interpretation is further demonstrated
here using a statistical approach.

[15] The statistical representation of Figure 7 uses 5min
averages of all available Cluster 1 velocity data during the
period 2001–2010. The representation shows the ion speed
measured at Cluster normalized to the appropriately lagged
ion speed measured at ACE for all available 5min Cluster
data averages (|VSHEATH|/|VSW|). The statistical data order-
ing is essentially based on the magnetosheath-interplanetary
medium (MIPM) reference frame developed by Verigin et al.
[2006]. This consists of a spatial superposed analysis which
orders spacecraft data from a given time and location relative
to models of the magnetopause [Shue et al., 1997, 1998] and
bow shock positions [Verigin et al., 2006]. Using appropri-
ately lagged (using Cluster and ACE spacecraft positions
and the measured solar wind velocity at ACE) ACE data as
inputs to the models, a fractional position of Cluster in the
magnetosheath, relative to the model boundaries (between 0
and 1), is obtained along the direction of the spacecraft posi-
tion vector (see also Nĕme�cek et al. [2000, 2003] for similar
procedures). Each data point is then assigned an X and R
(R=√(Y2 +Z2)) position in the normalized reference frame.
The reference solar wind conditions used are a dynamic
pressure of 1 nPa and an IMF BZ=�1 nT, and data are
averaged in 0.5� 0.5 RE bins for the distributions shown in
Figures 7 to 9. For further details on the method, the reader
is referred to Verigin et al. [2006] and Génot et al. [2009,
2011]. We here use this approach to order normalized magne-
tosheath flow speeds as a function of the angle between the
Cluster position vector and the (lagged) IMF orientation.
[16] Figure 7a shows the statistical results for Cluster data

in the magnetosheath during high MA solar wind (defined
here as MA> 6), while Figure 7b shows the results for low
MA solar wind (defined here as MA< 5). The upper
and lower parts of Figure 7 show the results for θ> 45�
and θ< 45�, respectively, where θ is defined as the angle
between the Cluster position vector and the IMF direction
and so that it remains lower than 90�, as depicted in Figure 4.
Owing to the limited accuracy of both the bow shock model
and the estimated lag time between ACE and Cluster, we

Figure 3. Illustration of the difference in magnetosheath flow distribution for (a) high and (b) low
solar wind MA. In Figure 3a, X-Y plane 2-D cut of the bulk plasma speed (with color palette) from the
global MHD simulation at 8:00 UT during the highMA sheath interval (MA = 9.4). In Figure 3b, Y-Z plane
2-D cut of the bulk plasma speed for the same run but at 10:30 UT during northward IMF in the leading
part of the low MA MC (MA= 3.64). The solar wind flows from the Sun on the right-hand side. The solar
wind, bow shock, magnetosheath, and magnetopause (MP) are illustrated.
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implemented a criterion based on the measured flow speed at
Cluster. If found to be in the magnetosheath according to the
models, Cluster data points that show speeds higher than the
lagged solar wind flow speed are removed from analysis
since this may mean that measurement was actually made
in the solar wind. Although it has been shown that at times
the flows in the magnetosheath may be larger than that of
the solar wind itself (cf. section 1), such cases are expected
to be rare. The use of this condition was thus found (not
shown) to smooth the statistical distribution and to remove
a number of spurious solar wind data points, while not af-
fecting the statistics nor the basic results of the study.

[17] In Figure 7, all distributions show the expected global
acceleration between the subsolar magnetosheath region and
locations further downtail. However, for high MA in
Figure 7a, we observe that the flow distributions are similar
for θ> 45� and θ< 45�, while in Figure 7b they are differ-
ent. The flows for highMA are overall symmetric, while they
are more asymmetric for low MA. Although much cleaner
asymmetries will arise when using local plasma conditions
(cf. later discussions), Figure 7b already highlights that
larger flows are observed close to the magnetopause at
locations past the terminator for low MA and for θ> 45�,
as expected from acceleration through enhanced magnetic
forces so that the largest flows are located in quadrants of
the magnetosheath quasi-perpendicular to the IMF direction
in the GSM Y-Z plane. Note that spurious large speed data
points are observed close to the bow shock in Figure 7b.
These may be due to solar wind data points that were not
removed by our aforementioned condition (e.g., if the
ACE-Cluster lag time is not well determined). However, this
is not a major issue since our focus is primarily on flows near
the magnetopause.
[18] Because the inferred acceleration process is local, in

Figure 8 we show results in a similar format for high and
low MA (MA> 6 and MA< 5), but now using a local
measurement of the angle between the velocity and magnetic
field vectors at Cluster (θBV_LOCAL) (instead of the angle
between the IMF direction and Cluster position vector).
The results are similar to those of Figure 7, although
smoother and better structured. These again clearly highlight
the strong asymmetric acceleration that occurs during low
MA. Using this local measurement thus permits to remove
complexities that arise from draping effects and erroneous
advection calculations between ACE and Cluster. Interest-
ingly, even for highMA in Figure 8a, the flows are larger just
adjacent to the magnetopause in the downtail region for
θBV_LOCAL> 45� than for θBV_LOCAL< 45� (e.g., small re-
gion of low flows (blue/green) in the bottom left corner of
the figure). This is consistent with a small asymmetry
despite the MA being high. This highlights the fact that even
during (moderately) high MA, the region of the magne-
tosheath closest to the magnetopause can have a relatively
low plasma b, thus resulting in enhanced magnetic forces,
in particular during northward IMF and the formation of a
PDL [Farrugia et al., 1995; Phan et al., 1996].
[19] To demonstrate this, Figure 9 shows again a similar

representation to Figures 7 and 8 but this time replacing
the solar wind MA thresholds with a condition on the local
measurement of the plasma b. Figures 9a and 9b show the
statistical results respectively for b> 1 and b< 1. This
time, Figure 9a is symmetric, illustrating again that under high
b conditions the forces that dominantly accelerate the magne-
tosheath are plasma pressure gradient forces, and those are
axisymmetric. Because it is not observed using the local
measurement of b, the effect of a PDL as suggested
above for Figure 8 is thus confirmed. In Figure 9b, a strong
asymmetry is again present with much larger flows for low b
and velocity and magnetic field vectors close to perpendicular.
[20] There is not a sufficient amount of Cluster data to

build a complete empirical model of magnetosheath flows
as a function of MA (for low values in particular), as is illus-
trated by the relatively scarce coverage of the magnetosheath
in Figure 7b for MA< 5. Adding THEMIS data, although

Figure 4. Illustration of the influence of IMF orientation
on the location of enhanced flows during low solar wind
MA. Y-Z plane 2-D cuts of the bulk plasma speed (with color
palette) are shown from the global MHD simulation
during low MA at (a) 10:00 UT when the IMF was primarily
northward, and at (b) 13:00 UT when the IMF had rotated
towards dawn by ~45�. The Y-Z cuts are made at the Cluster
location (XGSM=�5.6 and �4.4 RE, respectively), which is
shown with a large solid circle. The angle θ used in the
statistical analysis of section 3.2 between the direction of
the IMF and the Cluster position vector in the Y-Z plane is
also illustrated.
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desirable in the future, would not help in obtaining much
more low MA occurrences since the mission has primarily
been operating during solar cycle minimum when MA is
typically high (e.g., less MCs). This statistical study yet
provides a definite proof of the significant influence of the
solar wind MA, and in turn of the magnetosheath plasma b,
on magnetosheath flows.

3.3. Statistical Study of the Magnetopause Shape

[21] In this section, we show the results of an analysis
meant to test the expected elongated magnetopause shape
during low MA solar wind. For that purpose, we use two
magnetopause crossing lists. The first list of magnetopause
crossings was taken from that compiled in the context of a

study by Wang et al. [2006] for the period 2001–2003. We
here only use the 297 crossings from that list for which the
lagged ACE data showed MA> 6. To build the second
magnetopause crossing list, using AMDA we automatically
searched for low solar wind MA periods (defined as MA< 5)
during 2001–2006 and visually identified a total of 241
magnetopause crossings by Cluster 1. The time, location,
and lagged solar wind conditions that prevailed during all
those crossings were recorded (based on a 10min average
each side of the crossing time).
[22] As illustrated in Figure 5b for a time when the IMF is

directed northward, the magnetopause distance from Earth
may be expected to be largest for small values of the angle
θ and smallest for values close to 90�. Again, in Figure 5b,
θ is the angle in the GSM Y-Z plane between the north
(which is also essentially the direction of the IMF) and the
position vector of the part of the magnetopause being
considered. It is defined in the range [0, 90�]. Since the
IMF orientation is variable, the expected direction of elonga-
tion of the magnetopause shape during low MA should vary
as well. The elongation is expected to follow the direction
of the IMF. Therefore, in order to increase the statistics
(i.e., rather than limiting ourselves to only pure north-south
IMF orientations), we here consider the distance of all
magnetopause crossings from our lists as a function of the
angle between the IMF orientation and the position vector
of the spacecraft at the time of the crossing. This clock angle
θ is the same as that represented in Figure 5 but in the more
general case of a variable IMF clock angle direction, as
depicted in Figure 4.
[23] In order to highlight a relative change in

magnetopause shape, the observed magnetopause distances
from our crossings lists are then compared to the Shue et al.
[1997, 1998] model for the prevailing solar wind conditions
(with IMF BZ and dynamic pressure as input). We here use
the difference (RREAL�RSHUE) between the observed and

Figure 5. Illustration of the influence of the solar wind MA on the shape of the magnetopause at
XGSM =�5 RE. Y-Z plane 2-D cuts of the norm of the current density (with color palette) are shown from
the global MHD simulation during (a) high MA (MA = 9.4) and (b) low MA (MA = 3.64), respectively at
08:00 UT in the high MA sheath region and at 10:30 UT when the IMF was primarily northward in the
low MA MC. The angle θ displayed is used to illustrate the change in magnetopause location due to the
elongation that occurs along the direction of the IMF (primarily northward in Figure 5b) during lowMA.
The dots represent the peak in current density found using an automated scheme and meant to represent
the magnetopause location.

Figure 6. Dependence of the magnetopause position,
as defined by the peak current density (dots), on the angle
θ from the north direction in the Y-Z plane in Figure 5.
The red and blue curves are for the magnetopause position
in the north-dawn quadrant for high (MA = 9.4) and low
(MA= 3.64) MA solar wind conditions, respectively.

LAVRAUD ET AL.: MAGNETOSHEATH AND MAGNETOPAUSE ASYMMETRIES

1095



modeled magnetopause distances. The logic of this normal-
ization comes from the fact that this magnetopause model
is axisymmetric relative to the Sun-Earth line, and thus any
elongation should be readily seen by contrasting the
observed magnetopause distance with the model expectation.
[24] Figure 10 shows selected outputs of our analysis as

explained above. It shows scatter plots of the difference
between the observed and modeled magnetopause distances
as a function of the angle θ between the IMF orientation and
the spacecraft position in the GSM Y-Z plane at the time of
magnetopause crossing. Figure 10a shows the results for
crossings from the list of Wang et al. [2006] which have
solar wind MA> 6. Figure 10b shows the results for the
list we compiled based on the selection of MA< 5 over
the period 2001–2006. In Figure 10a, we show three
correlation analyses to the scatter plot for three
ranges of magnetopause downtail distances (XGSE< 0 RE;
0 RE<XGSE< 15 RE; 5 RE<XGSE< 15 RE). All fits show a
negligible slope as a function of the angle θ (see also Table 1).
This is consistent with the magnetopause being generally
circular for highMA solar wind conditions. It should be noted
that the dayside crossings (pink and purple curves) are overall

consistent with the model (RREAL�RSHUE ~ 0 RE), while
results for the more downtail crossings (red curve) suggest that
actual magnetopause crossings are on average farther from
Earth than estimated by the model. This may be explained
by a lack of sufficient downtail magnetopause crossings in
the parameterization of the Shue et al. model, with a larger tail
flaring [e.g., Sibeck et al., 1986].
[25] By contrast, Figure 10b shows the scatter plot and cor-

relation analysis to the data for the case of lowMA (<5) mag-
netopause crossings in the range �10 RE<XGSE< 10 RE. In
spite of a moderate correlation coefficient (c.c. =�0.47), the
results show that observed magnetopause crossings are
typically closer to Earth when the position vector of the
magnetopause crossing is quasi-perpendicular to the IMF in
the GSM Y-Z plane, while farther if it is quasi-parallel. This
is in accord with an elongated magnetopause shape during
low MA that follows the IMF orientation. Table 2 shows the
result of correlation analyses to various subsets of the
low MA crossings as a function of the threshold MA used
(4 or 5), as well as a function of a range of XGSE crossing
locations. The analyses on all these subsets of crossings
confirm the aforementioned trend, with similar and negative

Figure 7. Statistical distribution of the magnetosheath ion speed measured at Cluster normalized to
the appropriately lagged ion speed measured at ACE for each 5min data averages; a color palette
of |VSHEATH|/|VSW| is given in the top right corner. The statistical data ordering is based on the
magnetosheath-interplanetary medium (MIPM) reference frame developed by Verigin et al. [2006],
using models of the magnetopause [Shue et al., 1997, 1998] and bow shock positions [Verigin
et al., 2006] with appropriately lagged ACE data as inputs. Each data point is assigned an X and
R (R=√(Y2 +Z2)) position in the normalized reference frame. The reference solar wind conditions used
are a dynamic pressure of 1 nPa and an IMF BZ=�1 nT, and data are averaged in 0.5� 0.5 RE bins.
(a) Distributions for high MA> 6. (b) Distributions for low MA< 5. In each MA case, the top panel
shows the results for an angle θ between the IMF direction and the Cluster position vector in the
GSM Y-Z plane> 45�, i.e., quasi-perpendicular to the IMF. The bottom panels show results for θ< 45�,
i.e., quasi-parallel. See text for further details.
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correlation coefficients (between �0.417 and �0.493), consis-
tent with an elongation of the magnetopause along the IMF
direction. Only the small subset using crossings at far downtail

locations is incompatible, but this is most likely due to the small
statistics in this particular position range and the higher variabil-
ity of the magnetopause location at larger downtail distances.

Figure 8. Same as Figure 7, but this time in each MA case, the top panel shows the results as a function
of the angle θBV_Local between the ion velocity and magnetic field directions locally measured at Cluster
for the case of quasi-perpendicular (θBV_Local> 45�) magnetic field and flow. The bottom distributions
show the case of quasi-parallel magnetic field and flow (θBV_Local< 45�). See text for further details.

Figure 9. Same as Figure 8, but this time the panels show the distributions of the normalized magne-
tosheath flow as a function of the plasma b (and θBV_Local as in Figure 8) locally measured at Cluster,
respectively for values larger and lower than 1. See text for further details.
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4. Conclusions

[26] The present study was meant to address several
purposes: (1) provide quantitative spatial distributions of
magnetosheath flows as a function of solar wind MA, IMF

clock angle orientation, and other local parameters, (2)
statistically confirm the occurrence of enhanced flows
adjacent to the magnetopause during low MA (and function
of IMF orientation), and (3) provide a direct test of a possible
asymmetry in magnetopause shape during low MA.
[27] The main results are as follows:
[28] 1. The statistical, spatial superposed analysis demon-

strates that magnetosheath flow distributions are axisymmetric
about the Sun-Earth line during high MA. This is compatible
with the magnetosheath flow acceleration being dominated
by thermal plasma pressure forces, which are not ordered by
the magnetic field orientation.
[29] 2. The analysis confirms that during low MA and

subsequent low magnetosheath b, magnetic forces become
preponderant and act to accelerate magnetosheath flows
preferentially in spatial quadrants quasi-perpendicular to the
IMF direction in the GSM Y-Z plane. This stems from the
anisotropy of magnetic forces, so that the largest acceleration
occurs at locations in the magnetosheath where the flows
and magnetic field are orthogonal.
[30] 3. These latter assertions are confirmed from the statis-

tical analysis using conditions on local measurements in the
magnetosheath, namely, the plasma b and the angle between
the plasma velocity and magnetic field. Our findings also
confirm that the influence of magnetic forces increases close
to the magnetopause where the plasma and magnetic field
further pile up and drape over the magnetopause, such as
through the formation of a PDL.
[31] 4. The possibility of magnetopause shape elongation

along the IMF direction during low MA, as proposed by
Lavraud and Borovsky [2008] based on global MHD simula-
tions, is demonstrated based on the comparison of magneto-
pause positions for low and highMA with those expected from
an axisymmetric magnetopause model. This elongation is the
result of the aforementioned enhanced magnetic forces—the
tangential component of which leads to the enhanced flows
along the magnetopause—which also exert a force normal to
the magnetopause.
[32] 5. The elongation is shown to follow changes in IMF

orientation. Differences in magnetopause radial distances is
shown to be of order 5 RE (on average for the given conditions
of Figure 10) when comparing magnetopause distances at
locations quasi-parallel and quasi-perpendicular to the IMF
orientation for the given magnetopause dataset (for times

Table 1. Results of the Correlation Analysis of Relative Magneto-
pause Distancesa as a Function of the Angle θ between the IMF
Direction and Magnetopause Crossing Location in the GSM Y-Z
Plane, in the Case of High MA> 6 and for Three Magnetopause
Downtail Location Rangesb

MA Threshold XGSE Range Correlation Coefficient Number of Points

MA> 6 XGSE< 0 0.0629 67
0<XGSE< 15 �0.121 220
5<XGSE< 15 �0.138 91

aObserved distance normalized to model distance: RREAL�RSHUE.
bThe respective number of magnetopause crossings is also indicated.

Figure 10. Scatter plots of the difference between the observed and modeled magnetopause distances as
a function of the angle θ between the IMF orientation and the spacecraft position in the GSM Y-Z plane at
the time of crossing for (a) high MA> 6 and (b) low MA< 5 magnetopause lists (as detailed in text).
Correlation coefficients are shown for three subsets of magnetopause crossing downtail distances in
Figure 10a, while only one subset and its correlation coefficient are given in Figure 10b. Other magnetopause
subsets have been analyzed and are reported in Tables 1 and 2. See text for discussion.

Table 2. Results of the Correlation Analysis of Relative Magneto-
pause Distancesa as a Function of the Angle θ Between the IMF
Direction and Magnetopause Crossing Location in the GSM Y-Z
Plane, in the Case of Low MA (Both MA< 4 and MA< 5) and for
Seven Subsets of Magnetopause Downtail Location Rangesb

MA

Threshold XGSE Range
Correlation
Coefficient Number of Points

MA< 4 XGSE<�10 0.836 15
�10<XGSE< 15 �0.421 111
�5<XGSE< 15 �0.427 101
0<XGSE< 15 �0.417 71
5<XGSE< 15 �0.474 38

�10<XGSE< 10 �0.447 109
�5<XGSE< 10 �0.456 99
0<XGSE< 10 �0.457 69
5<XGSE< 10 �0.546 36

MA< 5 XGSE<�10 0.839 16
�10<XGSE< 15 �0.456 225
�5<XGSE< 15 �0.466 202
0<XGSE< 15 �0.470 143
5<XGSE< 15 �0.426 62

�10<XGSE< 10 �0.469 223
�5<XGSE< 10 �0.481 200
0<XGSE< 10 �0.493 141
5<XGSE< 10 �0.471 60

aObserved distance normalized to model distance: RREAL�RSHUE.
bThe respective number of magnetopause crossings is also indicated.
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when MA< 5). How large this elongation may be during
extreme cases remains unknown.
[33] 6. These results, and in particular those pertaining to

dynamical changes in flows and magnetopause shape as a
function of IMF orientation (not addressed much in previous
works), are consistent with the results from a global MHD
simulation run for a pertinent case study during the passage
of a low MA MC with a preceding, higher MA sheath region.

[34] In view of the limited statistics forMA< 5 in the spatial
superposed distributions, the building of a detailed and
quantitative empirical model of magnetosheath properties that
specifically accounts for low MA solar wind conditions will
require the inclusion of much more data from all past and
upcoming magnetospheric missions. Much further work is
required to develop a full understanding of magnetosheath
physics and of how magnetosheath properties affect solar
wind-magnetosphere interaction in many important ways
[e.g., Lavraud and Borovsky, 2008; Lopez et al., 2010, 2011].
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