

SCHOLARLY COMMONS

International Journal of Aviation, Aeronautics, and Aerospace

Volume 10 | Issue 3

Article 9

2023

Stochastic Optimization to Reduce Aircraft Taxi-in Time at IGIA, New Delhi

RAJIB DAS Brainware University, Kolkata, rajib.das2309@gmail.com SAILESWAR GHOSH Brainware University, Kolkata, swg.mgmt@brainwareuniversity.ac.in RAJENDRA DESAI St. Joseph's Institute of Management, Bangalore, rajendra@sjim.edu.in PIJUS KANTI BHUIN Vyasadeva Educational and Charitable Trust, Bankura, India., pkbhuin@gmail.com STUTI AGARWAL International School of Management Excellence, Bangalore, stuti2886@gmail.com

Follow this and additional works at: https://commons.erau.edu/ijaaa

Part of the Analysis Commons, Management and Operations Commons, Multi-Vehicle Systems and Air Traffic Control Commons, Operational Research Commons, Probability Commons, Statistical Models Commons, and the Transportation Engineering Commons

Scholarly Commons Citation

DAS, R., GHOSH, S., DESAI, R., BHUIN, P. K., & AGARWAL, S. (2023). Stochastic Optimization to Reduce Aircraft Taxi-in Time at IGIA, New Delhi. *International Journal of Aviation, Aeronautics, and Aerospace, 10*(3). DOI: https://doi.org/10.58940/2374-6793.1832

This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in International Journal of Aviation, Aeronautics, and Aerospace by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

Airport congestion is a common phenomenon all over the world due to rapidly increasing air traffic, inadequacy in infrastructural support and operational planning, and several uncontrollable factors like visibility issues during adverse weather, flights arriving earlier than expected, or landing later than their scheduled time, etc. Such congestion results in unusual delays for the arriving and departing aircraft since one aircraft turns into an obstruction for the other. Many times, arriving aircraft take more than the ideal taxi-in time after landing to reach its allocated stand. The consequences of delay are a poor level of service and customer satisfaction and huge operating costs to the aviation companies.

Indira Gandhi International Airport (IGIA), New Delhi, is suffering from a high average taxi-in time (time taken between the landing of an aircraft and reaching its allocated parking stand) compared to all other international airports. IGIA comes in the top 4% of international airports where the average taxi-in time in 2021 is more than 10 minutes (Das et al., 2022).

IGIA, situated in Palam, southwest of New Delhi, is the busiest airport in India as far as total passenger traffic is concerned. In May 2023, 600 plus aircraft, on average, land at IGIA on 3 operational runways, and 223 plus parking stands are available to handle the departure and arrival of passengers (flightradar24.com). While stands and runways are allocated to flights on receipt of the flight schedule plans around 24 to 48 hours early, the actual arrival time of a flight varies due to various random events, including weather, operational issues, visibility, etc. As soon as the flight plan is received by Airport Traffic Control (ATC), a runway and the nearest parking stand are allocated to ensure the lowest possible taxi-in time. However, due to uncertainty in the arrival times of flights and first-come-firstserved treatment, the pre-scheduled allocation of runways and stands fails. It results in a sub-optimal allocation of runways and stands. This is the prime reason for the unusual delays in taxi-in times at IGIA.

This paper investigates the root cause of this ground delay problem and recommends short-term as well as long-term solutions by applying stochastic optimization techniques. It attempts to develop a model to resolve the problem considering the optimum combination of runways-stands dynamically.

Literature Review

The International Air Transport Association (2016b) reported that when demand for a facility approaches or exceeds its capacity, congestion occurs. Technology, smart design, and operational procedures can alleviate capacity problems and postpone the need to expand. When an airport faces unacceptable congestion and delays, gradual strategies should be implemented, starting with the efficiency enhancement of the existing facilities.

Meier and Eriksen (2006) suggested that the Departure Manager assisted the Controller by maintaining maximum operational runway capacity, slot compliance, minimizing taxi-out delays, and helping to make optimum use of the available airport capacities by reducing unnecessary delays on stands, on taxiways, and at departure runway holding points.

Ashford and Paul (2011) postulated four different approaches to the determination of runway capacity and delay, including (i) Empirical approach, (ii) Queuing models, (iii) Analytical approach, and (iv) Capacity handbook approach.

Horonjeff et.al (2010) identified the factors that influence the capacity of a runway system used only for arriving aircraft as - (i) the aircraft mix, (ii) the approach speeds of the various classes of aircraft, (iii) the length of the taxi path from the stand to the runway threshold, (iv) speed variation of aircraft while taxiing, and (v) the mean runway occupancy times.

Mori (2015) claimed that she developed a fast-time stochastic simulation model to decrease airport congestion levels under existing uncertainties. The results inferred that the airport traffic congestion seemed to be most affected by the uncertainty of taxi-out or taxi-in and the traffic concentration, not by the traffic volume and weather conditions.

Carr (2001) developed a stochastic model for airport surface traffic using a Monte Carlo technique. This research provides substantial improvements to the method of calibrating unimpeded travel-time distributions for the free-flow period.

Trani and Baik (2003) argued that animation could be applied in airport modeling and simulation to identify potential airspace/runway logic problems and analyze the simulation in real time or faster. This modeling can also help visually identify potential queueing problems at various airfields.

IATA (2016a) recommended that airfield layouts should include the shortest possible and most direct taxiway routes between rapid exit taxiways and aircraft parking positions and between aircraft parking positions and holding/bypass positions at runway thresholds.

Our review of the literature entails that solutions to the ground delay programs can be classified into three areas – (i) Demand Analysis, (ii) Facility Layout design, and (iii) Queueing Structure. However, the enhancement of operational efficiency by optimised queuing structure (scheduling, allotment of parking stand, arrival times, etc.) is not paid due attention by the researchers. Noteworthy, the arrival time of aircraft follows a probabilistic distribution. There is always a mismatch between the actual arrival time and the scheduled arrival time. The resultant model considers both the perspective of Airport layout design as well as the stochastic nature of arrivals. Airport ground traffic management in most airports is pre-structured, which fails due to uncertainty of arrival times. Therefore, the actual allocation of runway-parking stands turns heuristic. No research is traced which addressed the probabilistic nature of interarrival times for dynamic allocation of runaway-parking stand. There could have been better allocation of the stands for the arriving flights than the existing practices. The present study captures the gap

and attempts to develop a model taking real-time data of the IGIA so that the taxiing time of the arriving aircraft is minimised.

Methodology

The prime focus of the present research is to develop a model for optimizing aircraft taxi-in time of IGIA, New Delhi, indicating enhancement of airport operational capacity. We have considered two random dates, 2 April and 1 May of 2023, for conducting the study to capture the arriving flights from either side of the runways. On 2 April 2023, runways 27, 28, and 29 were used and flights landed from east. On 1 May 2023, flights landed from the west, and runways 10 and 11 were used. Runway 09 is never used for arrivals because its extended centreline intercepts the extended centreline of runway 10. The data on taxi-in time (period from landing to reaching a parking stand) of all arriving aircraft were derived from the website of FlightRadar24 (www.flightradar24.com), which tracks the positions of aircraft in real-time and turns that data into information for consumer and business applications.

A stochastic optimization model is developed to minimize the taxi-in time of aircraft at IGIA with the help of an MS-Excel-based software called Frontline Systems Analytic Solver.

Theoretical Framework

Figure 1 elucidates the framework of the research design for the present research objective. All possible taxiways of arriving flights landed on Runway 10 End to the probable parking stand (223 parking stands are in 8 parking zones of 3 terminals) are presented here.

Figure 1 Theoretical Model of Stochastic Optimization

Note that Runway 09 is non-operational for incoming flights. Therefore, this is not included in the model. The diagram also shows the situations on simultaneous arrivals of the flights, taxi-in time, and interarrival time. Hypothetical Flight 101 is landing on Runway 10, followed by Flight 9 and Flight 54 arriving simultaneously. Fight 31 and Flight 59 are in the queue. This is the real-time situation on which the present simulation model is erected, and the optimum solution is sought.

The mathematical formulation of the model (known as an objective function), data analysis tools, and a step-by-step procedure of the model development are presented in the following sections.

Objective function

The objective function of the present analysis can be stated as -

Minimize
$$z = \sum_{j=1}^{m} \sum_{i=1}^{n} (t_{ij} * y_{ij})/n$$
 (1)

where, $t_i = Taxi$ -in time for a flight i from runway j to its stand $y_{ij} = 1$ if runway j is allocated to flight i - 0 otherwise

Subject to
$$\lambda_{ij} > 1$$

 $\lambda_{ij} \leq 1$
 $t_{ij} = l_{ij} \forall ij$
 $\lambda_{ij} \leq 1$
 $t_{ij} = 10 \forall ij$
 $\sum_{i} y_i = 1 \forall i$

 l_{ij} = minimum taxi–in time from runway j to stand allocated for flight i λ_{ij} = simulated interarrival time for flight i on runway j

We have considered the maximum taxi-in time during simultaneous landings in April 2023 is 8.56 min & in May 2023 is 10.9 minutes when two flights land on the runway within one minute, 1000 simulations run for each flight i; GRG Non-Linear algorithm applied to (1) and search for optimal $R_i^* \rightarrow S_j^*$ allocation. This maximum taxi-in time during simultaneous landing differs for different scenarios based on the average extra taxi-in time taken for flights to go to the stand, which is far.

Data Analysis Tools

Distribution of Interarrival Time: We calculated the mean inter-arrival time (IAT) (λ) for the flights and estimated the best distribution fit for the interarrival time across the April and May data of 2023. This was found to be exponential. The exponential distribution is the best fit with an average IAT of 0.0017 minutes with a K-S fit statistic of 0.25 (See Table 1 for details).

Table	1
-------	---

Fitness Statistics for Inter-Arrival Time

Study Data	May 2023
Fit Statistic (KS)	0.252872612775647
Fit Limit (KS)	0.99
Formula	= Psi Exponential (0.00175292335798317,
	PSI Truncate (-1E+30, 1E+30))
Minimum	0
Maximum	8
Mean	0.00175292335798317
Mode	0
Std. Dev.	0.00175292335798317
Variance	3.072740298863E06
Skewness	2
Kurtosis	9
Independent Test	0.541750179909087
Sig.	p < 0.000

Simulation of Model: To develop our model, we have done simulation on the input data using Frontline Analytic Solver. Inputs, constraints, and output variables for simulation (simulation inputs and outputs) are presented in Table 2.

Table 2

Inputs and Output Variables for the Simulation Model

Sl.	Simulation Inputs	Sl.	Simulation Outputs
1.	IAT Mean	1.	Simulated Mean Taxi Time
2.	Upper Limit IAT	2.	Optimized Mean Taxi Time
3.	Runways under use because of wind directions(east/west)	3.	Std Error
4.	Max average taxi-in time for simultaneous landing	4.	Min Taxi Time
5.	Simultaneous Arrival IAT	5.	Max Taxi Time
6.	Max No of flights for the model	6.	Quartile1 (Q1)
7.	Runways 9, 10, 11, 27, 28 and 29	7.	Quartile1(Q2)
8.	Stands – for all six runways	8.	Quartile3 (Q3)
9.	No flights arriving at the stand	9.	Quartile 9 (Q9)
10.	Simulation of IAT	10.	Quartile 10 (Q10)
11.	Min Taxi Time	11.	Average
12.	Taxi Time if Stand Runway Y10(i)=1	12.	% below Percentile

13.	Taxi-in Time - If Simultaneous Arrival Occurs	13	Actual Average							
14.	*Y10(i) = 1 if it is allocated and 0 if									
	not allocated.									
Note.	<i>Note</i> . Sl. No. 8 to 14 are applicable for all six runways (09, 10, 11, 27, 28, 29) *Y = Runway									

The Model

A step-by-step procedure for the simulation and optimization of the model is presented below.

- [1] Collected data are tabulated under the captions (i) *Flight No*, (ii) *the runway end flight is landing*, (iii) *the stand number the flight is reaching*, (iv) *taxi-in time*, (v) *time of landing*, (vi) *Inter arrival time* (*IAT*) *of landing* and (vii) time of arrival.
- [2] We have developed two simulation models, considering 600 arrivals data for each day.
- [3] Found the minimum taxi-in time of all the flights of each model from the whole month's arrival data to look for the *minimum taxi times from* each runway to the stands $(t_1 \dots t_n)$.
- [4] We created the simulated values of IAT ranging between 0 (minimum IAT during simultaneous landings) to the maximum time of IAT for 600 flights.
- [5] Calculated the maximum taxi-in time during simultaneous landing for each model.
- [6] Structured the model for all six runways 09, 10, 11, 27, 28, and 29 under the captions (i) Stand number, (ii) No of flights arriving at the stand, (iii) Simulation of IAT, (iv) Minimum taxi-in time, (v) Taxi-in time if stand Runway Y10(i)=1 that is the maximum taxi-in time during simultaneous landing, (vi) Taxi-in Time - If simultaneous arrival occurs, viii) Y10(i) runway allocated by the model after running the optimization (If 1 is filled, it means the runway has been allocated, and if it is filled with 0, means it is not allocated).
- [7] Extracted the 600 *Stands* (S₁...S_n) and their actual taxi-in times for 600 flights for all the runways of all the models from Step 1.
- [8] Applied all the formulas in the model wherever applicable to identify objectives, variables, and constraints.
- [9] Uncertainty of Inter-flight arrival times is modelled using simulation with the best-fit distribution on 02 April and 01 May 2023. If two flights arrive within a critical limit (typically set to 1 minute) of each other, the subsequent flight must be directed through a longer route to its designated stand, which is far, and the taxi time is set to its average maximum limit.

- [10] For each Stand $(S_1...S_n)$, the simulation is run for 1000 iterations. If the (λ) is above the critical limit (more than 1 minute), the flight is assumed to utilize the optimal runway for landing, and the minimum taxi time is assumed for this flight)
- [11] Found the outputs as optimized average taxi-in time from all the models by creating the optimal allocation of runways to the *Stands* $(S_{1...}S_n)$ using the analytical solver.
- [12] The optimal solution from step 11 is the best taxi times if there are no uncertainties. However, uncertainties in the inter-flight arrival times, ground conditions, availability of runways, and stands will add to the achievable taxi times for the flights.
- [13] We have created boxplots for all the models, which show the potential improvements in the optimized taxi-in time from the actual average taxi-in time.
- [14] The validity of the model is confirmed by measuring the arithmetically optimized mean taxi-in time, which reflects the reality. The arithmetically optimized average is calculated as the total minimum time taken for runways plus extra time taken for simultaneous landings divided by the number of flights.
- [15] Other uncertainties may be similarly incorporated into a more complex model in this model, we restrict our exploration to the two simultaneous arrivals of flights within a minute. This is the limitation of the present model.

A glimpse of the simulation model for a stochastic optimised solution using the Frontline Analytic Solver is exhibited in Figure 2.

Figure 2

Example of Stochastic Optimized Solution

X A	utoSave) (10	3 9-		⊽ 1st 1	150 Flight	s-020423	• Save	d to this l	×~												Ra	jib Das 🧌	₩ (// -	ð	Х
File	Home	Insert	Page La	yout F	ormulas	Data	Review	View	Add-ins	Help	Nitro PD	F Pro	Analytic :	Solver	Data Mi	ning								F	[]] Commen	ts 🖻 Sha	ire ×
Model	Distrib	utions Co	rrelations	Results	Decision	ns Constr	aints Obje	tive P	arameter:	s Simul	ate Opt) imize	Create F	🛃 Reports (Charts	Decision	📉 Fit	, Tria	Publish als: 1000		.oad/Save 5 Reset A	Get Da	ata Options	License	inter the second		
•													Арр			Tree ¥	Sim #1	· 🤆		· 🕑 🛛 🖉	Opt #1						
Model	 	Simulati	on Model		0)ptimizatio	on Model	F	arameters	; 	Solve /	Action		Analy	sis			T	ools			Data	a Options	License	Help		_
AA5																											
A A	8	С	D	E	F	G	н	1	J	X	L	M No of Fit	N	0	P A stual Au	Q	R	S	Î Na of filo	U	V	W Arthurl Awa	1 Colu	ar Onti	000.00	J	
2	-	IAT Mea	3.78	Max taxi	in time for	r simultane	ous landing	7.66		Taxi time	4.78	150	Max	4.0	7ACUALAN 3 1.25	-	Taxi time	4.74	150.00	Min	4.07	Actual Avg 7.25		er Opti	ons and		× `
3	Upper L	.imit IAT	25.00			Simult An	rival IAT	1		Mean Tax	4.73	0.03	Q1	4.7	1		Mean Tax	4.73	0.02	Q1	4.71		/ 🍕 Moo	iel 🗷 Platf	CaEngi V	🖥 Out 🌾	Wor \
4	_	WindDir	ei 1	<u>ا</u>		Max No o	of Filts	160	i	Std Error	0.0012		02	4.7	3		Std Error	0.0012	1	0,2	4.73		- • · ·	к 📑		3	
5	-	(set = 1 f	or 27-29)		-								Q3 Average	4.70	5					Q3	4.76		166	Objective			
7	-	-									Target	5	% below	1.00)			Target	5	% below	1.00			- 🗏 \$1.\$3 (Min)			
8											ľ		Percentile	2						Percentil	6			Variables			
9													Q10	4.65	9					Q10	4.69			9451	12:\$H\$161,\$P\$12	:\$P\$161,\$X\$12;\$	X\$161
10	_	_				Test in							Q90	4.7	3		Max TTSL	7.66		Q90	4.78	Test in		- 📜 Recourse			
		No.of			Tavi Time	Time . If				No.of			Tavi Timo	Time If				No.of			Tavi Timo	Time If	D D D	Constraints			
		Flights			if	Simultan				Flights			if	Simultan				Flights			if	Simultan		-ME \$AW	\$12:\$AW\$161 =	1	
		arriving			standRun	eous				arriving			standRun	eous				arriving			standRun	eous			12=0		
		at the	Simulatio) Min Taxi	way	Arrival				at the	Simulatio	Min Taxi	way	Arrival				at the	Simulatio	Min Taxi	way	Arrival		- El III SAU	512 : \$40.\$14 <= \$	AT\$12:\$A1\$14	
11 9	Stand	s stand	n of IAT	Time	Y9(i)+1	Occurs	Y9(i)	10	stands	stand	n of IAT	Time	Y10(i)-1	Occurs	Y10(i)	11	Stands	stand	n of IAT	Time	Y11(i)=1	Occurs		Recourse			
12	2 0	33 0	2.36955	2 10	10	0	0	1	155		2.520435	2	9.00	0	0	1	155		4.538033	5	18.60	0		- 📴 Bound			
14	3 D	45 0	1.119698	8 10	10	0	0	3	D45		2.847187	13	20.66	0	0	3	D45		0.873981	3	10.66	0		Conc Integers			
15	4 2	102 0	2.030622	2 10	10	0	0	- 4	202		1.093849	1	14.66	0	0	4	202		8.272553	11	18.66	0		-2 1 \$#\$	\$12:\$AF\$161 = b	nary	
16	5 C3	4R 0	3.002226	5 10	10	0	0	5	C348		3.623975	4	11.66	0	0	5	C34R		5.461834	8	15.66	0			\$12:\$AV\$161 = b	inary	
17	6 R	12 0 VP 0	2,6037	7 10	10	0	0	6	R12		11.39593	8	15.66	0	0	6	R12		9,955334	10	15.66	0		9151	12:\$H\$161 = bina	ry ry	
19	8 D3	191 0	11.52884	10	10	0	0	8	D39L		2.577574	10	17.66	0	0	8	D39L		9.139998	4	11.66	0					
20	9 R1	OR O	5.830655	5 10	10	0	0	9	R10P		6.893145	8	15.66	0	0	9	R10R		3.475672	8	15.66	0	🛛 Model	Diagnosis			1
21	10 16	i3L 0	11,4101	1 10	10	0	0	10	1630		1.105008	2	9.66	0	0	10	163L		15.90011	11	18.66	0	Model T	ipe	Unknown		
22	11 D	46 0	4.074571	1 10	10	0	0	11	D46	i	12.59958	10	17.66	0	0	11	D46		1.09917	3	10.66	0	🗆 Variab	les - Functions	Dependencie Vars for	s 15 Done	
25	12 H	4R 0	3.100031	10	10	0	0	12	A149		6.222722	9	16.66	0	0	12	K11 414R		1.733159	15	14.65	0	Al		900 15	5 N/A	
25	14 A	08 0	2.0754	2 10	10	0	0	14	AOS		3.456726	9	16.66	0	0	14	A08		1.29531	10	17.66	0	Snoth		N/A N/A	A N/A	
26	15 2	11 0	5.564195	5 10	10	0	0	15	211		1.116453	6	13.66	0	0	15	211		6.185467	11	18.66	0	Recours	8	0 N/	A N/A	
27	16 D	47 0	1.357775	9 10	10	0	0	16	D47	'	7.286971	13	20.66	0	0	16	D47		18.96004	3	10.66	0	O Hodel	Type			-
28	17 A1	AL 0	5.415242	z 10	10	0	0	17	A14		1.435428	9	16.66	0	0	17	A14L		5.653345	9	16.66	0	If Unknow model.	r, press the 'Anal	yze without Solvi	ng' button to diag	nose the
0	10 1	<i>31</i> U	0.91130/	10	10		Model 0105	10	D Rinks		3,210099	1	7,00	V	V	10	15/		4,741974	11	16.00	U	T		_	_	
$\langle \rangle$	- R	rst 150 Fligh	ns lata	and Fit	Min taxi-ir	n time	model 0105/	co-mist 15	o alignis	Boxplot			•									,	Sinuation 1	nenet successiv	ay.		
Ready (.alculate	W Access	iolity: invest	ugate																			⊞				100%
🔮 B1% Sur	C Iset coming						Q Sear	ch			0	1	0		4	0	:		0	0	v 🖞	8			∧ ^{ENG} IN	口(1) (1) (13-1	17:45 07-2023

Analysis

The model outcomes are presented with the help of tables having captions of actual taxi-in time, optimized taxi-in time, actual average taxi-in time, optimized average taxi-in time, and arithmetically optimized average taxi-in time for each day. Q1, Q2, Q3, Q10 and Q90 stand for the first quartile, second quartile, third quartile, tenth and ninetieth percentile range of taxi-in time, respectively.

Simulation and optimization outputs 02 April 2023

Figure 3 *Boxplot for Taxi-in time: 02 April 2023*

Average taxi-in time is computed as 7.01 minutes against the maximum of 12 minutes and a minimum of 3 minutes (five outliers are present in the frequency distribution).

The simulation and optimization outcomes are presented in Table 3. The left column shows the actual situation on that day. Maximum taxi-in time taken for simultaneous landing is calculated as 8.56 minutes, and arithmetically optimized average taxi-in time is calculated as 4.79 minutes.

Simulation run optimized output for taxi-in time is remarkable. The optimized average taxi-in time is reduced to 4.82 minutes from the actual average of 7.01 minutes. Originally, Q1 is 5 minutes, i.e., 25% of the flights take 5 minutes or less time; Q2 is 7 minutes, i.e., 50% of the flights take 7 minutes or less time; Q3 is 9 minutes, i.e., 75% of the flights take 9 minutes or less time. The range of Q1 to Q3 is 3 minutes (Q3 minus Q1). However, after simulation, Q1, Q2 and Q3 get changed to 4.79, 4.82 and 4.85 minutes, ranging only 0.06 minutes.

Table 3

The Output of the Simulation Model: 02 April 2023

Actual Situation		Optimised Output				
No of Flights	600	Simulated Mean Taxi-in Time	4.80			
Target Taxi-in time	5	Std Error	0.001 4			
Min Taxi-in Time	3	Min Taxi-in Time	4.71			
Q1	5	Q1	4.79			
Q2	6	Q2	4.82			
Q3	8	Q3	4.85			
Max Taxi-in Time	12	Max Taxi-in Time	5.03			
Actual Avg. Taxi-in time	7.01	Optimised Average Taxi-in time	4.82			
Arithmetically optimised Taxi-in time	4.79	Q10	4.77			
Max. Taxi-in Time for Simultaneous Landing	8.56	Q90	4.88			

Note: All figures are in minutes except the number of lights

Our investigation on percentile distribution of simulated mean taxi-in time shows that 10% of flights (Q10 = 4.77) will take 4.77 minutes or less time, and 90% of flights will take 4.88 minutes or less. Our target mean taxi-in time for the present simulation was set at 5 minutes, but interestingly, the maximum time could be taken by arriving flight as 5.03 minutes in this model.

A diagrammatic presentation is prepared (See Figure 4) considering the actual taxi-in time, actual average taxi-in time, model optimized taxi-in time, and optimized average taxi-in time ranging from the minimum to maximum, including three quartiles.

Figure 4 *Quartile Graph for Actual and Optimized Taxi-In Time: 02 April 2023*

Simulation and Optimization outputs 01 May 2023

Likewise, the boxplot of taxi-in time of 600 flights as of 1 May (See Figure 5) shows that the average taxi-in time is 8.08 minutes, the maximum is 19 minutes, and the minimum is 2 minutes (three outliers are present).

Figure 5

Boxplot for Taxi-in time: 01 May 2023

Optimised outcomes of simulation run model are presented in Table 4. The maximum taxi-in time taken for simultaneous landing is calculated as 10.9 minutes, and the arithmetically optimized average taxi-in time is 4.62 minutes. The Optimised average taxi-in time in our model comes to 4.62 minutes, far below the actual average of 8.08 minutes. Minimum, maximum and Q1, Q2, Q3 for actual and optimum values are noted.

Table 4

Actual Situation		Optimised Output				
No of Flights	600	Simulated Mean Taxi-in Time	4.62			
Target Taxi-in time	5	Std Error	0.000 9			
Min Taxi-in Time	2	Min Taxi-in Time	4.55			
Q1	5	Q1	4.60			
Q2	7	Q2	4.62			
Q3	11	Q3	4.64			
Max Taxi-in Time	19	Max Taxi-in Time	4.71			
Actual Avg. Taxi-in time	8.08	Optimised Average Taxi-in time	4.62			
Arithmetically optimized Taxi-in time	4.62	Q10	4.58			
Max. Taxi-in Time for Simultaneous Landing	10.9	Q90	4.66			

The Output of the Simulation Model: 01 May 2023

Note. All figures are in minutes except the number of flights.

Q10 and Q90 results show that 10% of flights (Q10 = 4.58) will take 4.58 minutes or less time, and 90% of flights will take 4.66 minutes or less. Maximum time could be taken by arriving flight as only 4.71 minutes.

Actual taxi-in time, actual average taxi-in time, model optimized taxi-in time, and optimized average taxi-in time ranging from the minimum to maximum, including three quartiles for the day, are presented in Figure 6.

Validity

A comparison of arithmetically optimized values calculated for all the models and corresponding optimised values are found to be very close, and the difference is non-significant (p > 0.05). For instance, the model-optimised average taxi-in time of 02 Apr is 4.82 minutes, and the arithmetically optimised average taxi-in time is 4.79 minutes (See Table 3). The difference is only 0.03 minutes.

Figure 6 *Quartile Graph for Actual and Optimized taxi-in time: 01 May 2023*

Similarly, the model-optimized average taxi-in time of 01 May is 4.62 minutes, and the arithmetically optimized average taxi-in time is 4.62 minutes (See Table 10). There is absolutely no difference.

Therefore, we can see that the model-generated outputs (average taxi-in time) are identical or close to reality. This proves that our model perfectly fits for optimizing the taxi-in time.

Discussion

The current practice of assigning stands and the nearest runways to aircraft as soon as a flight plan is received would work if there were no other uncertainties in the flight arrival times. However, since the arrival of the flights is probabilistic, pre-scheduled allocation of runways and stands fails to optimize aircraft traffic management, resulting in unusual delays in taxi-in times. Aiming at resolving the decades-long taxi-in delay problems of IGIA and other airports, our stochastic optimization technique reveals that the average taxi-in time for any day can be reduced substantially.

The optimized simulation results considering the stochastic interarrival time of the arriving aircraft for two representative scenarios are presented in Table 5. The simulated model reflects that improvements in mean taxi-in time for the arriving aircraft are approximately 31% on 2 April and 43% on 1 May 2023.

Summary of Taxi-in time Of	otimization	
	Improvemen	t in
Scenario	Actual	(

Table 5

	Improvement in taxi-in time in minutes						
Scenario	Actual	Optimized	Improvement				
	taxi- in time	taxi-in Time	in Percentage				
Flights landed from the east on runways 27, 28 and 29 on 01 Apr 2023	7.01	4.82	31.24%				
Flights landed from the west on runways 10 and 11 on 01 May 2023	8.08	4.62	42.82%				

We considered flight IAT of 1 minute or less as 'simultaneous' arrivals. The addition of more ground-level constraints may reduce the improvement percentages. Applying the present stochastic optimization model, on average, the total time saved for all arriving aircraft on 2 April is approximately 1314 minutes $[600 \times (7.01-4.82) = 1314]$, and on 01 May is about 2076 minutes $[600 \times (8.08-100)]$ 4.62) =2076]. If we divide the time saved by the optimised average taxi-in time, we can accommodate a further 272 flights (1314/4.82= 272) on 2 April 2023 and 450 flights (2076/4.62=450) on 1 May 2023. But finally, we have to consider the lesser value of 272 flights as the flow of wind direction keeps changing from day to day. This can be considered as a measure of huge capacity enhancement without altering any physical infrastructure.

Conclusion

Due to uncertainty in the flight arrival times, a first-come-first-serve treatment is followed on runway allocations, resulting in sub-optimal allocation of runways and an increase in taxi-in times. Our effort is to reallocate runways and parking stand using a stochastic optimization model so that mean taxi-in time get reduced substantially to an internationally set practice of 5-minute taxi-in time.

The current research shows that without altering any physical infrastructure and applying a stochastic optimization model, there is a 37% potential improvement in the average taxi-in time at IGIA. The significant difference between the performance of the model on actual taxi-in time and optimized taxi-in time needs further testing, considering more constraints. This simulation model can resolve the decade-long ground delay problem of IGIA. It can also be applied to estimate the savings in passenger's time, fuel costs, operational costs of airports and airlines, and most importantly, carbon emissions.

References

- Ashford, N. J., Mumayiz, S., & Wright, P. H. (2011). *Planning, design, and development of 21st century airports.* Wiley.
- Carr, F. R. (2001). *Stochastic modeling and control of airport surface traffic* (Doctoral dissertation, Massachusetts Institute of Technology).
- Das, R., Banerjee, S., & Bhuin, P. K. (2022, Aug). Enhancing operational efficiencies by minimizing the taxiing time of arriving aircraft at IGIA, New Delhi. *Journal of Airport Management*, 16(4), 1-12.
- Flightradar24.com. (n.d.) *Live air traffic*. https://www.flightradar24.com/ 28.55,77.10/14 (accessed 2nd April 2023)
- Horonjeff, R., McKelvey, F. X., Sproule, W. J., & Young, S. B. (2010). *Planning* and design of airports. McGraw-Hill Education.
- International Air Transport Association. (2016a). *Airport development reference manual*. Author.
- International Air Transport Association. (2016b). *Airport operational manual*. Author.
- Majumder, A. (2023, April 05). *Delhi airport ninth busiest in the world in 2022*. https://economictimes.indiatimes.com/industry/transportation/airlines-/aviation/delhi-airport-ninth-busiest-in-the-world-in-2022/articleshow/ 99275512.cms?from=mdr
- Meier, C., & Eriksen, P. (2006). *Total airport management (operational concept & logical architecture)*. https://www.semanticscholar.org/
- Mori, R. (2015). Development of fast-time stochastic airport ground and runway simulation model and its traffic analysis. *Mathematical Problems in Engineering*, 2015(253). doi:10.1155/2015/919736
- Trani, A. A., & Baik, H. (2003). Airport and airspace simulation models. Sage.

					From Run		Time	Taxi-in Time in		Ter
SI.	Time	Flight	Airling	Aircraft	way End	Time of	of	Minute	Stand	min
NO	12:10	AI808	Air India	A320 (VT-EDE)	11	23:31	Arrivar	3	NO.	di
1	AM						23:38	7	C30L	3
2	12:05	AI854	<u>Air India</u>	<u>A321 (VT-PPI)</u>	11	23:40	22.45	-	C205	2
2	AM 12·10	116950	Vistara	Δ20N (\/T-	11	23.52	23:45	5	C29R	3
3	AM	010550	vistara	<u>TQG)</u>		25.52	23:57	5	D58	3
	12:25	<u>AI480</u>	Air India	A321 (VT-PPQ)	11	23:57				
4	AM	11//020) (° al a sa			00.00	0:03	6	R07	3
5	12:05 AM	UK838	vistara	<u>A20N (VI-TQJ)</u>	11	00:00	0:13	13	R11	3
	12:05	6E6235	IndiGo	A21N (VT-IUE)	10	00:03	0110	10		
6	AM						0:07	4	150	1
7	12:30	<u>6E2189</u>	<u>IndiGo</u>	<u>A21N (VT-IUX)</u>	10	00:13	0.22	0	202	2
/	12:40	6E2336	IndiGo	A21N (VT-IME)	11	00:25	0.22	9	202	2
8	AM			······································			0:37	12	R10R	3
_	12:40	<u>UK856</u>	<u>Vistara</u>	<u>A20N (VT-</u>	11	00:32				
9		ETCOO	Ethionia	TQH)	11	00.20	0:47	15	R10L	3
	1:05 AIVI	<u>E1088</u>	n <u>Ethiopia</u>	<u>B788 (ET-AUU)</u>	11	00:39				
10			Airlines				0:50	11	A13	3
	12:05	6E5605	<u>IndiGo</u>	<u>A21N (VT-IBH)</u>	11	00:42		c	5365	
11	AM 1:00 AM	652083	IndiGo	A21N (\/T-II H)	11	00.45	0:48	6	D39R	3
12	1.00 AM	012005	<u>indido</u>			00.45	0:55	10	Y6	2
13	12:05 AM	6E2716	IndiGo	<u>A20N (VT-IVB)</u>	11	00:47	1.00	13	212	2
15	12:20	6E6102	IndiGo	A20N (VT-IVI)	11	00:50	1.00	15	212	2
14	AM						1:07	17	151	1
15	12:45	<u>6E6813</u>	<u>IndiGo</u>	<u>A21N (VT-ILD)</u>	11	00:51	0.00	17	1620	1
15	AIVI 1.30 AM	6E5912	IndiGo	A20N (VT-ISX)	11	00.54	0:08	1/	103K	1
16	1.00 444	<u>013311</u>	<u>Matana</u>			00.51	1:04	10	X5	2
17	1:00 AM	<u>UK986</u>	vistara	<u>A21N (VI-IVC)</u>	11	00:57	1:04	7	A14R	3
10	12:15	<u>G8118</u>	<u>Go First</u>	A20N (VT-	11	00:59	1.11	12	202	2
18	AIVI 1.20 AM	A7770	ΙΤΑ	<u>WGH)</u> A332 (EI-EIG)	28	01.01	1:11	12	203	Z
19	1.207.00	<u>112/70</u>	Airways	<u>/////////////////////////////////////</u>	20	01.01	1:13	12	A03	3
	12:55	<u>LH760</u>	<u>Lufthans</u>	<u>B744 (D-ABVZ)</u>	11	01:07				
20		651464	<u>a</u>		11	01.00	1:18	11	A09	3
21	1:50 AM	<u>6E1464</u>	inaiGo	AZUN (VI-IVS)	11	01:09	1:15	6	D41	3
22	1:25 AM	<u>15775</u>	<u>AirAsia</u>	<u>A20N (VT-ATE)</u>	11	01:14	1.24	-7	FC4	2
22	1:40 AM	6F2098	Indi <u>Go</u>	A20N (VT-ISN)	11	01:16	1:21	/	E04	3
23	4.55.44	00570	0		40	01.10	1:26	10	206	2
24	1:55 AM	<u>QK578</u>	<u>Qatar</u> Airways	<u>A359 (A7-AMJ)</u>	10	01:18	1:31	13	B17	3
25	2:00 AM	<u>6E1308</u>	IndiGo	A20N (VT-ISI)	11	01:22	1.20		100	2
25							1:30	8	AU6	3

ADDITIONAL INFORMATION A. Arrivals of First 150 flights on 01 May 2023

26	1:15 AM	<u>15749</u>	<u>AirAsia</u>	<u>A20N (VT-ATH)</u>	11	01:24	1.20	r.	574	2
26	12:05	6E2202	India IndiGo	A320 (VT-IHZ)	11	01:27	1:29	5	E74	3
27	AM	022202	maroo	<u>/////////////////////////////////////</u>		01.27	1:39	12	217	2
	1:55 AM	<u>15722</u>	AirAsia	A20N (VT-ATD)	11	01:29		_		
28	12.10	C9714	India Go Eirct		11	01.22	1:35	6	D54	3
29	AM	<u>66714</u>	<u>GO FIISL</u>	A320 (VI-GOR)	11	01.52	1:45	13	208	2
30	1:55 AM	<u>KL871</u>	KLM	<u>B78X (PH-BKA)</u>	11	01:40	1.52	12	B15	3
21	1:00 AM	<u>6E6146</u>	<u>IndiGo</u>	A21N (VT-ILB)	11	01:42	1.52	15	171	1
22	2:10 AM	AI112	Air India	<u>B788 (VT-ANS)</u>	11	01:46	1.57	- 15	1/1	
32	1:00 AM	6E5284	IndiGo	A20N (VT-IIZ)	11	01:49	1:53	/	B21	3
33	12.25	<u>C0245</u>	<u>Ca First</u>	A20N ()/T		01.52	1:55	6	R08L	3
34	12:35 AM	<u>68345</u>	<u>GO FIRST</u>	<u>A20N (V1-</u> WGD)	11	01:52	2:05	13	Y8	2
	1:35 AM	<u>15774</u>	<u>AirAsia</u>	A320 (VT-VTZ)	11	01:54				
35	4.05.444	01620	India			04.57	1:58	4	E78	3
36	1:05 AM	91628	Aillance	<u>A176 (V1-AIZ)</u>	11	01:57	2:04	7	R01	3
27	2:10 AM	<u>6E5658</u>	IndiGo	A20N (VT-IZK)	11	02:04	2:10	, c	DAE	2
57	3:05 AM	GF132	Gulf Air	A320 (A9C-AG)	11	02:08	2.10	0	045	5
38	2.30 AM	14443	Iragi	B738 (YI-ASW)	11	02.16	2:20	12	A10L	3
39	2.507.00	<u></u>	Airways	<u> 8738 (11713107</u>		02.10	2:29	13	A14L	3
40	2:55 AM	<u>L071</u>	LOT	<u>B789 (SP-LSC)</u>	11	02:19	2:37	18	A13	3
/1	1:30 AM	<u>AI916</u>	<u>Air India</u>	<u>B788 (VT-ANG)</u>	11	02:21	2.20	0	P17	2
41	2:45 AM	EK512	Emirates	B77W (A6-	11	02:25	2.30	9	817	5
42				EGC)			2:34	9	B19	3
10	3:25 AM	<u>XY329</u>	<u>flynas</u>	A20N (HZ-	11	02:32	2.42	11	A10P	2
45	3:10 AM	FZ431	flvdubai	B38M (A6-	28	02:36	2.45	11	AIUK	5
44				<u>FMT)</u>			2:42	6	A08L	3
45	3:15 AM	<u>AI974</u>	<u>Air India</u>	<u>A321 (VT-PPO)</u>	11	02:43	2:48	5	C33	3
46	2:25 AM	<u>TK6565</u>	AirACT	<u>B744 (TC-ACF)</u>	11	02:46	3:03	17	263	2
	3:20 AM	<u>SU232</u>	<u>Aeroflot</u>	<u>B77W (RA-</u>	11	02:50				
47	2.40.444	51/24.0	Et la d	<u>73148)</u>		02.52	3:04	14	A11	3
48	3:10 AM	<u>EY218</u>	Etinad	<u>B789 (A6-BLF)</u>	11	02:52	3:16	24	A09	3
	2:58 AM	<u>CI5640</u>	<u>China</u>	<u>B744 (B-</u>	11	02:55				
49			Cargo	18722)			3:27	32	257	2
	2:15 AM	<u>TG331</u>	Thai	<u>B788 (HS-TQB)</u>	11	02:58				
50	2 00 444	15720	<u>Airways</u>			02.01	3:11	13	A12	3
51	3:00 AM	<u>15738</u>	Air <u>Asia</u> India	<u>A320 (VI-KUL)</u>	11	03:01	3:06	5	R08R	3
52	4:05 AM	<u>GF130</u>	Gulf Air	A320 (A9C-AB)	10	03:09	3.22	12	2081	2
52	3:35 AM	<u>AI948</u>	<u>Air India</u>	<u>A20N (VT-EXI)</u>	10	03:18	2.24	13	AUOL	2
53	2:57 AM		-	GI 5T (G-	10	03.23	3:31	13	BZOK	3
54	2.37 AW			<u>OMTX)</u>	10	00.20	3:39	16	GA2	3
	4:00 AM	<u>G9463</u>	Air	A320 (A6-ANS)	10	03:29	2.00	40	4000	-
55	3.45 0.04	V1383	<u>Arabia</u> Air India	Δ20N (\/T_FY\/)	10	03.30	3:39	10	A08R	3
	J.4J AIVI	MIDOD	An muid	AZUN (VI-EAV)	10	03.39	3:55	16	B22R	3

	3:30 AM	<u>SG12</u>	Corendo n	<u>B38M (TC-</u> <u>MKF)</u>	10	03:46				
57			Airlines				4:02	16	A07L	3
58	4:00 AM	<u>6E2082</u>	<u>IndiGo</u>	<u>A21N (VT-ILC)</u>	10	03:49	3:56	7	202	3
59	2:00 AM	<u>6E2746</u>	<u>IndiGo</u>	<u>A20N (VT-IVY)</u>	10	03:54	4:01	7	Y3	2
60	4:10 AM	<u>AI884</u>	<u>Air India</u>	<u>A319 (VT-SCF)</u>	10	03:56	4:07	11	B24R	3
61	4:15 AM	<u>6E681</u>	<u>IndiGo</u>	<u>A20N (VT-IZI)</u>	10	03:59	4:05	3	172	3
62	3:55 AM	<u>G876</u>	<u>Go First</u>	<u>A20N (VT-</u> WJG)	10	04:06	4:15	9	A14L	3
63	4:40 AM	<u>6E2111</u>	<u>IndiGo</u>	A21N (VT-IMX)	10	04:09	4:15	6	Y7	2
64	4:50 AM	<u>AI972</u>	<u>Air India</u>	A20N (VT-CIN)	10	04:13	4:24	11	C31L	3
65	4:55 AM	<u>AI996</u>	<u>Air India</u>	<u>B788 (VT-AND)</u>	10	04:29	4:45	16	B26	3
66	5:00 AM	6.00E+1 2	<u>Turkish</u> Airlines	<u>B77W (TC-LKA)</u>	10	04:37	4:49	12	A03	3
67	4:45 AM	<u>SG66</u>	SpiceJet	<u>B738 (VT-SZN)</u>	10	04:41	4:55	14	D53	3
	4:33 AM	<u>ET8802</u>	<u>Ethiopia</u>	<u>B788 (ET-ARF)</u>	10	04:47	1.55			5
68			<u>n</u> Airlines				5.04	17	۵12	з
00	4:40 AM	<u>TK716</u>	Turkish	<u>B77W (TC-LKC)</u>	10	04:51	5.04	17	712	5
69	5·20 AM	ΔΥ121	<u>Airlines</u> Einnair	4333 (OH-LTR)	10	05:04	5:07	16	A01	3
70	5.20 AM	651406			10	05.04	5:17	13	A11	3
71	5:25 AIVI	<u>661406</u>	IndiGo	<u>A20N (VT-ISD)</u>	11	05:15	5:18	3	D55	3
72	6:10 AM	6.00E+1 58	IndiGo	<u>A320 (VI-IAO)</u>	10	05:49	5:52	3	150	1
73	6:40 AM	<u>6.00E+8</u> 4	<u>IndiGo</u>	<u>A20N (VT-IJY)</u>	10	05:56	6:06	10	A08L	3
74	7:00 AM	<u>AI140</u>	<u>Air India</u>	<u>B788 (VT-ANA)</u>	11	06:07	6:15	8	A09	3
75	6:40 AM	6E5163	<u>IndiGo</u>	<u>A20N (VT-IPH)</u>	11	06:13	6:19	6	D43	3
76	6:25 AM	<u>AI284</u>	<u>Air India</u>	A320 (VT-EDF)	11	06:18	6:24	6	C28R	3
77	6:55 AM	<u>WY241</u>	<u>Oman</u> Air	<u>A332 (A4O-</u> DG)	10	06:22	6:36	14	B24R	3
78	6:50 AM	<u>6E1232</u>	IndiGo	<u>A20N (VT-IPJ)</u>	10	06:23	3:33	10	A08R	3
79	6:55 AM	6E5182	<u>IndiGo</u>	<u>A20N (VT-IVX)</u>	11	06:25	6:29	4	D51	3
80	6:45 AM	G8176	<u>Go First</u>	<u>A20N (VT-</u> WGA)	10	06:27	6:34	7	208	2
81	6:40 AM	<u>G8424</u>	<u>Go First</u>	<u>A20N (VT-</u> WDA)	10	06:30	6:39	9	209	2
82	6:25 AM	<u>SG88</u>	<u>SpiceJet</u>	<u>B38M (VT-</u> MXA)	11	06:33	6:36	3	D53	3
83	7:35 AM	<u>SG26</u>	<u>SpiceJet</u>	<u>B738 (VT-SYZ)</u>	11	06:46	6:52	6	D58	3
84	7:15 AM	6E6247	<u>IndiGo</u>	<u>A21N (VT-IBL)</u>	10	06:50	6:53	3	161L	1
85	7:15 AM	6E2056	<u>IndiGo</u>	A21N (VT-IMG)	10	06:54	7:04	10	R11	3
	7:20 AM	<u>15744</u>	AirAsia	A320 (VT-	11	06:58			D :::	_
86	7:40 AM	6E526	India IndiGo	<u>GWH)</u> A21N (VT-IBJ)	10	07:05	7:02	4	049	3
8/	7:25 AM	6E379	IndiGo	A20N (VT-IIL)	10	07:13	7:08	3	148	
88	l			<u></u>			7:15	2	155	1

89	7:40 AM	UK974	<u>Vistara</u>	A20N (VT-TQP)	11	07:22	7:29	7	D39R	3
90	7:45 AM	6E2108	<u>IndiGo</u>	A20N (VT-IPF)	10	07:26	7:33	7	211	2
91	8:30 AM	<u>UK26</u>	Vistara	<u>B789 (VT-TSQ)</u>	11	07:32	7:40	8	B17	3
92	8:10 AM	<u>AI138</u>	<u>Air India</u>	<u>B788 (VT-</u> ANW)	11	07:35	7:42	7	B20	3
93	8:00 AM	G8329	<u>Go First</u>	<u>A20N (VT-</u> <u>WJN)</u>	10	07:39	7:45	6	205	2
94	7:55 AM	<u>AI454</u>	<u>Air India</u>	<u>A321 (VT-PPU)</u>	11	07:43	7:52	9	A14L	3
95	8:10 AM	6E6828	<u>IndiGo</u>	<u>A21N (VT-IUE)</u>	10	07:44	7:47	3	150	1
96	7:40 AM	<u>G8116</u>	<u>Go First</u>	<u>A20N (VT-</u> <u>WGE)</u>	10	07:48	7:58	10	A06	3
97	8:20 AM	6E1312	<u>IndiGo</u>	A20N (VT-ISW)	11	07:49	7:56	7	B18	3
98	7:15 AM	6E2344	<u>IndiGo</u>	<u>A320 (VT-IHZ)</u>	10	07:51	8:04	13	203	2
99	8:05 AM	6E5332	<u>IndiGo</u>	<u>A21N (VT-IMC)</u>	11	07:52	7:56	4	D45	3
100	8:05 AM	UK954	<u>Vistara</u>	A20N (VT-TQD)	11	07:54	8:00	6	D48	3
101	8:00 AM	6E5011	<u>IndiGo</u>	<u>A20N (VT-IVS)</u>	11	07:56	8:02	6	R07	3
102	7:55 AM	<u>6.00E+7</u> <u>2</u>	<u>IndiGo</u>	<u>A20N (VT-IZN)</u>	10	07:59	8:08	9	213	2
103	8:15 AM	UK926	<u>Vistara</u>	A20N (VT-TNP)	11	08:06	8:12	6	D43	3
104	8:45 AM	<u>AI559</u>	<u>Air India</u>	<u>A20N (VT-EXR)</u>	11	08:08	8:15	7	C32R	3
105	8:45 AM	<u>QR570</u>	<u>Qatar</u> Airways	<u>A332 (A7-ACT)</u>	10	08:10	8:21	11	A01	3
106	8:40 AM	<u>AI804</u>	<u>Air India</u>	<u>A20N (VT-EXF)</u>	11	08:12	8:17	5	C29R	3
107	8:30 AM	<u>6E9006</u>	<u>IndiGo</u>	<u>A20N (VT-IVN)</u>	10	08:14	8:24	10	D51	3
108	8:35 AM	<u>AI824</u>	<u>Air India</u>	<u>A320 (VT-EXE)</u>	11	08:15	8:23	8	C27L	3
109	8:25 AM	<u>SG160</u>	<u>SpiceJet</u>	<u>B737 (VT-SLP)</u>	10	08:17	8:20	3	151	1
110	8:30 AM	<u>AI120</u>	<u>Air India</u>	<u>B788 (VT-</u> <u>ANM)</u>	10	08:19	8:28	9	B21	3
111	9:05 AM	<u>EK510</u>	<u>Emirates</u>	<u>B77W (A6-ENJ)</u>	11	08:20	8:30	10	A01	3
112	8:35 AM	<u>6E6329</u>	<u>IndiGo</u>	<u>A20N (VT-ITZ)</u>	10	08:23	8:25	2	153	1
113	8:40 AM	<u>6E2116</u>	<u>IndiGo</u>	<u>A20N (VT-IIJ)</u>	10	08:25	8:31	6	206	2
	8:10 AM	ET686	<u>Ethiopia</u> <u>n</u>	<u>B788 (ET-ATG)</u>	11	08:26				
114	8·10 AM	68206	<u>Airlines</u>	A20N (\/T-	10	08.28	8:39	13	A12	3
115	0.00 AM	00200	Guarda	<u>WGC)</u>	10	00.20	8:39	11	201	2
	9:00 AM	<u>SG8191</u>	Corendo <u>n</u>	<u>B138 (AH-11C)</u>	11	08:28				
116			Airlines	10011/1/7			8:34	6	D60	3
117	8:40 AM	<u>UK928</u>	<u>vistara</u>	<u>AZUN (V1-</u> <u>TQO)</u>	11	08:32	8:37	5	D52	3
118	8:50 AM	<u>G8192</u>	<u>Go First</u>	<u>A20N (VT-</u> WJG)	10	08:33	8:39	6	208	2
119	8:50 AM	<u>15767</u>	<u>AirAsia</u> India	<u>A20N (VT-ATH)</u>	11	08:35	8:39	4	D54	3
120	8:45 AM	<u>6E6736</u>	IndiGo	A20N (VT-IZJ)	10	08:36	8:39	3	170	1

121	8:45 AM	<u>6E2343</u>	<u>IndiGo</u>	<u>A20N (VT-IIZ)</u>	10	08:38	8:46	8	212	2
122	8:50 AM	<u>6E962</u>	<u>IndiGo</u>	A21N (VT-IUD)	10	08:40	8:44	4	161R	1
123	8:55 AM	<u>AI440</u>	<u>Air India</u>	A321 (VT-PPM)	11	08:41	8:48	7	C34I	3
124	9:05 AM	<u>VS300</u>	<u>Virgin</u> Atlantic	<u>A35K (G-VTEA)</u>	10	08:42	8:55	13	A10	3
125	9:25 AM	<u>AI466</u>	<u>Air India</u>	<u>A20N (VT-EXH)</u>	11	08:44	8:50	6	C31R	3
126	8:25 AM	6E5021	<u>IndiGo</u>	<u>A21N (VT-IMB)</u>	11	08:45	8:52	7	D46	3
127	8:25 AM	<u>91844</u>	<u>Alliance</u> <u>Air</u>	<u>AT76 (VT-AII)</u>	11	08:47	8:54	7	B18	3
128	9:10 AM	<u>6E2026</u>	IndiGo	<u>A21N (VT-IUZ)</u>	10	08:51	8:59	8	202	3
129	9:00 AM	<u>6E2011</u>	<u>IndiGo</u>	<u>A21N (VT-IUX)</u>	10	08:53	9:03	10	R10L	3
130	9:20 AM	<u>6E5602</u>	<u>IndiGo</u>	A21N (VT-ILE)	11	08:54	9:05	11	A06	3
131	9:10 AM	<u>6E2398</u>	<u>IndiGo</u>	<u>A21N (VT-ILS)</u>	10	08:56	9:06	10	R12	3
132	9:20 AM	<u>6E5127</u>	<u>IndiGo</u>	<u>A20N (VT-IVB)</u>	11	08:57	9:03	6	D41	3
400	9:15 AM	<u>SG2951</u>	<u>SpiceJet</u>	<u>DH8D (VT-</u>	10	08:58		-	1.001	
133	9:15 AM	AI864	Air India	<u>SQA)</u> A321 (VT-PPJ)	11	08:59	9:00	2	160L	1
134	7:35 AM	AI158	Air India	B788 (VT-ANO)	10	09:00	9:06	/	C30L	3
135	9:25 AM	AI830	Air India	A320 (VT-EXB)	11	09:02	9:11	11	B22	3
136	9:30 AM	AI818	Air India	A320 (VT-EDD)	10	09:04	9:07	5	C31L	3
137	9:25 AM	AI436	Air India	A20N (VT-EXP)	11	09:05	9:14	10	C33	3
138	8:45 AM	SG8136	SpiceJet	B739 (VT-SLC)	11	09:07	9:10	5	C27R	3
139	9:25 AM	AI444	Air India	A320 (VT-EXD)	10	09:07	9:14	7	D50	3
140	9.25 AM	6F6221	IndiGo	A21N (VT-II D)	10	09.09	9:19	12	C30R	3
141	9.15 AM	AI763	Air India	A321 (VT-PPK)	11	09.10	9:12	3	161L	1
142	9.00 AM	<u>1 (1/ 000</u>	Vistara	A20N (VT-TNI)	11	09.10	9:17	7	C28R	3
143	9.15 AM	6F375	IndiGo		10	09.13	9:19	6	D53	3
144	0.25 AM		Vistoro	A20N (V/T-TNY)	10	00.14	9:18	4	154	1
145	0.20 AM	<u>SG122</u>	Spicolot	R727 (\/T_SLR)	10	09.13	9:22	7	D39L	3
146	9.50 AIVI	<u>30122</u>	<u>spicejet</u>	<u>B737 (VT-3LB)</u>	10	09.17	9:19	2	163L	3
147	9:40 AM	<u>SG8937</u>	<u>SpiceJet</u>	<u>B38M (VT-</u> <u>MXI)</u>	11	09:18	9:23	5	D62	3
148	9:45 AM	<u>SV756</u>	<u>Saudia</u>	<u>B77W (HZ-</u> <u>AK22)</u>	10	09:19	9:29	10	B15	3
149	9:40 AM	<u>UK930</u>	<u>Vistara</u>	<u>A21N (VT-TVF)</u>	11	09:21	9:25	4	D55	3
150	9:35 AM	<u>15710</u>	<u>AirAsia</u>	<u>A320 (VT-NAG)</u>	11	09:23	0.27	<u>,</u>	DAG	2
150			india				9:27	4	D49	3

SI No	Stand No	Runway 10	Runway 11	Runway 26	Runway 27	Runway 28
1	C30L	6	6	6	5	3
2	C28R	12	5	6	5	3
3	D57	13	4	5	8	3
4	R06	5	5	7	7	3
5	R11	6	8	5	5	6
6	150	3	11	3	4	11
7	202	5	10	3	3	5
8	R10R	6	9	5	5	6
9	R10L	6	9	5	5	6
10	A13	7	8	4	4	4
11	D38R	8	3	8	5	3
12	Y5	5	10	4	3	8
13	212	5	10	3	3	4
14	151	3	11	3	4	11
15	153R	2	16	4	4	11
16	X5	5	10	5	5	7
17	A14R	6	7	3	5	4
18	203	5	10	4	4	10
19	A03	7	8	5	5	5
20	A08	6	8	5	5	5
21	D41	12	4	8	6	3
22	E54	13	3	10	8	5
23	205	5	10	3	3	8
24	B16	8	5	5	6	3
25	A05	7	7	6	5	5
26	E64	10	3	8	7	5
27	216	4	10	3	3	7
28	D54	13	3	10	8	5
29	207	5	10	4	3	7
30	B15	7	5	5	6	3
31	161	3	15	3	3	11
32	B21	8	5	5	5	3
33	R07L	3	5	3	4	7
34	¥7	4	12	4	3	8
35	E67	10	4	8	7	5
36	R01	11	6	8	7	5

B. Minimum Taxi-in Time Matrix for All Combinations of Runway Ends - Parking Stands

27	D45	13	3	8	8	3
38	A10	6	8	3	4	5
39	A14L	6	8	3	5	4
40	A13	7	8	4	4	4
41	B17	7	5	5	6	3
42	B18	8	5	6	5	3
43	A10R	5	11	5	4	4
44	A07L	7	10	6	5	4
45	C33	10	4	7	5	3
46	253	4	10	5	5	11
47	A11	7	8	5	3	3
48	A08	5	8	5	5	5
49	256	5	10	5	5	12
50	A12	6	7	5	5	5
51	R07R	8	5	7	7	3
52	A07L	7	5	5	5	5
53	B20R	8	4	8	7	3
54	GA2	10	5	8	7	5
55	A07R	7	5	5	5	5
56	B22R	8	4	7	7	3
57	A06L	6	9	5	5	5
58	202	5	10	3	3	5
59	Y3	5	10	4	3	8
60	B24R	8	4	7	6	3
61	162	3	5	3	3	11
62	A14L	6	7	3	5	4
63	Y6	5	8	4	3	8
64	C31L	11	5	7	5	3
65	B26	8	5	7	6	3
66	A03	7	8	5	5	5
67	D53	13	3	7	7	3
68	A12	6	8	5	5	5
69	A01	7	8	5	5	3
70	A11	7	7	5	3	3
71	D55	12	3	7	7	3
72	150	3	11	3	4	11
73	A07L	7	7	5	5	5
74	A08	6	8	5	5	5
75	D43	13	4	8	6	3

			-			-
76	C27R	12	5	6	5	3
77	B24R	8	4	7	6	3
78	A07R	7	8	5	5	5
79	D51	10	4	7	7	3
80	207	5	10	4	3	7
81	208	5	10	4	3	7
82	D53	13	3	7	7	3
83	D57	13	5	5	8	3
84	151L	2	11	4	5	6
85	R11	6	10	5	5	6
86	D48	13	3	7	7	3
87	147	2	11	3	4	11
88	155	2	11	3	4	11
89	D38R	10	3	8	5	3
90	211	5	10	3	3	5
91	B16	8	5	5	6	3
92	B20	10	5	7	6	3
93	205	5	10	3	3	8
94	A14L	6	7	3	5	4
95	150	3	11	3	4	11
96	A05	7	7	6	5	5
97	B17	10	6	8	7	3
98	203	5	10	4	4	10
99	D45	13	3	8	8	3
100	D47	8	5	7	7	3
101	R06	5	5	7	7	3
102	213	6	11	3	3	5
103	D43	13	4	8	6	3
104	C32R	6	5	7	5	3
105	A01	8	13	5	5	3
106	C28R	14	5	6	5	3
107	D51	10	4	7	7	3
108	C26L	8	5	6	5	3
109	151	3	11	3	4	11
110	B21	8	6	5	5	3
111	A01	8	13	5	5	3
112	153	2	11	3	4	11
113	205	5	10	3	3	8
114	A12	7	6	5	5	5

115	201	5	10	3	3	5
116	D50	8	4	11	8	3
117	D52	8	5	7	7	4
118	207	5	10	4	3	7
119	D54	13	3	10	8	5
120	160	3	11	3	3	11
121	212	7	13	3	3	4
122	151R	2	11	4	5	6
123	C34L	6	6	6	5	3
124	A10	4	11	5	4	4
125	C31R	8	5	7	5	3
126	D45	10	3	8	8	3
127	B17	9	4	8	7	3
128	202	6	11	3	3	5
129	R10L	7	7	5	5	6
130	A05	7	7	6	5	5
131	R12	7	7	5	5	6
132	D41	12	4	8	6	3
133	150L	2	11	3	4	11
134	C30L	8	6	6	5	3
135	B22	8	4	7	7	3
136	C31L	11	4	7	5	3
137	C33	11	4	7	5	3
138	C26R	11	4	6	5	3
139	D50	8	3	7	7	5
140	C30R	8	5	6	5	3
141	151L	2	11	4	5	6
142	C27R	13	4	6	5	3
143	D53	12	3	7	7	3
144	154	2	11	3	4	11
145	D38L	11	5	8	6	3
146	153L	2	11	4	4	11
147	D52	11	3	8	7	3
148	B15	10	6	5	6	3
149	D55	12	3	7	7	3
150	D48	13	3	7	7	3

C. Formulae Applied to the Model

Objective \$L\$3(Min) Variables Normal: \$H\$12:\$H\$161,\$P\$12:\$P\$161,\$X\$12:\$X\$161,\$AF\$12:\$AF\$161,\$AN\$12:\$AN\$161,\$AV\$1 2:\$AV\$161 Constraint Normal: \$AW\$12:\$AW\$161=1, \$AX\$12=0, \$AX\$12:\$AX\$14 <= \$AY\$12:\$AY\$14 Integers: \$AF\$12:\$AF\$161=Binary, \$AN\$12:\$AN\$161=Binary, \$AV\$12:\$AV\$161=Binary \$H\$12:\$H\$161=Binary, \$P\$12:\$P\$161=Binary, \$X\$12:\$X\$161=Binary Uncertain Function: L2 Statistic Function: \$L\$3:\$L\$4, \$0\$1:\$0\$5, \$0\$7, \$0\$9:\$0\$10

D. All outputs of 02 April 2023

E. All Outputs of 01 May 2023