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Abstract

Progress in the development of wireless network technology has played a crucial role in

the evolution of societies and provided remarkable services over the past decades. It

remotely offers the ability to execute critical missions and effective services that meet

the user’s needs. This advanced technology integrates cyber and physical layers to

form cyber-physical systems (CPS), such as the Unmanned Aerial System (UAS), which

consists of an Unanned Aerial Vehicle (UAV), ground network infrastructure, communi-

cation link, etc. Furthermore, it plays a crucial role in connecting objects to create and

develop the Internet of Things (IoT) technology. Therefore, the emergence of the CPS

and IoT technologies provided many connected devices, generating an enormous amount

of data. Consequently, the innovation of 6G technology is an urgent issue in the coming

years. The 6G network architecture is an integration of the satellite network, aerial net-

works, terrestrial networks, and marine networks. These integrated network layers will

provide new enabling technologies, for example, air interfaces and transmission tech-

nology. Therefore, integrating heterogeneous network layers guarantees an expansion

strategy in the capacity that leads to low latency, ultra-high throughput, and high data

rates. In the 6G network, Unmanned Aerial Vehicles (UAVs) are expected to densely

occupy aerial spaces as UAV flying base stations (UAV-FBS) that comprise the aerial

network layer to offer ubiquitous connectivity and enhance the terrestrial network in

remote areas where it is challenging to deploy traditional infrastructure, for example,

mountain, ocean deserts, and forest. Although the aerial network layer offers benefits

to facilitate governmental and commercial missions, adversaries exploit network vulner-
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ii Abstract

abilities to block intercommunication among nodes by jamming attacks and violating

integrity through executing spoofing attacks.

This work offers a practical IDS onboard UAV intrusion detection system to detect

unintentional interference, intentional interference jamming, and spoofing attacks. Inte-

grating time series data with machine learning models is the main part of the suggested

IDF to detect anomalies accurately. This integration will improve the accuracy and

effectiveness of the model. The 6G network is expected to handle a high volume of data

where non-malicious interference and congestion in the channel are similar to a jamming

attack. Therefore, an efficient anomaly detection technique must distinguish behaviors

in the drone’s wireless network as normal or abnormal behavior. Our suggested model

comprises two layers. The first layer has the algorithm to detect the anomaly during

transmission. Then it will send the initial decision to the second layer in the model,

including two separated algorithms, confirming the initial decision separately (noninten-

tional interference such as congestion in the channel, intentional interference jamming

attack, and classify the type of jamming attack, and the second algorithm confirms

spoofing attack. A jamming attack is a stealthy attack that aims to exhaust battery

level or block communication to make wireless UAV networks unavailable. Therefore, the

UAV forcibly relies on GPS signals. In this case, the adversary triggers a spoofing attack

by manipulating the Global Navigation Satellite System (GNSS) signal and sending a

fake signal to make UAVs estimate incorrect positions and deviate from their planning

path to malicious zones. Hackers can start their malicious action either from malicious

UAV nodes or the terrestrial malicious node; therefore, this work will enhance security

and pave the way to start thinking about leveraging the benefit of the 6G network to

design robust detection techniques for detecting multiple attacks that happen separately

or simultaneously.
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1
Introduction

This section provides an overview of the revolutionary technology in the mobile wire-

less communication network and how various security threats have been presented and

evolved in wireless communication over recent years. The motivation of this research is

that the traditional intrusion detection techniques have become ineffective in securing

transmission in the intelligent heterogeneous network, specifically the Unmanned Aerial

Systems (UAS), which includes of an Unmanned Aerial Vehicle (UAV), ground network

infrastructure, and communication link. Furthermore, machine learning is expected to

be a suitable method to secure the Unmanned Aerial Vehicle (UAV)- Flaying Base Sta-

tion (FBS) (UAV-FBS) wireless communication system. This work proposes an onboard

Intrusion Detection System (IDS) to tackle expected security issues in the 6G aerial

network layer UAV-FBS, such as distinguishing between unintentional jamming caused

1



2 Chapter 1 - Introduction

by data congestion in the channel and the real jamming attack and spoofing attack.

Lastly, this section highlights the importance of this research work in securing the 6G

aerial network layer, specifically the security of the UAV-FBS.

In the past four decades, wireless technology and mobile wireless communication

systems have been widely developed and improved to meet the growing connectivity

demands of users. People can easily connect with each other, chatting, and exchanging

information instead of traveling or spending some days to deliver messages. This progress

played a vital role in the revolution of modern industry and opened up new valuable

applications. The evolution of these technologies initially resulted in an advanced mobile

phone system (AMPS), which was called at that time 1G [1]. 1G was the beginning era

of the mobile wireless system, followed by different cellular wireless generations, namely

2G, 3G, 4G, 5G, and the next generation cellular network, 6G, which is planned to be

deployed by 2030. The researchers named cellular wireless generation G based on the

differentiation of speed, frequency, and capacity [1]. For example, 1G used to support

voice calls as analog technology. 2G used digital technology to add a new feature to

support text message sending. After these two generations, 3G emerged to increase

capacity and provide a high data transmission rate, adding new features to voice calls

and text messages. 4G used to support the wireless mobile Internet to reduce costs and

increase quality of service (QoS) and bandwidth. 5G overcame the limitations of 4G

and was designed to bring the world a wireless World Wide Wireless Web WWWW. 6G

is expected to continue developing the cellular network and fix the limitations of 5G by

integrating the 5G with the satellite network for large-scale coverage.

In 1980, 1G networks were introduced as analog technology. It provided voice services

based on the Advanced Mobile Phone System (AMPS), as shown in Figure 1.1. The
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AMPS supported a speed of up to 2.4kbp and used Frequency Division Multiple Access

FDMA with a channel capacity of 30KHz and frequency band 824-894MHZ [1]. The

main drawback was that this technology provided limited capacity and coverage for

users [2]. In addition, security and privacy issues were significantly present in this

generation. The transmission was insecure, and encryption techniques were not applied

to secure communication and phone conversations [3]. Therefore, the transmission was

threaded by eavesdropping illegal access to expose critical information. In addition, 1G

was exposed to jamming and spoofing attacks where jamming interfered with the analog

signal and spoofing mimicked the analog signal of a legitimate user.

Figure 1.1: 1G network architecture

2G was introduced in 1980 to expand using the Internet. It was presented as digital

technology, which used digital modulation techniques, as shown in Figure 1.2. It reached

a speed of 64kbps and a bandwidth of 30-200KHz. This technique added new features

through supported short messages service SMS, multimedia messages services MMS,
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pictures messages, and voice through digital technology [1]. 2G was used to give users a

special Code Division Multiple Access (CDMA) for communication. Also, it was used to

divide the signal into time slots by the digital modulation schema Time Division Multible

Access (TDMA). Some features were improved in this technology, such as increasing

the affordability by decreasing the cost and also increasing the coverage [4]. Therefore,

developing this technology provided the Global System for Mobile Communication GSM

that used to support international roaming. However, security issues were presented in

this generation in two forms: first, the authentication were executed in one way that

resulted in vulnerabilities in the network. Second, encryption was not an end-to-end

technique because of using A5/1[3]. Hence, the 2G was exposed to jamming and spoofing

attacks by using an International Mobile Subcarrier Identity (IMSI) catcher.

Figure 1.2: 2G network architecture

Year 2000 has seen the emergence of the 3G network. The breakthrough in this

technology provided an Internet service on mobile devices. 3G increased the data rate in
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the wide range area to 384 kbps, and it used to provide high speed data transmission of

up to 2 Mbps in a local coverage area to access the Internet easily [1]. Compared to 1G

and 2G, the 3G network added new features to advance this new generation by adding a

link to provide the General Packet Radio Service (GPRS), which allowed users to browse

the web on mobile devices, TV streaming and video services, and navigation maps and

fax as shown in Figure 1.3. Therefore, it rustled in a growing demand for the data rate.

However, the limitation of this technology was that the 3G cellular network needed to

provide more capacity for communication; therefore, downloading and uploading were

slow. In addition, security threats were presented in some form, for example, denied

services, illegal access, and violation of transmission integrity [3]. Jamming and spoofing

attacks were presented in this technology to exploit vulnerabilities, but were required to

have expertise and sophisticated equipment.

Figure 1.3: 3G network architecture
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With continued development in the wireless network architecture, 4G was deployed

in 2009. 4G provided different data plans, so multiple mobile devices connected to

the network, as shown in Figure 1.4 [5]. 4G introduced long-term Evolution LTE as a

standard network that innovated to meet the increase in user internet requests. 4G-LTE

provided transmission on the uplink up to 500 Mbits/s and 1 Gbits/s on the downlink

[1]. The characteristics presented in this generation were efficient spectrum and low

latency, high quality, high speed, and cheap services. Therefore, these characteristics

made it possible for advanced technology, for example, multiple inputs and multiple

outputs MIMO, Orthogonal Frequency Division Multiplexing (OFDM). [1]. However,

multiple limitations presented in 4G LTE that made it impossible to implement it in

some critical applications, such as network interruptions, were noticed when it was not

guaranteed to provide stable connections during transmission. Furthermore, the average

execution time of the handover needed to be increased to transmit all data between

a base station [6]. Low latency in end-to-end communication was also presented [7].

Additionally, security concerns and vulnerabilities were presented in this generation,

specifically unauthorized access, data integrity, and Denial of Service (DOS) attacks. In

addition, a jamming attack was considered to explore the LTE protocol.

As cellular network technology continued to evolve, 5G emerged in 2020 to provide

advanced features not offered by previous generations to face the increasing use of de-

vices that required more data. 5G addressed the limitations of the previous generation

by increasing the capacity of traffic, the efficiency of the network with high-quality ser-

vices, and decreasing density [8]. This technology went beyond smartphone devices by

supporting IoT. The 5G has the ability to form a complete system at a faster speed than

ever, as shown in Figure 1.5. It provides unlimited access and sharing of data when-

ever the users in the coverage range. 5G is widely used in large-scale IoT applications,
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Figure 1.4: 4G network architecture

self-driving vehicles, and UAVs [9]. However, along with the advantages offered by 5G,

critical network vulnerability was present in this generation. For example, an enormous

number of connected devices is the main reason for DOS resource attacks [1].

Figure 1.5: 5G network architecture
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1.1 Motivation

1.1.1 6G Cellular Communication Network

It is clear that the number of Internet users is growing rapidly, and the massive con-

nectivity of millions of interconnected IOT devices is growing significantly in different

places on the planet. Hence, the 5G technology is facing challenges to meet enormously

increasing demands in the future. 5G relays on a conventional network infrastructure

to provide connectivity that relays on the terrestrial network, deploying a remote an-

tenna or a fixed base station location. Consequently, 5G technology faces obstacles and

challenges in providing ubiquitous connectivity to serve the local wireless network such

as wireless sensor networks WSN. Therefore, experts and researchers have started to

focus on the next generation 6G cellular network as a new era of cellular communica-

tion, as shown in Table 1.2. The 6G will be equipped to address and fix the previous

limitations of 5G. Therefore, the 6G network architecture is proposed to differ from the

previous generation, forming an integration of heterogeneous network layers to extend

communication to the space network system, as shown in Figure 1.7. This integration

between network layers will provide additional services such as ultra-high speed low la-

tency communication uHSLLC that will provide low latency 1 m and high data speed

1 Tbps, ubiquitous mobile ultra-broadband uMUB to allow 6G to provide wide range

coverage 1000 km/h, and ultra-high data density uHDD to provide reliability and data

density 10 million / sq km [10]. The 6G wireless network architecture consists of four

main layers: space network layer, aerial network layer, terrestrial network layer, and

maritime communication [11]. In the aerial layer, UAVs are proposed as a central part

to offer ubiquitous connectivity in an area with limited coverage, e.g., mountain, ocean,

deserts, and forest. Therefore, UAVs will be deployed densely in the aerial layer to serve
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as a UAV-FBS, relay, or access point flying base station UAV. Hence, it will enable low

latency access and increase coverage, capacity, and energy efficiency by operating as a

cross layer between space and ground.

Figure 1.6: UAV deployment scenario

Figure 1.7: UAV archeticture
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Year Network
cellular
commu-
nication
genertion

Standard Core net-
work

frequency
band

Mobility
distance

Dara rate Latency

2015 5G
OFDM
5G NR
IPv6

IOT Sub-6 GHz 500 km/h 10 Gbps 5 m

2030 6G
GPS
GLONASS
COMPASS

IOE
Sub-6 GHz
THz band

1000 km/h 1 Tbps 1 ms or less

Table 1.1: Comparison between 5G and 6G

Due to new features and services, the 6G network will provide a high end-to-end

reliability level leading to low latency, hence supporting ultra-high mobility. Accordingly,

UAVs will be promoted to constitute airborne communication. UAVs, typically known

as drones, are considered flying vehicles designed and programmed to fly in predefined

aerospace, either remotely by humans or autonomously for specific duties as shown in

Figure 1.8 [12], [13]. The UAV is a canonical cyber-physical system (CPS) that integrates

the cyber and physical layers by connecting each layer through a wireless network to form

an intelligent wireless system that will play a crucial role in multiple applications in the

6G. The 6G will allow the UAV to have various communication simultaneously while

the UAV’s connection with the terrestrial network is fixed. Hence, linking the satellite

with the 6G core network will allow the UAV to locate itself accurately by providing

centimeter-level precise, heterogeneous Quality of Service (QOS) provisioning and global

coverage [14]. In addition, it will enable autonomous ability at 1000 km/h and through of

1 TBPS for each device [15]. In the aerial layer, the UAV-FBS will function as a service

provider to boost connectivity and increase the capacity in the terrestrial IOT networks.

Therefore, the UAV-FBS will enhance the terrestrial network and extend connectivity

in remote areas where it is challenging to deploy traditional network infrastructure. In

this scenario, the UAV-FBS will use physical layer technologies such as cognitive radio,

massive MIMO, and mmWave for this purpose [16]. Although all benefits are presented
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by using UAV as a cellular-enabled base station, UAV wireless communication networks

are susceptible to data congestion in channels and various malicious cyber threats, for

example, jamming and spoofing attacks [17].

The natural environment of the spread spectrum is vulnerable to adversary action,

violating the availability and integrity of the communication transmission. During the

UAV mission, hackers can use shelf hardware that exploits open air transmission to neu-

tralize the UAV and make it useless by launching a jamming or spoofing attack. The

jamming attack is one of the dangerous threat attack techniques used against the UAV’s

network system to disrupt the communication between UAVs and other legitimate en-

tities. It aims to deliberately violate the policies of the media access control protocol

(MAC) or the physical layer (PHY) in wireless communication to disrupt data trans-

missions and degrade the system’s performance [18]. It occurs when the hackers send

an RF interference as a noise radio signal exploiting the shared natural wireless medium

to a subject node in the wireless. It is a version of a DOS attack that leads to catas-

trophic consequences by hindering ongoing communication and compromising network

availability. Therefore, jamming attacks can be classified into four categories: constant,

reactive, random, and deceptive. Each type of these attack is executed based on its

target behaviors and techniques to perform its malicious action correctly. On the other

hand, during the mission, the UAV dependably relies on the navigation and position

system, specifically GPS signals in the target zone. These signals are transmitted in the

open naturally, so these signals are vulnerable to GPS spoofing attacks. The spoofing

attack is an intentionally extreme malicious technique used to target the integrity of the

communication channel of the GPS signal to drive the UAV to the hacker’s extreme zone.

Typically, GPS spoofing attack initiates in two forms, covertly or overtly [19]. In the

covert form, the hacker aims to send a high-power signal to mislead the UAV receivers
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and receives this fake signal as a legitimate signal. In an overt form, the hacker uses

a clever technique by gradually increasing the signal power to make the UAV receiver

accept the manipulated signal rather than the authentic one. Therefore, the develop-

ment and proposal of IDS has become an urgent issue to enhance security transmission

in future 6G cell communication.

Network security has gained overwhelming interest after developing communication

technology in the recent decades. In 1980, IDS was suggested as a security technique to

monitor network traffic, identify abnormal behavior, and meet network security needs

[20]. IDS have been used extensively as the primary tool to assess network security and

detect suspicious behaviors on networks. However, in the past decades, the continuous

development of the internet and wireless communication technology opened up new ap-

plications, exploiting the new features such as high data rate, low latency, an increasing

number of applications, etc. Therefore, due to the limitations and significant shortage in

using traditional IDS to secure 6G application networks, IDS researchers started to im-

prove techniques to work effectively and resist malicious targets [21]. The IDS is divided

into three categories: signature-based, specification-based, and anomaly-based [22]. In

signature-based detection, the algorithm compares the current network traffic with the

attack signature designed [23]. However, these techniques need continual updating in the

signature. The specification-based method is designed based on the behavior operation,

so it is called the behavioral rule-based, which recognizes malicious behavior based on

predefined behavior rules. Once abnormal operations are present, this technique alerts

the system administrator of any violation in operation. The limitation of this tech-

nique is that there are some factors that a hacker could affect the operation, such as

changes in weather. Finally, anomaly-based methods are divided into knowledge-based,

statical-based, and machine learning based. In knowledge-based anomaly detection, the



1.1 Motivation 13

expert designs specific rules to describe how the regular connections are established. In

statical-based anomaly detection, it uses the generated stochastic model to compare it

with the traffic transmission statistics of normal operation in the network [23]. Machine

learning-based anomaly detection uses a training model to monitor objects and identify

pattern deviations.

This work focused on anomaly detection, specifically applying machine learning de-

tection techniques. In the previous decades, artificial intelligence emerged as a suitable

solution to implement in many applications and enable intelligent services in various

technology fields. ML is a kind of artificial intelligence that aims to design an artificial

neural network (ANN) model and train the model using specific data to extract and

understand the inherent regularity of the information [24]. This process enables ML to

make decisions on the input data accurately. The ML is divided into three types: super-

vised, unsupervised, and reinforcement learning [25]. In the network anomaly detection

field, IDS is integrated with ML and has been proven as a suitable technology to ensure

transmission and improve detection techniques by detecting the attack and preventing

system assessment from being damaged [26]. For example, IDS-based ML is used in crit-

ical network systems such as satellites to protect their network through record-specific

threats. Therefore, applying ML learning techniques proved that ML is a practical ap-

proach to detecting adversary action in UAV networks for multiple reasons: (1) ML can

handle unforeseen labels and the dynamic in the UAV network system: (2) the dataset

can be easily correlated: (3) ML can replace human interventions: (4) appearance of

ML eliminates the need for a mathematical model for the UAV [27].
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1.1.2 Methodology

There is no doubt that the benefits of using UAV-FBS in the upcoming years are valuable

as it expands the applications to be more efficient, as shown in Figure 1.8. However,

some challenges are facing this technology, specifically during data transmission. The

UAV in the aerial layer is the primary component, which faces malicious actions and

interference that could happen in the channel. Hence, the network security issues in the

UAB-FBS in the 6G aerial network layer must be addressed critically.

Figure 1.8: UAV-FBS

This work proposes a novel offline onboard IDS-ML by integrating ML that can be

deployed in the UAV-FBS to recognize abnormality during transmission and classify

the suspicious behavior, either unintentional interference because of the congestion at

the channel or hacker malicious action jamming or spoofing attack. This work develops

multiple algorithms and divides them in two layers: the upper layer is training on the

unsupervised learning technique that includes autoencoder, the second layer comprises

K-means and one class support vector machine OC-SVM. This research focuses on the

three main points of this methodology, as depicted in figure 1.9.
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Figure 1.9: Main security issues in this work

1.1.3 Anomaly detection

During the mission of the UAV-FBS, massive data generation is transmitted to the UAV

for exchanging or relaying. The UAV-FBS will be equipped to use physical layer tech-

niques, for example, Congitive Radio (CR), Massive Multiple Input Multiple Output

(MIMO), and mmWave, which requires a high volume of data. Therefore, channel con-

gestion would frequently occur, causing unintentional interference, in addition to the

action of a jamming attack. The literature review shows that providing a detection

model to monitor these data patterns and distinguish anomalies was not applied effec-

tively. Previous works have limitations and drawbacks to ensuring accomplished missions

securely and without interruption, such as triggering multiple false alarms. Therefore,

this work uses some features such as signal strength, signal power, and signal duration

to train an effective model in unsupervised techniques, specifically the autoencoder, to

recognize anomalies and divide them into three cases: unintentional jamming attack

(congestion in the channel), intentional jamming attack, or deviation in the UAV tra-

jectory pattern. Hence, this algorithm in this model provides an initial determination of
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the anomaly detected to confirm it by the following two algorithms either as jamming

or spoofing attack to increase the assurance in the decision and increase the detection

accuracy of the model.

1.1.4 Jamming and data channel congestion discrimination

6G is expected to face a tremendous amount of data that IoT devices will generate.

This large number of data at the channel node leads to data congestion and uninten-

tional interference. Therefore, it will be a reason for destruction in the channel, affect

packet traffic and Quality of Services (QOS), trigger multiple false alarms, and be slow

in decoding and receiving data or blocking the channel. Typically, in the previous work,

the authors proposed solutions to distinguish the interference generated by hackers as

intentional interference only; hence the previously suggested detection technique would

degrade the system performance. In this model, new mechanisms are planned to be

added; algorithm trained to distinguish interference into two forms, whether the inter-

ference happens due to jamming or congestion in the channel. As an effective algorithm

can accurately distinguish between these two issues, the UAV-FBS will be supported,

and ensures its performance stable and no interruptions occur during the mission. In

this algorithm, multiple features used, such as signal noise to ratio SNR, time domain

feature, and signal power, which will be used to distinguish unintentional interference

and jamming attacks efficiently. In this scenario, three cases would occur.

• Unintentional interference.

• Jamming attacks occur independently.

• Unintentional interference and jamming attacks happen at the same time.
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1.1.5 Spoofing attack detection

The GPS navigation system is a primary component in the UAV system to fly au-

tonomously and securely. While providing service to the IOT terrestrial network, each

device needs an entire coverage broadcast to achieve the assigned duty. The efficiency

of the UAV-FBS in providing service to end-to-end devices depends on receiving an ac-

curate GPS signal. Therefore, integrating the space network with UAV-FLB to send

authentic signals is a requirement. In the previous works, multiple techniques were pro-

posed to defend against spoofing attacks relying on signal characteristics, however these

techniques are not valuable in resisting spoofing attacks. Compared to the traditional

methods, in this submodel, the solution approach is designed to detect spoofing attacks

accurately. Signal characteristics will be incorporated as a feature to define and classify

the authentic signal. In this approach, algorithm leveraged the GPS signal features such

as distance, speed, and altitude to help determine the fake signal.



2
Contribution and Research Objectives

2.1 Contribution

With the tremendous advancement in cellular technology and the new services planned

in the 6G networks, UAV-FBS will become a potential solution to provide ubiquitous

connectivity. It will be able to self-organize and have more capability to establish a

link for transmission and enhance the terrestrial network when the aerial network layer

integrates with the satellite layer. This progress and valuable benefit of the 6G network

makes it possible to deploy IoT devices in remote areas for surveillance and monitoring,

such as sensing and actuation, since providing wide area coverage was a primary challenge

through the use of previous generations of networks in some areas. Most UAV IDS are

18
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conventional; they are deployed on board in UAV or GC and focus on one type of attack.

Therefore, they faced challenges in securing UAV missions and will not be effective in

the 6G network to secure transmission. The three main goals of this research are:

• Anomaly detection.

The discovery attack patterns over the network will enhance and support the UAV

mission. In previous works, multiple methods focus on one type of suspicion,

and these solutions cannot accurately identify the adversary’s behavior during the

mission if it happens simultaneously. In this research, the abnormal detection

algorithm enables discovering the integrity and availability of suspicious violations

and classifies them based on attack patterns and behavior.

• Unintentional interference and detection of jamming attacks.

The use of machine learning in abnormal detection techniques will enhance per-

formance in a different field, making it possible for complex tasks. In this section

of the work, K-means is used as a second algorithm to confirm the anomaly de-

tected as unintentional interference or jamming attack. In addition, K-means will

be trained to learn four types of jamming attacks, constant, reactive, intermittent,

and deceptive jamming attack.

• Detection of spoofing attacks.

The GPS signal is the primary navigation system on which UAVs rely for their

signals to the desired area. In this part, OC-SVM used to confirm GPS spoofing

attack model to distinguish and classify the received signal, either authentic or

spoofed signals. Detecting the spoofed signal will ensure the performance of the

ground nodes achieve their goals. Compared to previous work, this model is an

effective technique to detect the deviation of the flight trajectory from the planned
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trajectory.

2.1.1 Organization

This work is organized as follows. In Section 3, the security threats directed to UAV

networks are presented. Section 4 addresses the literature review and previous related

work. Section 5 describes the proposed framework of my work and algorithms developed.

Section 6 presents the experimental setup and results analysis of running the proposed

algorithms. Section 7 includes the conclusions and future research directions.



3
UAV Network System Security

3.1 Security Threats in UAV Network System

Vulnerabilities and threats make embedded systems prone to security considerations and

safety issues. Therefore, this work addresses the expected threats, such as spoofing and

jamming attacks, which are present in the layers of the open system interconnection OSI

model [28]. The main goal of the OSI model is to explain how data is sent and received

in various network devices. Therefore, this model divides the process into seven distinct

layers, which describe how the process works when receiving and transmitting data over

networks.

21
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• Application layer: In this layer, the user can interact with the UAV system and be

served. The Graphical User Interface (GUI) leverages this layer by allowing the

user to control the UAV [29]. In addition, it provides communication between the

command and controls of C2 center and the satellite network to provide network

stability.

• Presentation Layer: In the transmission process, the encoding and formatting of

the data is created in this layer to transmit it over the network. Therefore, sensor

readings in the UAV is ensured to format and encode the telemetry data generated

suitability to be sent over the network to the out application layer [30].

• Data Link Layer: This layer establishes and terminates connections between net-

work nodes. During transmission in the end-to-end connections, collisions are

expected when two nodes send data on the same frequency, so this layer is preva-

lent in this issue. Therefore, the C2 signal will not be received by the UAV. This

collision on the network leads to the crash of the vehicle. In addition, this issue

will reduce the service where the Media Access Controls (MAC) protocol nodes

avoids transmission [31].

• Network Layer: The main objective of the OSI model is to ensure the effective

transmission of host to host data. The function of this layer is to route the data

packet to the receiver, where this layer encapsulates the Internet protocol address

in the packet. Owing to the activities in this layer, several attacks are presented.

The hacker can manipulate the nodes to drop and refuse messages. Therefore, the

attacked node leads to a sinkhole attack to generate a fake signal [32]. Accordingly,

this threat factor creates an unreal node to execute Sybil’s attack, which misleads

other nodes and degrades the UAV system. In addition, the network layer faces
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wormhole attacks, which are used widely against ad-hoc networks. This attack

was used to launch malicious activities on other networks.

• Transport Layer: This layer ensures that the transmission data is completed and

retransmitted successfully. Therefore, a jamming attack in the OSI model leads

to the consumption of network nodes. In this layer, hackers attack the integrity

and synchronization of the stored data by executing a desynchronization attack.

In addition, UAV GPS is targeted by GPS spoofing attacks to deviate UAVs from

the planned path by sending fake GPS signals. Furthermore, a man-in-the-middle

attack is executed in this layer where hackers intercept the communication and

modify the signal to complete the GPS spoofing attack action [33].

• Physical layer: This combines wireless communication with physical transmission

of the raw data. The malicious action of the three threats, jamming and GPS

spoofing attack, executes in this layer [34]. In this layer, a GPS spoofing attack

occurs when the signal is stronger than the authentic one to mislead the receiver

to take the fake signal. In contrast, the jamming attack is a technique used to

noise radio signals to degrade the performance of the communication system.

3.1.1 Wireless Communication System Transmission

The wireless communication system in the UAV establishes two communication links:

downlink and uplink. In uplink, GC is equipped to generate the commands that the

UAV needs for the mission and send them through a wireless transceiver to be received

by the UAV. Once the UAV receives the signal, it is equipped with an antenna to capture

the transmitted signal. While in the downlink, the UAV captures a constellation signal

of the four satellites to process the GPS signal.
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On the transmitter side of the UAV, the UAV sends a modulated signal s(t). It uses

the carrier frequency (fc), phase (10), and amplitude, where m(t) is used to represent

the baseband message signal.

s(t) = Ac · cos(2πfct+ ϕ) ·m(t) (3.1)

On the antenna gain side, the transmitted power affects UAV antenna gain (G t)

Pt =
Ac

2

2
Gt (3.2)

In the channel propagation, free space path loss presents and affects signal strength.

Free Space Path Loss (FSPL) is calculated as follows :

Pr =
Ac

2GtGrλ
2

(4πd)2
(3.3)

The G r represents the antenna gain in the Ground Control Station (GCS) and

expresses the wavelength. In addition, d represents the distance between the GCS and

the UAV.

Multipath fading occurs, and the received signal (r(t)) is modeled in the same way

as the satellite link.

On the receiver side GCS, the GCS receive a modulated signal, so it needs to de-

modulate to extract the baseband messages signal.

m̂(t) = Re{r(t) · e−j2πfct} (3.4)
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In addition to evaluating signal quality, Signal to Noise Ration (SNR) is calculated,

in addition to error correction techniques, to get reliable data recovery.

In the other line between satellite communication and UAV, additional factors are

considered, such as path loss and different types of fading:

Pr =
Ac

2GtGrλ
2

(4πdUAV-Satellite)
2 (3.5)

Once the satellite regains the signal, demodulation is performed to extract the base-

band message signal. It is expressed as :

rUAV-Satellite(t) =
N∑
i=1

hi · s(t− τi) + n(t) (3.6)

Here, the a complex channel is represented, and the delay is expressed by additive

white Gaussian noise.

To perform the coherent demodulation, received signals are multiplied by the re-

sponse signal :

m̂UAV-Satellite(t) = Re{rUAV-Satellite(t) · e−j2πfct} (3.7)

By using this approach, the carrier frequency is restored, and the baseband message

signal is recovered.
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In the satellite link signal noise ratio, SNR is expressed as :

SNRUAV-Satellite =
Signal Power

Noise Power
(3.8)

where the data rate R is affected by three factors such as bandwidth, modulation,

and SNR.

3.1.2 Formulation of Jamming Attack Problems

A jamming attack is a form of DOS attack that is used to emit unwanted signals to

interfere with transmission between the sender and the receiver. It is also used to block

the receiver from receiving valid signals. Therefore, the receiver fails to decode the

signals when the interference rate in the received signals is high [35]. The hackers have

two ways to execute this kind of attack by either corrupting the medium access control

(MAC) protocol or sending signals to degrade the MAC protocol [36]. The main result

of this attack is to send signals to the receiver or sender in terms of blocking them

from sending and/or receiving valid signals. The hackers attempt to block the links

between the sensor nodes or the link between sensors to control in order to block the

measurement from being transmitted to the controller and then to operate services. The

jamming attacks can be divided into four main categories: constant jammer, deceptive

jammer, random jammer, and reactive jammer. Each one of these attacks has its own

technique and procedure to damage the connection. Therefore, the jamming attack to

be effective it must affect Signal Ratio (SR) [37]

JSR =
J

S
=

PjGjG
∗
comR2

com

PSGSGcomR2
J

(1)
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where P is the transmitter and jammer power and G is the gainer of the receiver and

jammer. R represents the distance between jammer and transmitter to the UAV. Gcom

represent UAV gainer and GR/J .

By considering three use cases, Tg, Rg and J represent transmitter,receiver and

jammer respectively. The position of Tg (xT ,yT ,zT ), (xR,yR,zR) represent receiver’s

location and (xJ ,yJ ,zJ) is the jammer location. Typically, the Received Signal Strength

RSS is impacted by noise signal [38] and can be derived as

RSS = PTR + PJR + PN. (3)

Where PT is the transmit power and the power strength represent by PT R. The negative

of path loss exponent is represented by −α.

3.1.3 Constant jammer

A constant jammer is a jammer that continuously sends radio signals to the receiver

or the legitimate transmitter for different purposes, for example, degrading signals or

making congestion on the link connection, as shown in Figure 3.1. There are several

types of attacks the hackers can do, but there are two of them more common. One

attempt the hackers use is an arbitrary signal to degrade the original signal quality to

make the signal at the receiver’s channel undecoded. Another attempt is that hackers can

transmit numerous signals on the network channel to make it busy [39]. These numerous

signal transmissions cause a delay in fresh signals, where the legitimate transmitter

cannot transmit the gain receiver channel as a result of this congestion on the network

channel. Thus, this technique is the main reason for degrading the system performance

and blocking the link between the sender and the receiver.
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Figure 3.1: Constant jammer model

Intermittent jammer

This is a jamming that sends signals randomly from time to time, as shown in Figure

3.2. This kind of jamming attack preserves its power by consuming rather than continue

emitting signals. It is used to send malicious signals for the sake of destructive con-

nection or transmit signals with malicious intent. It is similar to the constant jammer,

but its approach is based on saving its energy when it is moving between active or

sleeping mode [40].

3.1.4 Deceptive jammer

The deceptive jammer is the most innovative kind of jammer attack. It leads to the data

packet being injected into the transmission while the sender sends data packets. Once

the gap is presented in the transmission, the deceptive attack can exploit that gap to

inject a valid data packet with a useless payload, as shown in Figure 3.3[41].
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Figure 3.2: Intermittent jammer model

Figure 3.3: Deceptive jammer model
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3.1.5 Reactive jammer

A reactive jammer is an attack that is in idle mode until the legitimate node is activated,

and then it starts sending a data packet, as shown in Figure 3.4. Additionally, it senses

whether the wireless channel is busy to start emitting its malicious signals to degrade the

transmitting data at the receiver [42]. The reactive jammer has the ability to distinguish

whether the active legitimate node signal is weak or strong in terms of sending signals.

Figure 3.4: Reactive jammer model

3.2 The Global Navigation Satellite System GNSS

The GNSS is a satellite system used widely for multiple purposes such as positioning,

navigation, and timing PNT. Various countries use this system for their missions based

on coverage and capabilities. The USA uses GPS, Russia uses GLONASS, the European

space agency uses Galileo, while China uses the Biedou Navigation satellite system BDS.

These four systems operate by different modulation schemes and carrier frequencies [43].
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For example, frequency division multiple access FDAM modulation schema is used for

the GLONASS signal. On the other hand, GPS uses the code division multiple access

CDMA. These characteristics make these two systems different in architecture and the

way they transmit signals. However, these systems use standard design and operation

to achieve their goals. They use time stamps to transmit radio frequency signals, which

they receive to decode these signals to calculate their locations and time. In addition,

they can use four satellites in the constellation by time synchronization, 3-dimensional

location, and navigation data [44]. All these GNSS systems provide unencrypted signals

to the public users. Therefore, it exposes them to hackers who execute a GPS spoofing

attack which is addressed later in the GPS spoofing attack section.

3.2.1 Global Position System

GPS was launched in 1979 and was called NAVSTAR for US military purposes. Later,

in 1994, the GPS became available for public users for global coverage and became a

central component of GNSS. It is deployed in Medium Earth Orbit (MEO) in the 24

satellites orbiting the earth from 22,200 km [45]. They use six equally spaced orbital

planes at an inclination of 55 degrees. The GPS architecture is divided into three main

components namely user segment, control segment, and space segment:

• User segment: it represents the user receivers and services provided for military

or civil missions. These receivers can receive signals and decode them for their

position and time. These position and time estimation calculations are performed

on the receiver sides, where the devices are equipped with L-band receivers.

• Control segment: it is used to preserve the integrity of the GPS by monitoring the

commands and controls. It is formed by users through a global network of ground
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facilities to collect valuable information such as telemetry.

• Space segment: it is a constellation of global satellite networks that uses radio

frequency RF to send signals, including navigation data and coded information.

GPS Transmission

The GPS uses the L-band frequency f0 of 10.23 MHz to generate a signal using an

onboard atomic clock. L-band is divided into two frequencies, L1 at 1575.42 MHZ and

L2 at 1227.60 MHz, obtined by multipling 154 and 120 to generate these two carrier

frequencies [46]. The Coarse Acquisition Code C/A and Precise P are used to modulate

the signals in the spectrum signals 2.046 MHz and 20.046 MHz bandwidth. The signal

generated from each satellite has a unique code called Pseudo-Random Noise PRN, which

is a reference for each one. These will improve the SNR, identify each satellite in the

GPS constellation, reduce signal interference, and ensure accurate ranging [47].

GPS Receiver

The user segment receives the signal through an antenna equipped with receiver devices.

Once the signals are received at the front end, multiple procedures are performed for

filtred, digitized, and amplified signals to get baseband signals [48]. After that, the signal

processing calculates the navigation information to extract pseudo-range. Also, the

rate of pseudo-range determines the difference in the information to estimate Position,

Velocity and Timing (PVT) [49]. Multiple stages are presented in this process, such as

tracking, extraction, acquisition, and monitoring.
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Figure 3.5: UAV GPS receiver observing the generated signal by satilites

3.2.2 Spoofing Attack on GPS

GPS is the main component in driving the UAV in the planned direction. The satellites

are located in at {P g
n}Gn=1. The satilite posititve vector represent in pg = [xg, yg]T . UAVs

depend entirely on GPS data to fly, but the link between GPS and UAVs is vulnerable

to adversaries’ goals. The spoofing of this link threatens the UAV’s civilian or military

tasks. For example, the GPS spoofing The attack can be executed in three ways: fake

GPS signals, sending signals with higher frequency, or spoofing the high gain antenna

[50]. In addition, GPS spoofing can be a form of eavesdropping that listens to the

transmission of data between UAVs and GPS signals in space [51].

• Simple spoofing sttack. The hacker does not know the UAV position and sends

a fake signal with high-level power, which is unsynchronized with the real signal.

This attack leads to significant pseudo-range measurements. Typically, it executes

with low-cost hardware and software.
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• Intermediate spoofing sttack. In this scenario, the hacker knows the UAV position,

leading to code phase alignment between spoofed or benign signals. These attacks

are generated simultaneously on the channels. During the mission, the hacker

considered the detection system, which relies on the signal characteristics, so it is

complex to detect.

• Spoofing with antenna attack. This is a sophisticated technique used against mul-

tiple antenna receivers to disrupt the frequency of the other signals. It leads to

the gaining of control over the UAV system.
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4.1 Review of Current Literature Survey

The main goal of the UAV-FBS is to offer communication infrastructure to exchange

sensitive data between nodes during missions and to provide efficient comprehensive

coverage whenever they need access to the Internet. However, the UAV-FBS network

architecture is vulnerable to malicious threats and anomalies due to open-air radio space

and design constraints in UAVs, such as communication capability and computations.

This research reviewed the previous works used to detect suspicious abnormalities in

the UAV network. The algorithms and models are then used to detect and defend

against adversaries in the UAV network. The defense technique is divided into active

35
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and passive defense in Fly Ad-Hoc Network (FANET) [52]. Active protection techniques

prevent UAV networks from external attacks before malicious action happens by using

encryption. The passive detection technique refers to detecting an anomaly when it

occurs on the network to reduce the adversarial impact. This work focuses on the

second technique, which is the passive defense.

4.1.1 Intrusion Detection System

IDS is a security schema, which is considered a passive defense and has used broadly

to increase accuracy by monitoring network traffic and analyzing object behavior. The

IDS’s primary goal is to detect illegal activities and abnormal behavior on the networks

accurately. Over the past years, traditional IDS techniques have no longer be effective

in complex network systems and need improvements [53]. The IDS are categorized

into signature-based, specification-based, and anomaly detection as shown in figure 4.1.

The signature-based detection’s main drawback is that it needs to continue signature

updating. In contrast, specification-based detection methods trigger many false alarms

and provide low detection accuracy. Machine learning techniques are also applied as IDS,

but it faces challenges and needs improvements, such as the author needs enough data.

In this section, this work reviewed previous studies used broadly for attack detection on

UAV networks and addressed the main drawbacks presented. This work focuses intensely

on anomaly-based model learning detection.

4.1.2 Signature-based-IDS

The signature-based technique has extensively used the signature pattern to recognize

abnormal behavior and malicious action that happens to the traffic in the wireless net-
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Figure 4.1: The architecture of distributed intrusion detection system

Signature based IDS

Advantages Disadvantages
Simple to design Hard to detect unknown

attack
High detection accuracy Difficult to keep signa-

ture up to date
Low false alarm rate High false alarm rate for

unknown attack
Low computation cost Signature attacks need

to update continually

Table 4.1: Advantages and disadvantages of signature-based UAV IDS

works. In this technique, the security engineer identifies a specific signature for each

type of attack to be recognized when the hacker launches the attack. They extracted

malicious behavior parameters of the attack when it happens in the network during the

abnormal behavior [54]. However, as shown in Table 4.1 these techniques faced chal-

lenges, such as signature-based detection cannot recognize unknown attacks in which its

signature is not predefined and needs to keep the signature up to data [54].
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4.1.3 Specification-based UAV IDS

Specification-based intrusion detection methods use the constraints and specifications

to recognize attacks on the UAV network system. Pre-flying the UAV, users typically

define the planned path that the UAV must follow toward the target direction during the

mission by identifying starting and ending points. During flight, the UAV is monitored,

so any deviation in the planned path is considered out of the course, and the detection

technique triggers alarms immediately. For example, the GPS spoofing attack deviates

the UAV from its planned routes, so this technique can detect it easily. However, as

shown in table 4.2 the limitations of this technique were identified in previous works.

Multiple factors would affect UAV operation and impact its behavior during missions,

such as weather, generating false alarms frequently. In addition, it is not sustained in

the UAV application where the configuration is updated.

In some early studies, reference [55] used the specifications of the normal mode of

the UAV during flying to detect malicious onboard systems. The authors identified

some features which were used to recognize abnormal behavior in the networks. They

extracted specific rules based on the attack behavior, such as randomness, recklessness,

and opportunistic characteristics, to analyze and detect attacks. Based on the model

results, their method resulted in high detection accuracy and a low false positive rate

of 0.05, 6.0 opportunistic, and 7.0 random attacks. In another work, author in [56]

proposed a technique deployed on the UAV and the GCS. Their method was not only

offered as a detection technique but was also used to respond to the attack action. The

authors addressed five categories of lethal attack used to degrade UAV network systems,

such as GPS spoofing, jamming, gray hole attack, black hole attack, and false data

injection attack. Hence, to recognize the attack, the paper used features that indicated
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Specification based IDS

Advantages Disadvantages
Detection of unknown attack Needs high processing

overhead
Addresses overall behavior of
the UAV behavior

Normal behavior is
challenging

Low false alarm rate High false alarm rate for
unknown attack

Can be integrated with signa-
ture based IDS to detect at-
tacks from authorized users

Signature attacks need
to be updated

Table 4.2: Advantages and disadvantages of specification based IDS

the abnormality in the networks, such as the number of packets sent (NPS) and signal

strength intensity (SSI). They analyzed how these attacks target the number of packets

sent or signal strength intensity. These four attacks were evaluated and investigated,

and the model detection showed low false positives and had a high detection accuracy.

4.1.4 Anomly-based UAV IDS

Anomaly detection is an IDS approach widely used to monitor observations that devi-

ate from normal behavior or detect rare events to ensure safety and security in UAV

operations. It uses specific parameters related to the object to detect abnormality and

deviation during the mission. Recently, the anomaly detection technique has become

a research hot spot. It is divided into two methods used to detect abnormal behavior

during UAV communication: model-based approach (supervised learning based IDS),

data-driven strategy (unsupervised learning-based IDS)

4.1.5 Model-based learning IDS

In recent decades, researchers have started thinking of new techniques to solve the draw-

backs of the previous methods as shown in table 4.3. Model learning based has attracted
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researchers’ attention to overcome the issues presented in the traditional detection tech-

niques. With the rapid developments in artificial intelligence, deep learning algorithms,

and machine learning algorithms, researcher have investigated the effectiveness of these

techniques. It was discovered that these techniques are an effective way to enhance

security and solve detection problems. Artificial intelligence methods are divided into

sub-branch machine learning ML and deep learning DL. They have been used widely as

detection techniques to detect and recognize malicious behavior over networks.

Supervised Learning IDS

The supervised learning algorithm is trained on the predefined data set to achieve a

specific output and precision. The predefined data set consists of two tuple labels and

attribute [57]. The label represents the output, while the attribute represents the in-

put. The machine learning algorithm discovers suspicious behavior by learning complex

patterns in the data set. Therefore, it performs better when applied to detect malicious

action over the network. It uses network traffic to extract valuable information based on

feature engineering. This algorithm predicts labels corresponding to the trained model

on the data set. Therefore, it only detects the trained label and neglects false positives.

Reference [58] proposed an intrusion detection schema designed based on five ma-

chine learning models to detect an advanced external cyber attack against the UAV

network system in real time. The paper trained multiple machine learning models such

as Naive Bayes, support vector machine, decision tree, k-nearest neighbors, and deep

learning multi-layer perceptron. After that, the work tested these models to evaluate

their performance by detecting sophisticated malicious activity in the drone network.

The author designed a testbed environment that includes nodes and a virtual machine.
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They used Kali Linux to launch attacks, such as DOS and DDOS. In addition, they

simulated TCP and UDP to mimic real UAV networks. The author leveraged the Onion

platform and Argus tool to collect the needed packet and label two scenarios as normal

and under attack events. The result of these models showed that the detection accuracy

was high and the false alarm was low. With continued development in the IDS, it is

clear that the system avoiding collision is not sufficient these days when the UAV is

deployed as an autonomous system. The hackers can manipulate the data transmission

to crash the drone while the avoid collision system can not protect this accident from

happening. The author in [50] showed that the connection among UAV components

could be intermittent intentionally, so they proposed two algorithms to defend against

jamming and spoofing attacks. First, they suggested a model, such as self-taught learn-

ing STL, to extract features by knowing the network parameters. Then, they propose

a support vector machine (SVM) to classify the attack as jamming or spoofing. This

proposed IDS showed that it was efficient and reached height detection accuracy. Refer-

ence [59] proposed a combined methodology consisting of a machine learning technique

and a multi-agent system to detect DOS cyber attacks that target UAV communication

systems. The proposed model was able to detect known and unknown DOS attacks.

The input goes through multiple components, starting from gaining the packet by an

antenna in the sniffer agent to the final decision made by unsupervised machine learning.

The known attack was recognized in the match checker agent if the attack parameter

matched the signature database; otherwise, unsupervised machine learning would ad-

dress an unknown attack to form a signature and store it in the database. The author

of this technique, used unsupervised learning results to update the knowledge base sig-

nature to increase detection accuracy in the knowledge base module. The author [60]

proposed a technique to detect and classify the jamming attack against a link between



42 Chapter 4 - Literature Survey

the UAV and GCS. The author implemented attack action against the control link IEEE

802.11 orthogonal frequency division multiplexing OFDM at 2.4 GHz. They used GNU-

Radio to trigger four types of attacks on the link ,such as signal tone, barrage, protocol

awareness, and successive pulse and they used features, for example OFDM parameter,

energy parameter, and signal-to-noise ratio. Three features extracted from OFDM are

cyclic prefix length, subcarrier length, and subcarrier spacing. Two features extracted

from energy are the average received power and threshold. Lastly, they extracted three

features from the SNR estimator: average signal power, signal-to-noise ratio SNR, and

average noise power. This work showed that the detection rate reached 93, and the false

alarm rate was 1.1. The author in [61] proposed combining two strategies to identify the

jamming attack. The first strategy used statistics to decompose the signal block when

the receivers receive the signals. The second strategy used was a deep neural network.

The paper integrated the statistical model since it did not require heavy computation

and used a deep neural network to achieve high Accuracy in classifying attacks. Their

methods showed that the statistical methods identified accuracy 84.38 when the attack

happened in a range of 30 m close to the UAV, while deep network accuracy was 99

when the jamming distance was close to 200 m. Another study [18] proposed a system

consisting of two different techniques, decision trees and multi-layer perception. The pa-

per’s evaluation relied on simulated and actual data set types. The paper addressed the

reactive jammer and focused on detecting this sophisticated attack. During the experi-

ments, the author used features such as signal strength indicator RSSI, packet delivery

ratio PDR, and throughput as a predefined matrix to train the model and recognize the

jamming attack. The paper shows that both models were evaluated, and based on the

results, the detection accuracy of the MLP was superior to the decision trees.

The authors in [62] clarified how the hypothesis test works and why it is unsuitable
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for detecting GPS spoofing attacks. In the hypothesis test, setting a threshold for the

path losses to detect spoofing attacks is affected by various factors such as cloud, vapor,

and temperature. Therefore, the hypothesis threshold is facing challenges. The chang-

ing of the environments influences the path loss, increasing the error and decreasing the

detection accuracy. Secondly, a false alarm is expected if the threshold value is not de-

termined appropriately. Therefore, the author integrated deep learning algorithms with

statistical methods to propose effective GPS spoofing attack detection. The author in

[63] proposed an IDS of multiple techniques. It integrates a decision tree, random forest,

naive Bayesian linear regression, and support vector machine to detect actuator GPS

spoofing attacks. In this work, the author used k-flood to increase the Accuracy before

the implementation. They leveraged signal features such as frequency modulation, jitter

RAP, jitter local, jitter PPQ5,shimmer APQ3, shimmer, shimmer local, and shimmer

dB.

Reference [64] proposed a new combination technique by applying data-driven meth-

ods and digital twin architecture. The digital twin architecture represents the real

system. Thus, the authors digitized the model and trained it to use UAV flight data as a

reference to design the detection model. In addition, multiple algorithms were proposed

for analysis and evaluation, such as one-class support vector machine OC-SVM, isolation

forest IF, local outlier factor, and deep neural network DNN. This work as in [65] did not

target specific attacks in the detection techniques. They used different types of machine

learning by monitoring the network traffic to detect an anomaly: minimum packet sizes,

the maximum number of packets, and flow duration as features. The author confirmed

that decision tree algorithms are the best technique to detect anomalies on the UAV

network. The other algorithms used and compared with decision trees are logistic re-

gression, linear discriminant analysis, K-nearest neighbors algorithm, Gaussian naive,
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Table 4.3: Advantages and Disadvantages of Model-based learning IDS

Model-based learning IDS

Advantages Disadvantages
Automatic detection process Computation resource

requirement is high
The Quality of the data affect
detection accuracy

Requires time to train
the model

Uses data to process it in real-
time

Training data overfit-
ting is present

Detection accuracy is high Exhibits complexity

Bayes algorithm, stochastic gradient descent, and K-mean algorithm.

Unsupervised Learning IDS

Unsupervised learning algorithms have been widely used to identify patterns and de-

fine correlation without training in the predefined data set. For example, it includes

clustering in the Unsupervised Leaning (USL) to determine the similarity between data

groups. Some suggested works used this technique to detect abnormalities in the UAV

networks. In [66], the author proposed Long Short-Term Memory (LSTM) to improve

IDS in the network. They modeled the time series as a problem to detect an anomaly

on the UAV network. The authors trained their model on a data set that contained only

normal sensor data. In their suggested solution, the authors expected that the prediction

model would face difficulties with uncertainty intervals. Therefore, they calculated the

residual variance to identify the anomaly detection’s point and deviation in the normal

pattern data mode. Also, the authors used pneumatic lifting and north direction speeds

to evaluate the proposed method to detect anomaly points. They evaluate the anomaly

detection performance based on three matrices false positive rate, false negative rate, and

accuracy. In another work [67], the author proposed a deep learning approach to detect

outlier behavior in the UAV network based on monitoring the time series of the sen-

sor data in the UAV. The detection system was a combination of Convolutional Neural



4.1 Review of Current Literature Survey 45

Network (CNN) and Convolutional Long Short-Term Memory (ConvLSTM). The CNN

extracted the features from the dataset and fed it to LSTM. The author used multiple

time windows to evaluate the model from 0.5 to 5.0 s. They assessed the performance of

their proposed model, which resulted in high detection accuracy when the time window

was at the maximum value of 5.0 s. The paper [17] proposed a GPS detection method

using the long short-term memory LSTM algorithm. They used latitude, longitude, ve-

locity, and acceleration as a parameters in the method; hence, the method predicted the

location based on the given flight path. To detect the anomaly, the author depended on

the difference between the position provided by the GPS and the predicted position.

Reference [13] proposed a combination of detection techniques of artificial neural

networks and Kullback-Leibler divergence. They calculated KLD in two types, forward

and backward, to detect the deviation in the data generated by the UAV. To accumulate

value and increase the detection accuracy, the author identified the divergence value for

each particular time interval. After that, they added the value to the entire time series.

The author in [55] proposed a technique to detect anomalies in the cell networks. The

method divided into two parts: LSTM algorithm to detect overload in the base station

and deploying drones as flying base stations for the backing up. The author used a

real dataset from the Call Data Records (CDR) of Milan. The algorithm monitored

the deployed cells, and once it detected any overload on the cell, it triggered the UAV

to fly next to cells to assist in relaying data to maximize cell coverage and minimize

energy consumption during the mission. The author in [68] proposed a deep learning

technique to detect intrusion in the communication links by suggesting an intrusion

detection system. They applied the detection technique to the scenario in the smart

city. They proposed UAV to UAV link, UAV to Road Side Unit (RSU), and vehicle to

RSU. The UAV connects with another UAV to exchange sensitive data. At the same
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time, this UAV loads the data to RSU, which sends the necessary data to the vehicle

navigation system for auto driving. In [69], the author proposed a neural network to

recognize the fault during a UAV mission. They proposed embedded deep learning to

detect faults in the UAV system. They presented Bi-LSTM and CNN to classify the

fault in an encoder-decoder logic. They used the temporal data generated from onboard

sensors such as accelerometers, Inertial Measurement Unit (IMU), etc. They evaluated

their method, which got a high detection accuracy of 99 and 85.00 in real-time data.

The authors in [70] addressed the security issues in cellular-connected UAV networks.

They suggested IDS-based ML using a dataset generated by a Canadian cybersecurity

laboratory. They, in this technique, used logistic regression LR, k-mean, decision tree

DT, stochastic gradient descent SGD, and linear discriminant analysis LDA. They have

concluded that the decision tree supered the other ML where it reached 99.99 accuracy

and false negative. Also, in [71], the author provided anomaly detection-based IDS to

detect abnormal patterns in the data of the Internet of flying things. The researchers used

the ECU-IOFT dataset [72] to train and test five algorithms, such as Histogram Based

Outlier Score (HBOS), Local Outlier Factor, K-Nearest Neighbors (KNN) Local Density

Cluser Outlier Factor (LDCOF), and Cluster-Based Local Outlier Factor (CBLOF).

The other part of this work focused on cracking attack de-authentication, including

API exploits in the WI-FI. Their experimental results showed that the Accuracy was

between 21.42 and 84.69 for KNN, and based on these results, this work was considered

one of the suggested works used to detect anomalies in the IoFT. In another work [73],

the authors addressed a monitoring approach to the anomaly detection of fleet drones.

They proposed machine learning techniques to detect abnormal behavior during the

mission. The system operates in two forms: to detect strange behavior in the overall

drone and to identify which drone exhibits abnormal behavior. The authors validated
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their method using real flight data in online mode.

In this section, the primary technique used to detect anomalies over the network

were addressed. The previous works in the IDS were classified into signature-based,

knowledge-based, and anomaly-based. This section showed that each one of these tech-

niques has drawbacks and some limitations related to usability, expandability, and scal-

ability. First, in the signature-based, we have seen that the pattern’s signature needs

to be updated frequently. Therefore, this technique leads to an increase in cost and

time. The specification based on the main drawback faced in this technique is that the

UAV mission path is unreceived and changeable, and the bounds platform is a software-

operated flight control that affects the environmental impact. Therefore, these multiple

drawbacks presented in the technique made applying it in the UAV domain challenging.

Third, anomaly detection is divided into supervised learning detection techniques that

need to obtain enough data to train the model and get high detection accuracy perfor-

mance. Therefore, this technique is costly and a reason for wasting time. On the other

hand, anomaly detection is an unsupervised technique. The unsupervised technique

does not require time to train the model. Still, it has limitations in the previous works,

where it challenged classifying the issues into multiple attacks simultaneously and faced

challenges to classify them accurately.
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Framework

5.1 Motivation

In the coming years, 6G will play a critical role in handling large amounts of data and

providing a fully covered area through UAV-FBS. The 6G will offer a fast data rate and

low latency compared to previous generation networks, such as 5G, 4G, 3G, 2G, and

1G. Due to the significant advantages that will be provided by 6G, such as ultra-high-

-speed, low latency communication uHSLL, ultra-broadband uMUB, ultra-high data

density uHDD, reliable network access, and a wide coverage area, some new practical

applications will be provided, for example, surveillance. Therefore, various sensors and

cameras will be deployed for critical missions, monitoring, and collecting sensitive data

48
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in harsh environments. UAVs will, hence, play a key role in enhancing connectivity with

these deployed components on the ground by deploying the UAV-FBS. However, while

the UAV is classified as the main component of the aerial layer of the 6G network, it will

face security threats that will lead to discontinuity with the nodes or receiving a false

GPS signal to deviate from the planned area.

Sophisticated malicious threats, such as jamming and spoofing attacks, are the main

challenges that cause performance degradation on the communication part of the UAV

system. UAVs in some critical areas will be deployed as flying space stations to enhance

terrestrial networks, handle high user demands, and provide coverage connectivity on

a large scale area. However, adversaries exploit natural medium transmission to block

transmitted signals by sending RF noise or mislead the UAV path by injecting a false

GPS signal. During the jamming attack, this work expects hackers to know the modu-

lation spectrum and frequency during transmission. They intentionally target command

and control links to block communication by sending multiple radio noise signals. In

the spoofing attack, the adversaries deliberately sends high-power signals to mislead the

GPS sensor to receive a fake GPS signal. Hackers can execute their malicious adversaries

by receiving signals from the GPS target and regenerating them to the target UAV. The

target UAV will be misled and deviate from the planned path to the attacker’s zone.

Hence, preventing and securing communication is urgent to avoid this extreme action.

Therefore, the IDS-based model in the drone system is an efficient way to ensure re-

liability in transmission and ensure that the necessary data are available and received

without any modification. Traditional IDS effectively prevented data transmission in a

centralized network system, so they ensured the integrity and availability of the systems.

However, due to the possibility of deploying conventional IDSs in the UAV network sys-

tem, they need to be more suitable for the decentralized system. Therefore, researchers
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started thinking cleverly about how to innovate new IDS techniques. This work increases

security and reliability, and it avoids triggering a false alarm. Also, it can distinguish

between unintentional and intentional interference compared to previous works.

In this work, an effective detection technique is designed to improve transmission

security, ensuring reliability, integrity, and availability simultaneously. As shown in

5.1, it applies the unsupervised ML model to detect network traffic anomalies such as

jamming or spoofing attacks.

Figure 5.1: The architecture of distributed intrusion detection system

The abnormal detection algorithm starts once it recognizes suspicious activity in

network traffic. Once the anomaly is detected, the first algorithm sends the detected

anomaly to the second algorithm to confirm the detected abnormality and analyze the

abnormal behavior. The second layer of algorithms confirm the initial detection of

the anomaly as intentional interference jamming attack, or deviation of the UAV path

because of the spoofing attacks.
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5.2 System Model

This section describes the system model components connected through a network for

communication and information exchange. Some obstacles prevent the transmitted sig-

nals from reaching the deployed sensor and camera. The existing obstacles can include

trees, a high mountain, etc.

Figure 5.2: The architecture of distributed intrusion detection system

Figure 5.2 shows the security threats present in the network scenario and how they

act to damage communication. The system model consists of the base station BS,

satellite S, UAV, controller UC, and cellular connected UAV Uu with multiple jammers

and spoofers on the ground Mj , s and malicious UAV Um along the UAV base station
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U Bs. The adversaries attack communication links, control, and command to block links

between nodes, and if they plan to deviate UAV from its initial plan, they inject false

GPS signals.

5.3 Attack Model

This work concentrates on the two most common dangerous attacks on the UAV wireless

network: jamming and GPS spoofing attacks. The jamming attack starts its malicious

plan by sending RF jamming signals, such as constant jamming, intermittent, reactive,

and deceptive jamming attacks. Each technique has a specific approach to executing

its target on the UAV wireless network. They emit an interference signal at the same

radio frequency the UAV uses to disrupt communication. In addition, they respect

characteristics to ensure their jamming signal efficiency to achieve their goals, such as

strategy, duration, time, location, and target. However, the second malicious action

is to inject a false GPS signal into the transmission to mislead and deviate the UAV

from its planned trajectory. This attack is executed when the jamming attack blocks

communication with the controller, and the UAV switches to self-flying mode and relies

on a GPS signal. Hence, the fake signals lead the UAV to crash or land in the hacker’s

extreme zone.

In the suggested scenario, a ground-to-air UAV link transfers command to the UAV

and observation to the GC. As shown in Figure 5.1, the jammer attempte to disrupt the

transmission link by launching the attack. Three use cases are considered: Tg, Rg, and

J represent the transmitter on the ground, the receiver on the ground, and the jammer,

respectively. The position of Tg (xT ,yT ,zT ), (xR,yR,zR) represents the transmitter and

receiver’s location, and (xJ ,yJ ,zJ) is the jammer location. The GC periodically sends



5.3 Attack Model 53

a specific command to the receiver UAV. It provides the power needed to transfer the

signal simultaneously and from a close distance; the jammer is located and emits a

jamming attack J in the same frequency over communication with the high-power signal

to interrupt the transmission. In this scenario, this work did not consider the exact

position and power.

Typically, the RSS is affected by the noise signal, where it can be derived as:

RSS = PTR + PJR + PN. (3)

.

PT is the transmit power and the power strength represented by PTR. The path loss

exponent is represented by −α.

Once the UAV receives the packet, it starts investigating the preamble to determine

whether the received packet is valid or corrupted. In the case of the jamming signal,

interference exists in the packet and decreases the SNR which is calculated as :

SNR =
PTR

PJR + PN
(4)

The BER is related to the SNR in the digital modulation system, so it relies on

the jamming signal, which is a noise signal; the hacker attempts to decrease the SNR.

Hence, it leads to an increase in the BER. BER is defined as:

BER = f(SINR) (5)
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where f represents the decreasing function determined by the modulation system.

The packet delivery rate represents the packet delivered successfully to the receiver.

Therefore, it represents the packet as multiple bits. It is identified as

PSR = (1−BER)nbits (6)

In the equation bits are represented as N bits in the packet, so the packet error rate

was identified as:

PER = 1− PSR. (7)

The GPS spoofing signal can effectively disrupt the UAV’s mission. The hacker

creates fake signals about false drone positions to achieve their goals. The general

manipulated signal has a higher power; therefore, the hacker’s signal is higher than the

genuine signal. Hackers expect that not all targets fall into their coverage area; hence,

they follow a repeater-based spoofer technique to collect all G satellite and regenerate

them to mislead the UAV through processing times and clock offset [74]. Therefore,

receiver j receives a false pseudo-range measurement such as Zfj = {zfn,j}Gn=1 and false

pseudo-ranges for the satellite n represented in

ztn,j =
√
(xgn − xtj)

2 + (ygn − ytj)
2 + c(dtn − dt) +N (0, σ2

t )

(1)

In the presence of the spoofing attack, the received signal will be modeled as follows
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[75]:

r(t) = sgn(t− τgn;Agn, fc,gn, ϕgn) + ssp(t− τsp;Asp, fc,sp, ϕsp) + n(t)

(2)

The sgn(t) represents the genuine GNSS signal, and the ssp(t) is the fake signal

generated by hackers. τ is the delay in signal propagation. n(t)is the additive noise.

5.4 Simulation Environment

This section shows the steps to simulate anomaly detection and the necessary scenarios

to collect the dataset in the 6G communication network using Matlab, Python, and

other open software resources.

• The goals and scope of the simulation were defined and planned before the sim-

ulation was run. These goals and scope included expected behavior and attacks

needed to be detected, the dataset to use, and the performance metrics for evalu-

ation and improvement.

• Processing and filtering the datasets is needed. In the simulation experiments,

this work used public datasets; hence, pre-processing and filtering were performed

to use valuable data and exclude outliers or noise data. Furthermore, ML needs

suitable data in a specific format so that data conversion is used in addition to

data separation into training, testing, and validation data.
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• Machine learning algorithms such as autoencoder,oc-svm, and K-means were se-

lected. Python libraries, such as sci-kit-Learn and TensorFlow, were used to im-

plement and train these algorithms.

• Train and test models. Once the model was built and designed, four datasets were

used to train and test these models. Various processes were used, such as splitting

the dataset into suitable data for training, testing, and validation. Multi-variate

matrices were used to measure and evaluate the model’s performance, such as F1,

recall, and accuracy.

• Improving the model. This was achieved after validation of the model. Three

factors were considered to enhance performance: models, clustering models, and

hyperparameters.

• Result visualization. The visualization process was performed to gain insight and

better understand the results.

5.5 Dataset

A high-quality dataset to train a machine learning model is essential for consistent and

trustworthy results. Fortunately, some authors have worked on collecting datasets in dif-

ferent areas, such as UAV data, and have made them accessible to the public. Therefore,

two published datasets were used to train and evaluate the designed model in this work.

However, these selected two datasets have a lack of data and included only some of the

features needed for this work. This work compensated for the lack of data by simulating

various scenarios to collect two more datasets to assess the models accurately. Typically,

during the collection of normal data in real-time simulations, the process does not face
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obstacles in collecting normal observation events. On the other hand, researchers must

address some challenges when implementing abnormal scenarios, where some expected

consequences must be considered. For example, implementing hacker scenarios leads

to crashes and damage to the experimental vehicle, which results in high costs. Ad-

ditionally, abnormal scenarios are comprehensive, and all possible malicious scenarios

must be covered. Therefore, the simulation included two types of operation, normal and

abnormal, to collect the target parameters in the 6G UAV communication link and the

GPS sensor to gather data that was not included in the published dataset, with features

related to parameters RSS, SNR, PDR and Throughput. In addition, new datasets

collected included GPS correlation such as alt, lat, long, velocity, and acceleration, to

use more datasets and enhance the model’s accuracy in detecting spoofing attacks. The

tools and open source systems such as Matlab, Omint++, Gazebo, and QGroundcontrol

were used to measure and collect the needed data by simulating two scenarios normal

and under attacks, to have an efficient dataset.

This work used the UAV attack dataset [76] to extract specific features to train

and evaluate the performance of the algorithms in the model. This dataset was collected

based on the simulation of three types of flights such as flight in normal mode, flight under

jamming attack, and flight under spoofing attack. Therefore, this dataset is divided into

benign, jammed, and spoofing data. Flight data was extracted after completing each

flight, so the number of records contained in the dataset is 7516 and is classified into:

• Normal flight: the attack in this scenario was absent, so dataset included the

normal data pattern of the UAV.

• Jamming attack: the jamming attack happened, and the data was collected under

the scenario of a jamming attack.
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Alt Lat Long

40981 362048146 1382529220

40989 362048146 1382529219

41074 362048149 1382529222

41124 362048153 1382529221

41112 362048158 1382529221

Table 5.1: UAV normal positioning dataset

• Spoofing attack: the spoofing attack was presented in this scenario, and the system

logs were collected under the scenario of a spoofing attack.

The various operations of the real-world behavior of UAVs were collected in dataset,

as shown in Table 5.1 and 5.2. In this dataset, two UAV behaviors were simulated as

normal and abnormal incidents, which provided comprehensive information, including

variability in UAV status, factors that affected flight, and various data points. Features

such as alt, lat, long, velocity, and acceleration are included in this dataset, allowing

trained algorithms to recognize significant changes in the parameters of the selected fea-

tures or sudden increases in velocity and acceleration which are signs of a GPS spoof

attack. Therefore, the algorithm learned the malicious scenario and discerned patterns

in the data pattern under both conditions, normal or deviation, so once a GPS spoofing

attack was launched, the algorithms recognized it. These scenarios facilitated the learn-

ing process by exposing the algorithms to abnormal events, and these algorithms were

trained to identify abnormalities in the patterns in the absence of labels. Therefore, this

work particularly benefited from recognizing the evolving GPS spoofing techniques, giv-

ing the trained algorithms a comprehensive view to identify UAV behavior and allowing

the algorithm to learn the deviation in the parameters in a different dimension.

The controlled environment was built to capture data in a simulated environment and

in a live scenario. In the simulated environment, multiple open sources were used, such
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VX VY VZ ACCX ACCY ACCZ

-0.001238745 0.009944092 -0.00264930 -0.02669428 -0.07598478 -9.812940949

-0.00154938 0.0120948 -0.002639220 -0.030594320 0.0242958 -9.79204958

-0.00189847 0.0190450 -0.00340058 0.02729456 0.0269584 -9.79620499

-0.00284928 0.02405949 -0.00449203 0.007594430 0.07529489 -9.78922094

-0.003015042 0.010945903 -0.00445920 -0.69439509 -0.038892061 -9.772394590

Table 5.2: UAV normal dynamic behavior dataset

as PX4 and Gazebo, for the virtual environment. Various UAVs were used during the

simulation to offer various UAV models. In addition, the data collected utilized hardware

and software in the loop for multiple UAV behaviors. Keysight EXG N5172B was used

for signal generation to offer accurate coordination during live experiments. The Great

Scott gadget hackRF was used to conduct the GPS spoofing attack. Additionally, to set

up a control system for the experiment, the PX4 autopilot with version 1.11.3 ran on the

Pixhawk 4 flight controller. Holybro S5OO UAV model was used due to its versatility

and stability in various flight scenarios. Additionally, QgroundControl version 4.0.9

provided an interface for users to control and monitor UAVs to configure the GPS. All

data recorded in this experiment stored in ULOG files for post-flight data analysis. The

ulog2csv was used to convert ULOG files to CSV format.

Various attack scenarios are included in this dataset, ranging from simulated to live

experiments, as shown in Table 5.3 and 5.4. The GPS message was generated during the

simulation through Gazebo by the hooking configured for this mission. This hook helped

to inject fabricated GPS messages into the UAV navigation system, including a wrong

location. Hence, it resulted in a controlled environment to generate and collect real and

manipulated GPS UAV messages. On the other hand, during the live simulation, the

manipulated GPS signal was conducted through hardware. The HackRF software used

in GPS-SDR-SIM allowed incorrect GPS coordinates to be generated in the receiver.

Also, HackRF was used to jam the GPS by adding Gaussian white noise to disrupt
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alt lat lon

49204 362048117 1382529164

49187 362048117 1382529164

49172 362048115 1382529165

49122 362048115 1382529162

49210 362048108 1382529166

Table 5.3: UAV attack positioning dataset

VX VY VZ ACCX ACCY ACCZ

-0.006483048 -0.06854320 -0.01945429 -0.05843200 -0.0194589 -9.828454030

-0.002945684 -0.03845440 -0.0955900 -0.05944832490 0.00394660 -9.8294540

-0.00945690 -0.02845590 -0.00295842 -0.08558439 -0.04329445 -9.8685390

-0.00294569 -0.03945520 -0.002495520 0.05284449 0.092945669 -9.78458550

-0.00584294 -0.00945580 -0.00585439 0.053922944 -0.05843950 -9.8686539

Table 5.4: UAV attack dynamic behavior dataset

the GPS signal. Keysight EXG N55172b was used in the live experiment to generate

messages with accurate coordination to succeed in the GPS scenario.

The CRAWDAD dataset [77] was also used for testing and validation. The Federal

Aviation Administration and the tutorial sheet on Unmanned Aircraft [78] explained

that the altitude in the UAV is stable during the mission, so the third dimension of

the movement of the UAV is fixed during the flight. Also, there is a shortage in pub-

lished jamming attacks providing UAV communication under jamming attacks, so this

dataset is used to evaluate the performance of the two layer algorithms in addition to

the simulated 6G UAV dataset, explained in the following subsection. Due to the com-

prehensive scenarios included, this dataset was used to train and evaluate the model to

identify the anomaly in the signal parameters and recognize it as a jamming attack. As

RSSI SNR PDR

-48.38 22.35 0.999999895

-49.14 21.62 0.999999465

-49.92 20.85 0.999997415

-50.69 20.07 0.999988835

-51.46 19.3 0.999958016

Table 5.5: Jamming attack dataset
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shown in Table 5.5, this dataset included signal parameters such as RSS, SNR, PDR,

and throughput, and introduced various scenarios of RF jamming attacks. Therefore,

the autoencoder and K-means used both normal and abnormal data to train and eval-

uate the network’s performance behavior based on the metrics included in the dataset.

Hence, this dataset makes algorithms in unsupervised learning facing development in

the attack evolving and are suitable for securing a 6G UAV network.

This dataset is not just a theoretical construct but a practical representation of

real-world scenarios in the VANET vehicle ad hoc network. It was collected in vari-

ous environments, such as highways and suburban areas, using Software Defined Radio

(SDR) to capture and collect the dataset. This device measured RSS, SNR, PDR, and

throughput parameters in the RF system. Additionally, the dataset was combined with

a mobility model that simulated dynamic movement to ensure the data was captured

correctly. This practical approach ensured the relevance and reliability of the dataset in

real-world applications. The jamer attack was fixed during the attack scenario, and con-

currency introduced signal noise to a specific target. This jammer continually increased

its plan to send more noise signals, interrupting communication between the receiver

and the sender. Once the jammer achieved its goals closely, it reduced the jamming

signal to move back to a safe distance to mislead the detector for a while. This action

was frequently repeated, covering distances between 5 and 10 meters with frequencies

between 5 and 15 times per unit.

5.5.1 Dataset Creation

This research compensated for the lack in the datasets by simulating multiple scenarios

to collect new data. By using Matlab, two UAV scenarios were performed: normal
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behavior and operation under jamming attack. These scenarios led to generating two

6G UAV network datasets. Each of these dataset was made up of 23,938 samples. The

normal UAV dataset was simulated without external attack to collect signal parameters

such as RSS, SNR, PDR, and Throughput. On the other hand, the abnormal dataset

was generated when jamming scenarios were executed to interrupt the communication.

UAVs in this scenario faced various levels of attack. Hence, these noise signals disrupted

the transmission and affected the link.

Both scenarios, normal and jamming attacks, were implemented to evaluate the net-

work performance in the 6G UAV link. In the typical scenario, the parameters of the

UAV and GC model were determined using the directional beamforming antenna pat-

tern for both the UAV and the GC. The power of the transmitter and receiver was

identified as 35 dBm for the UAV and 40 dBm for the GC. The simulation also modeled

data transmission as channel condition, coding, and modulation. The data transmis-

sion parameters were identified as package size 1500, polar code was used for advanced

error correction, and modulation was used as qam256 for high data rate. Also, the

signal propagation model was designed with the highest precision for UAV and GC, so

it took into account multiple factors, including shading where it was set to 5 as effect.

The path loss used terahertz, and fading effects used Rayleigh with maximum doppler

shift to 250 Hz. The position of the UAV and GC were represented as (xU, yU, zU)and

(xG, yG, zG) with the UAV coordinates in (90,40,5) and GC was fixed at (0,0,0). In

the signal propagation, the distance between the UAV and GC was identified as d =√
(xuav − xgc)

2 + (yuav − ygc)
2 + (zuav − zgc)

2, and considered factors such as path fad-

ing effects, path loss and shadowing, to measure the quality and strength of the signal.

Hence, the communication in the link was normal and the signal parameters are stable

during transmission as shown in Figure 5.3.
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Figure 5.3: Normal scenario

The main jamming attack scenario involved sending a noise signal to disrupt com-

munication. The simulation of communication function model considered the jamming

attack and incorporated it into data transmission and signal propagation. The signal

propagation function model considered four types of jamming attacks in the link be-

tween UAV and GC with factors such as path loss, fading, and shadowing. In addition,

the data transmission function integrated jamming attacks into data transmission and

reception. Therefore, the jamming scenario in the communication affected the received

signal power on the receiver side, presenting the noise attenuation caused by malicious

action. Thus, the measurement of the RSS, SNR, PDR, and throughput recalculated

signal metrics to reflect the effect of the noise signal. RSS and SNR were directly affected

by noise signals, affecting signal strength and decreasing SNR. The PDR was calculated

based on the received power and the difference between the success of packet reception

and the damage caused by the noise signal. Finally, the throughput affected the PDR,
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so it was recalculated based on the new PDR.

Figure 5.4: Constant jamming attack

Figure 5.5: Deceptive jamming attack
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Figure 5.6: Intermediate jamming attack

Figure 5.7: Reactive jamming attack
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The simulated 6G UAV dataset provided valuable measurements of signal parameters

in the link to detect anomalies, specifically jamming attacks, as shown in Figures 5.4 -

5.7. These data provided a comprehensive view of the signal of normal and jamming

attacks to train the model effectively. The data included the signal parameters in need,

such as RSS, SNR, PDR, and throughput measuring signal parameters of the UAV

and GC. Therefore, presenting both measurements made the dataset comprehensive,

captured various scenarios, and allowed algorithms to learn and recognize different data

patterns related to ordinary status or noise signals. Therefore, this dataset met the

diversity characteristic, enhancing the generality in the algorithms by simulating multiple

situations to minimize False Positive (FP) or False Negative (FN). Furthermore, the

dataset’s size supports the algorithms’ validation by allowing for comprehensive events.

The simulated data is represented in RSS, SNR, PDR, and throughput columns,

representing a set of observations of different scenarios as shown in Table 5.6 and 5.7.

These metrics give insight into the system’s performance in various sections, leading to

investigation and optimization efforts. In the RSS column, the value shows how the

received signal looked, providing insight into attenuation and signal propagation. In

the SNR column, the observation shows the received signal quality measurements with

the noise signal presence to evaluate the effect of jamming of this signal. In the PDR

column, the observation shows the rate of successfully delivered packets and how the

rate decreased when the jamming attack affected the communication. The throughput

column shows the rate of the data transmitted successfully, in addition to the rate

during the jamming attack. Therefore, this data gives a comprehensive view of the

communication line for optimization and identifies the deviation that occurred in the

target metrics.
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RSS SNR PDR Throughput

-23.3860247 136.6139753 0.9 1500

-18.2011532 141.7988468 0.9 1500

-34.5720807 125.4279193 0.9 1500

-22.08799998 137.912 0.9 1500

-24.2616323 135.7383677 0.9 1500

Table 5.6: Simulated normal signals

RSS SNR PDR Throughput

-65.26654777 84.73345223 0.378413831 567.6207462

-68.84881092 81.15118908 0.344297039 516.4455583

-62.26878152 87.73121848 0.406963986 610.4459783

-57.60502758 92.39497242 0.45138069 677.0710346

-65.80742805 84.19257195 0.37326259 559.893885

Table 5.7: Simulated abnormal signals

The simulation to collect and increase the dataset, included GPS normal data and

spoofing attack, implemented by leveraging PX4, Gazebo, and QGroundControl App

QGC. During the simulation, the scenarios represented the normal instances of the UAV

and GPS messages. It described the coordination and dynamic behavior of the UAV

related to velocity and acceleration. Once the spoofing attack was launched, the feature

observation changes were recorded and stored in the file. Hence, the file included the

UAV coordination and dynamic movement dataset. In this work, PX4 was used to run

in a simulated environment. The selected UAV model was the default Quadrotor. The

QGC was used to control flights and missions. GPS spoofing was achieved by modifying

the original GPS signal using the Gazebo shared library. Therefore, it manipulated and

created an incorrect location message to transmit to the simulation environment. The

algorithm depicted in Figure 5.8 shows how the fabricated GPS spoofing was generated

in Gazebo. The shift from the planned path was represented by (ϵ), which represents the

current location from the starting point. When the malicious spoofing action started,

the algorithms stored the current location (pos) in a variable while (x) of the UAV was

stored. At this moment, the UAV received the fabricated GPS messages and moved away
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from its planned route as shown in Figure 5.9. Therefore, the simulation environment

shows how a UAV was affected by a manipulated GPS message and how it deviated from

its intended path. The dataset used includes the main features needed, for example alt,

lat, long, velocity, and acceleration, in normal and abnormal scenarios.

Figure 5.8: Creating GPS spoofing messages

Figure 5.9: Example of flying and spoofed path

Each row in this dataset includes columns representing the UAV location as alt for

altitude, lat for latitude, and long for longitude and its dynamic status such as velocity

and acceleration, as shown in Tables 5.8 - 5.11. The columns represent the UAV status

in the integer value recorded at the data point. The velocity shows how fast the UAV
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Altitude Latitude Longitude

49980 439451550 -788968509

49979 439451550 -788968510

49993 439451549 -788968510

49999 439451548 -788968510

49998 439451548 -788968509

Table 5.8: GPS coordination simulated normal data

VX VY VZ ACCX ACCY ACCZ

-0.001260226 0.009861966 -0.002602668 -0.026609369 -0.075475879 -9.810001373

-0.001533535 0.010381611 -0.002698347 -0.030851338 0.024228677 -9.79118824

-0.001887404 0.010645169 -0.003754747 0.027984818 0.026756179 -9.796936989

-0.002844293 0.010396368 -0.004532666 0.007293397 0.075241081 -9.782605171

-0.003015042 0.010762365 -0.004381465 -0.139361888 -0.038892061 -9.772027016

Table 5.9: UAV movement simulated normal data

Altitude Latitude Longitude

49982 439451550 -788968509

49989 439451551 -788968511

50001 439451550 -788968510

49990 439451549 -788968511

50004 439451550 -788968509

Table 5.10: GPS coordination simulated abnormal data

VX VY VZ ACCX ACCY ACCZ

-0.006000763 -0.001113015 -0.010537908 -0.010475708 -0.015321761 -9.811365128

-0.006954138 -0.001167268 -0.010231952 -0.062327698 0.001425983 -9.853741646

-0.006469611 -0.00118432 -0.0094188 -0.056902725 -0.0677993 -9.822723389

-0.006058747 -0.001686975 -0.008144341 0.051815644 0.090789631 -9.716182709

-0.00597062 -0.002140084 -0.007122496 0.059347354 -0.00251192 -9.868725777

Table 5.11: UAV movement simulated normal data
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is during flight, with its acceleration showing the change in speed per time. Since, all

features were not represented in the previous public dataset, as shown in Table 5.12, this

section showed how this work simulated and collected new dataset used in this research.

5.6 Feature extraction

Feature extraction is a process of extracting sufficient features that describe UAV status

in the system log to recognize the UAV’s dynamic behavior and identify any deviation

of the data parameters during transmission. Typically, UAV manufacturers produce

various models and configurations to build and design UAVs. To overcome this issue

in selecting features, this work selected features that exist in any UAV regardless of its

model, components, and configuration.

For the UAV sensors, this work focused on selecting features based on the reliable data

generated. Therefore, the selected feature was based on the non-fault sensor consistency.

In addition, some factors that affect these data were considered, such as unchanged data

or data-based statistics. However, these led to follow the variability and consistency of

the data generated for the all-flight scenario. On the other hand, in this process, this

research conducted a comprehensive analysis of the components of the UAV following

the generality concept to ensure that the result of the study achieved features commonly

deployed in UAVs.

This research also targets the model’s applicability and adaptability, neglecting the

hardware’s characteristics. Hence, it has led to an increase in the ability to address

multiple scenarios. Furthermore, control features were excluded because control inputs

vary from one piece of equipment to another. Therefore, these features were not prac-
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tical in terms of hardware compatibility. Hence, this work considered that most UAV

manufacturers produce different types of UAV models and, from there, it was decided

to select records related to UAV coordination and physical status during the mission.

These features represent metrics related to the location and spatial position. Based on

these metrics of these features, this can ensure that detection works well regardless of

the type of UAV and its configuration.

This work also categorized the features from the dataset into:

• Received Signal Strength : RSS in 6G UAV communication is a critical parameter

for measuring the signal radio power strength in the UAV receiver. It includes

the expected noise present in the signal and the potential radio jamming signal.

When the jamming attack is present in the communication link, the RSS might

not provide the strength of the original signal where it presents the strength of the

jamming signal. Hence, these signals are high and evaluate the receiver about the

actual quality of the link.

RSStotal = Pt +Gt +Gr − Lpath +Gb − Lj − Lother factors (5.1)

Where:

– Pt represents the transmit power of the original signal.

– Gt represents the measurement of the transmitting antenna.

– Gr represents the UAV antenna’s gain measurement.

– Lpath represents the path loss of the original signal.

– Gb represents the beamforming gain to reduce jamming.

– Lj represents the impact loss during the jamming attack.
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– Lother factors includes other factors such as fading, obstruction, etc.

• Signal-to-noise SNR: In the 6G UAV network, SNR is expected to measure the

noise present in the signal compared to the actual signal strength. SNR may

affect the data rate in the expected communications when the jamming attack

is presented. Jamming attacks increase the SNR in the channel to challenge the

distinction between the actual signal and noise.

SNR in the presence of a jamming attack is given by the equation:

SNR =
Ps

Pn + Pj
(5.2)

Where:

– Ps represents the power in the original received signal.

– Pn represents the noise.

– Pj represents power of the jamming signal attack.

• Packet Error Rate PER: low latency and ultra-reliability are expected in the 6G

UAV network. PER represents the ratio of the signal received from the receiver

compared to the sender. This ratio is expected to be high in the 6G network due

to advanced features such as the error correction technique. The main goal of the

jamming attack is to decrease this PER through interference to decrease correctly

received data packets.

PER =
N × Ps

N
(5.3)
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Where:

– N represents the number of the packets.

– Ps represents the number of packets retrieved successfully during jamming.

• Throughput: represents the data rate received successfully from the sender over

the communication channel. The throughput is measured by calculating a bit per

second.

Throughput =
Packet Size

Transmission Duration
(5.4)

• UAV GPS Altitude: represents the height of the UAV from sea level. In the

presence of the GPS spoofing attack, the hacker sends fake altitude data to the

UAV. Therefore, the UAV moves to the wrong altitude data based on the fake

signal received. Hence, it leads the UAV to fly on different levels, causing a crash

or collision with obstacles or terrain or flying at a high level.

• UAV GPS latitude: represents the accurate geographic coordination of the UAV

on the Earth’s surface. In the presence of the spoofing attack, the UAV is driven

in the wrong direction. Therefore, this leads the UAV to an incorrect flight path,

which causes it to be moved from its target area.

• UAV GPS longitude: It represents the geographic point of the UAV on specific

coordinates east-west. Mistaking the UAV’s longitude leads to deviation and is a

reason to lose the UAV’s path and disrupt its mission.

• UAV velocity: represents the change of the UAV in the position with a correspond-

ing time.

• UAV acceleration: represents the change in the velocity of the UAV considering

the time.
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5.6.1 Proposed methodology

The performance of 6G depends on the efficiency of the aerial network layer during signal

transmission. The UAV in this layer can cover large scale areas to provide an entire

coverage area based on the user’s demands and the mission’s requirements. However,

the adversary’s actions to disrupt the transmission are the main challenges, where they

launch their malicious actions to violate the integrity and availability of the transmission.

The transmission link between legitimate nodes in the aerial layer needs to be more

secure and reliable during transmission. The legitimate node faces threats such as noise

frequency signals and spoofed signals, which blocks communication and consume power

resources in the receiver. Additionally, they aim to mislead the UAV trajectory by

spoofed signals. This malicious action, when it happens, will target the transmission

and lead to a degradation of the performance of the UAV system by injecting a false

GPS signal to deviate the UAV from its planned path, leading to loss of coverage area

until the system is recovered.

This section focus first on detecting abnormal behavior in network traffic, as shown

in Figure 5.10. Two levels of algorithms are used in the model: one to detect an anomaly

and the second to confirm anomaly detection in the data received. The detected anomaly

is classified into two types: jammed signal or deviation from the planned route of the

UAV due to a fake GPS signal. The main components in this model are presented below.

Feature Engineering and Scaling

In the designed approach, this work considered unjust data patterns and non-essential

data, so feature engineering was used to address these obstacles. The model was designed

to take advantage of the plotted data patterns based on common features in all types of



5.6 Feature extraction 75

Figure 5.10: The architecture of distributed intrusion detection system

UAVs. Therefore, obtaining these characteristics was essential to building and deploying

a neural network model to detect jamming and spoofing attacks. To recall data and

obtain a unified range of values, this work used the min-max normalization equation to
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adjust the characteristics between [0, 1].

Xnorm =
X −Xmin

Xmax −Xmin
(5.5)

5.6.2 Splitting of the Dataset

Once the dataset processing was completed, the dataset was separated into training

and testing data. The training data is used to train the designed model, while the

testing dataset is used to evaluate the proposed model. Therefore, the proposed system

separated data into multiple splits to start this process, and suitable splits were used.

Once the data and data separation processes completed, the dataset was ready to detect

a proposed anomaly. Therefore, the three algorithms, Autoencoder, k-means, and OC-

SCM, were prepared to be employed in the model.

• Anomaly detection algorithm:

The first algorithm in this model was proposed to use the autoencoder model.

The autoencoder is a deep neural network that takes an input data vector and

decodes it to reconstruct the input vector. The encoding process aims to optimize

the parameters to introduce a vector representation that includes the characteris-

tic. At the same time, the decoding part takes the produced vector through the

reconstruction parameter. The autoencoder measures the difference between the

input and reconstruction vectors produced by the loss function. This work used a

stacked autoencoder in which various layers of neurons were stacked in the encoder

and decoder processes. Therefore, each signal layer used the activation function

ReLU for non-linearity and computes the linear operation. The models e() and
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d() represent the encoder and decoder. In contrast, x represents the input vector

to the encoding, and r is used for the representation vector in the decoder. W

represents weight, and b represents biases in the linear operation. ReLU and the

sigmoid function are present in the model architecture, and ReLU represents the

nonlinear activation function.

The encoding phase was the first phase of training the autoencoder to detect

anomalies. In this phase, the autoencoder trained on the normal dataset param-

eters. Therefore, various levels of reconstruction were produced between normal

and abnormal data. This process allowed the algorithm to learn normal data pa-

rameters. Thus, the parameter of the autoencoder was handled with standard data

so that these features were optimized for encoding and decoding the benign data.

This means that the autoencoder produced a low reconstruction loss of the normal

data set and a high reconstruction loss representing the abnormal data. Therefore,

this work addressed and analyzed these results to identify normal or abnormal

data. Thus, the only log used in the encoding phase was the normal data status.

Furthermore, the validation phase identified the threshold by selecting a particular

threshold level. The threshold allowed the model to determine an anomaly when

the reconstruction loss of the input feature vector was more significant than the

threshold. Therefore, choosing the threshold of the trained model should recog-

nize abnormal data effectively, where the model performance depends entirely on

selecting the appropriate threshold.

In the model, the autoencoder was trained as the first algorithm on some features

to detect anomalies during data transmission. It used multiple features from the

dataset to train this algorithm, such as signal noise SNR, receive signal strength

RSS, bit error rate (BER), packet error rate (PER), and GPS coordinates. These
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features were trained in the first algorithm to detect an abnormality in the signal

and data received and then identify the initial anomaly detected. Finally, the

initial result of the first algorithm will be sent to the second algorithm to increase

the accuracy of the initial detection by confirming the suspicious result.

• Jamming attack detection model:

K-means clustering is an unsupervised clustering algorithm that aims to divide

the data point into clustering containing unlabeled data, such as data not included

in the groups. It can handle the enormous size of the dataset [79]. The K-means

technique’s primary goal is to find a cluster in the data, including a variable named

K. The clustering is executed based on the similarity of the data by reducing

the distance between the data point and the assigned cluster centroid point X in

the model [80]. In abnormality detection, K-means can identify the abnormality

through the deviation in the data point that is differentiated from the point in the

train clustering, such as increasing the distance between the data point and the

assigned cluster centroid point X.

In this model, an algorithm that includes the K-mean integrated with an autoen-

coder was created. This integration extracted deviation in the signal pattern pre-

sented in the input data used during the training model. We used K-means and

autoencoders in the model because K-means know noise patterns and variables

that describe complex relationships. Hence, this model’s architecture enhanced

the accuracy of an autoencoder in the overall model performance. Based on the

result received from the first algorithm, k-mean executed the received log again to

confirm the suspicious case. If the model confirms a jamming attack, the model

sends the decision to the final decision model for the next step. Therefore, the

anomaly will be categorized in tow cases:
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• Unintentional interference: The second algorithm confirmed that the anomaly was

detected as unintentional interference due to channel congestion, so the result will

be sent to the UAV system for updating.

• Jamming Attack: This means that the previous first and second algorithms con-

firmed the jamming attack, which will be classified according to the type of jam-

ming attack that occurred.

• GPS spoofing detection model:

The OC-SVM one-class support vector machine is widely used in the detection

technique to detect the attack and classify it according to the trained model [81].

It is similar to SVM; it is considered a semi-supervised method [82]. OC-SVM was

trained only on normal data and classified the new data, which differs from the

training data, as abnormal. This model receives the result of the first algorithm

related to the probability of a GPS spoofing attack. OC-SVM algorithm executed

the log to confirm the decision. If the model confirms the spoofing attack, it will

send the result to the final decision model for the next step.

In this work, OC-SVM was trained on normal data to learn the boundary presented

in the normal dataset. Then, it received the number of anomalies detected as a

spoofing attack from the autoencoder to confirm them. The OC-SVM creates an

auto-function with gamma parameters. This function automatically adjusts the

model to the gamma value, affecting the SVM’s decision boundary. After that, it

predicts the data related to the abnormal or normal data by using -1 as a label for

the anomaly and 1 as a normal label. Hence, the confirmation in the algorithm

was designed with an autoencoder. This algorithm confirmed that the autoencoder

detected data point was abnormal and related to a spoofing attack. It is identified
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as an anomaly if both methods consider the detected data point an anomaly.

5.7 Performance Metric and Evaluation result

This section applied the evaluation to the proposed methodology using the receiver op-

erating characteristic curve. ROC curve is used to measure the accuracy of the proposed

technique with true positive rate TPR and false negative rate FNR. The proposed sys-

tem was mapped as a classification problem with normal or abnormal classification. The

following two algorithms trained to identify anomalies, such as jamming or spoofing at-

tacks. To prove the model’s effectivity, this work aimed to increase TPR and decrease

FPR, which were measured by using the aerea under the ROC curv AUC [83]. The main

reason for using AUC is that it can recognize normal and abnormal classes. The higher

value of the AUC leads to better performance.

The confusion matrix is performed to obtain prominent information about the pre-

dicted output. It is also widely called the error matrix and is used to show the prediction

of the output of the classification model during the test and validation data. The clas-

sification result, either correct or incorrect classes, is displayed in the Table 5.12. The

table shows the confusion matrix of intrusion detection. The main goal of the confusion

matrices is to present the performance of the ML algorithms.

• : True Positive (TP): it measures the capability of the model in classifying normal

Confusion Matrix

Positive Class
Predicted

Negative Class
Predicted

Normal Class TP FN

Attack Class FP TN

Table 5.12: Confusion matrix in binary class
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action correctly as:

TP Rate =
TP

FN + TP
× 100% (5.6)

• : True Negative (TN): it measures the capability of the model in classifying ab-

normal action correctly:

TN Rate =
TP

TN + FP
× 100% (5.7)

• : False Positive (FP): it measures the error of the model in classifying normal

action correctly as:

FP Rate =
FP

TN + FP
× 100% (5.8)

• : Flase Negative (FN): It measures the error of the model of classifying abnormal

action correctly as:

FN Rate =
FN

TP + FN
× 100% (5.9)

• :Accuracy: In the shown equations, accuracy is the ratio of the proposed methodol-

ogy able to correctly detect anomalies among the records used in the dataset. The

best performance, is the highest accuracy achieved where accuracy ranges from 0

to 1.The main goals of the accuracy is make balances of the data collected and

used.

Accuracy =
TP + TN

Total Population
(5.10)
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• :F1-score: It is called F1-measures and is an effective performance measure used to

identify the relation between recall measures and harmonic mean of the precision.

The highest number of F1 score means that the methods used were effective.

F1 =
2 · Precision · Recall
Precision + Recall

(5.11)

• :Precision: It represents the correct prediction from the overall prediction event.

Precision =
TP

TP+FP
(5.12)

• :Recall: It represents the proportion of the positive rate.

Recall =
TP

TP+FN
(5.13)



6
Experimental Setup and Analysis of

Results

6.1 Experimental Setup

In this section, the experiment is addressed and discussed. To complete the evaluation

of the experiment, Python was used as a programming language. The decision to use

Python in the experiment was made for multiple reasons. It is the easiest and has been

used widely as a programming language in numerous application areas. It has various

libraries used in the multiappearance area, such as web server tools, operating systems,

internet protocol, and string operation. One of the main open-source libraries used

in this work was Scikit Learn, which performs and assembles multiple algorithms for

83
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clustering and classification. Also, some libraries used for dataset processing, including

Sklearn, Numpay, and Panda. In addition, model n-fold cross-validation and train test

split were used for evaluation.

The primary goal of the experiment was to evaluate whether the proposed method-

ology adequately identified the anomaly in the autoencoder algorithm and confirmed

it using the following two algorithms. During the experiment, the focus was on two

activities: first, the validation of the proposed model found an extensive reconstruction

when the abnormal dataset was used. Second, it checked the difference between nor-

mal and abnormal data in reconstruction loss. The following subsections show how the

configuration of the experiment and the result of the suggested method are effective.

6.1.1 Setup

The three logs, normal flight, jamming, and spoofing attacks from the dataset, were used.

The suggested algorithms were built and designed based on an unsupervised learning

technique; therefore, they were trained only to observe the features when the flight is in

normal data and validated in the dataset, including both normal and abnormal behavior

of events.

6.1.2 Experiment Results

For the IDS, confusion matrices such as FN and FP play a crucial role in performance

evaluation, recall, and precision. Reducing FN and FP in IDS is necessary, as their

increase in the model leads to classifying the attack as a legitimate event. The conclusion

of the precedence showed that a low result means that the false positive rate is high.

The low level of the recall parameter indicated that the model classifies the attack event
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in the network as normal, which leads to an increase in the number of FN. Furthermore,

increasing F1 results leads to less incorrect classification, such as correctly classifying

normal events as normal and abnormal data as attack events. In addition, accuracy

indicates the correct classification of normal and abnormal data.

Autoencoder

The linear autoencoder trained on a training test that contains normal observation. The

data pattern must be fitted before model training; therefore, several techniques have

been applied to fit the normal data pattern. First, batch normalization was applied to

execute the encoder and decoder. Second, to avoid an overfitting problem, both the L1

and L2 regularizers were applied. The Adam optimizer used to optimize the parameter to

increase the model’s efficiency. Once the model was fully trained, the test was executed.

Therefore, the two experiment result showed in the two forms jamming and spoofing

attacks.

The red part of the line in the Figure 6.1 shows how the construction loss increased

when the attack data was started. From the figure, we can extract that the reconstruction

loss increased extensively when the malicious action of the UAV launched a jamming or

spoofing attack scenario. Figure 6.1 shows how the reconstruction loss changed when

the hacker started its malicious plan. These significant behavior imply changes in the

pattern. Therefore, the first detection algorithm extracted and learned the dynamic of

the normal data pattern and can identify the malicious pattern in the hacker’s presence.
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Figure 6.1: Reconstruction loss

Attack Type Precision Recall F1 Score Accuracy

Jamming 25844
25844+350 ≈ 0.986 25844

25844+1364 ≈ 0.949 2×(0.986×0.949)
0.986+0.946 ≈ 0.962 25844+2286

29844 ≈ 0.942

Spoofing 34621
34621+1853 ≈ 0.949 34621

34621+2348 ≈ 0.935 2×(0.949×0.935)
0.949+0.935 ≈ 0.941 34621+5212

41428 ≈ 0.961

Table 6.1: Metrics performance public dataset

Autoencoder Performance on UAV dataset

The first experiment was performed to identify the accuracy of the first algorithm and

showed that the autoencoder achieved good accuracy. This algorithm was investigated

and evaluated by the public, and the simulated dataset included all features such as

RSS, SNR, PDR, and throughput, alt, lat, long, acceleration, and velocity of normal

and abnormal parameters. The results presented in Tables 6.1 and 6.2 show that the

autoencoder did not change significantly in different datasets. Therefore, the accuracy

was between 94 and 98.6, and the FNR was between 0.06 and 0.05, so it shows good

performance in correctly detecting abnormalities in the communication link and UAV

movements.
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Attack Type Precision Recall F1 Score Accuracy

Jamming 23674
23674+1594 ≈ 0.940 23674

23674+1425 ≈ 0.946 2×(0.940×0.946)
0.940+0.946 ≈ 0.942 23674+4891

31584 ≈ 0.904

Spoofing 32795
32795+1348 ≈ 0.959 32584

32584+1148 ≈ 0.965 2×(0.959×0.964)
0.959+0.964 ≈ 0.961 32584+6348

41428 ≈ 0.955

Table 6.2: Metrics performance SIM-Dataset

Attack Type TP FN FNR Accuracy

Spoofing 34621 2348 2348/(2348+34620=0.06) 34621+1853/44034=0.986

Jamming 25844 1364 1364/(1364+25844=0.0501 25844+2286/29844=0.94

Table 6.3: Autoencoder accuracy

Table 6.3 shows that the autoencoder performed on two datasets separately, includ-

ing spoofing and jamming attack parameters. During the spoofing attack, the first

algorithms reached a high accuracy of 0.98. Additionally, the FNR was very low, ris-

ing by 0.06, and classifies 34,621 as a normal pattern. However, during the jamming

attack, the autencoder was trained on various features such as SNR, PDR, RSS, and

Throughput, the autencoder detected changes in the signal parameters during transmis-

sion. As shown in Table 6.3 the autoencoder worked well, reaching 94 with the lowest

FNR rate, which was 0.05. Furthermore, this algorithm classified the 25,844 events as

normal behaviors.

OC-SVM with Autoencoder

Combining the two algorithms, autoencoder, and oc-svm, to detect anomalies such as

spoofing attacks proved to be effective. The main characteristics of the autoencoder are

the ability to handle complexity in the data relationship and deal with linear patterns

that may not be captured by OC-SVM, where it works effectively to identify the bound-

ary presented in the normal data. Therefore, combining both algorithms increased the

accuracy in determining the real anomaly and reduced the FPR.
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In the second experiment, an evaluation was performed to obtain the autoencoder

detection result and confirm the detection of abnormalities by oc-svm. These two algo-

rithms are also trained only on features related to the spoofing attack, such as alt, lat,

long, velocity, and acceleration. The validated datasets used in this algorithm included

all normal and abnormal parameters related to the features. These algorithms showed

that oc-svm shows a significant result with the autoencoder detection results as shown

in Figure 6.2. The accuracy of these algorithms reached 96, and the FNR 0.08.

Tables 6.4, 6.5, and 6.6 show that accuracy, F1 score, recall, and precision detection in

two algorithms, combined and separately, confirmed the spoof attack. When the spoofing

attack occurred, OC-SVM enhanced the transmission and the accuracy detection ratio

to 94. Also, the FNR was low at 0.08.

Attack Type Precision Recall F1 Score Accuracy

Spoofing 31748
31748+2374 ≈ 0.93 31748

31748+2943 ≈ 0.91 2×(0.93×0.91)
0.93+0.91 ≈ 0.919 34748+6895

44034 ≈ 0.94

Table 6.4: Metrics performance on public dataset

Attack Type Precision Recall F1 Score Accuracy

Spoofing 21521
21521+2045 ≈ 0.91 21521

21521+1396 ≈ 0.939 2×(0.91×0.939)
0.91+0.939 ≈ 0.924 21521+4495

29458 ≈ 0.88

Table 6.5: Metrics performance on SIM-Dataset

Attack Type Precision Recall F1 Score Accuracy

Algorithm-combined 69369
69369+3722 ≈ 0.94 69369

69369+4091 ≈ 0.94 2×(0.94×0.94)
0.94+0.94 ≈ 0.919 82612+13243

90625 ≈ 0.91

Table 6.6: Metrics performance combined

In the first detection process, the autoencoder detected 31,621 anomalies in the de-

viation of GPS coordination, as shown in Figure 6.3 and Table 6.7. This number of

anomalies detected shows data points that deviate from the trained data of the model.
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Figure 6.2: Metrics performance oc-svm and autoencoder

Table 6.7: Spoofing attack ROC curve

Attack Type Number
of Normal

Logs

Number
of Attack

Logs

AUC

Spoofing Attack 45835 13524 0.9037

Hence, the non-linearity pattern and ability to capture complexity in the normal data

point played a crucial role in detecting the deviation from the normal data pattern by

using the OC-SVM. This result indicated that this number is considered out of the or-

dinary where the main work of the oc-svm, any point presented out of the encapsulated

normal data, is an anomaly. Finally, the confirmed number of the anomaly was 31,748,

close to the number of anomalies detected by the autoencoder. Therefore, this result

represents the anomalies detected by autoencoder and oc-svm algorithms.

K-means with Autoencoder

Using their unique characteristics, the combination of K-means and Autoencoder pro-

vided a good detection technique. The autoencoder was designed to learn benign data
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Figure 6.3: K-means with autoencoder

codings in an unsupervised learning technique, so it identified 34,583. This detection

relies on the difference between reconstruction errors in the data point. Therefore, the

number of anomalies detected is due to the increase in these abnormal data reconstruc-

tion errors. Following the autoencoder, K-means received the detected anomalies and

analyzed them according to the deviation of the jamming attack data pattern.

In the first session, to evaluate the model in detecting jamming attacks and distin-

guishing them from unintentional noise, K-means received the anomaly detected by the

autoencoder to confirm the deviation in the signal parameters. This algorithm was eval-

uated based on two datasets: a public dataset and a simulated dataset with 6G signal

parameters. Different features were considered in these algorithms, such as SNR, RSS,

PDR, and through. The results showed that these algorithms controlled the abnormality

event detected by the autencoder. Therefore, as shown in Figure 6.4, the accuracy of

these algorithms reached 0.92 and the overall accuracy results were between 91 and 96.

Also, it showed that the FNR was low and between 0.03 and 0.11.
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The below Tables 6.8 - 6.11 showed the percent of accuracy achieved in these al-

gorithms in k-means and overall of the two algorithms. Under the jamming attack,

these algorithms evaluated the transmission parameters and detected and confirmed the

detection accuracy at 0.92. In addition, this algorithm correctly classified 25,583 as a

normal event. Therefore, based on these results, these algorithms worked effectively.

The idea behind using two algorithms was to increase accuracy and reduce FNR,

which these algorithms achieved. The evaluation of combining these two algorithms was

performed, and it showed a good result by confirming all detected events in the first

algorithms; hence, it worked efficiently with high accuracy and low FNR, as shown in

Figure 6.5 and, Tables 6.11 and 6.12.

The overall evaluation of the model, as shown in Figures 6.6 and 6.7, and Table

6.13, achieved high accuracy detection alongside precision and other matrices. Hence,

this high percentage proved efficient for the model in the presence of malicious action

jamming and spoofing attacks.

Attack Type Precision Recall F1 Score Accuracy

Jamming 25844
25844+1284 ≈ 0.95 25844

25844+2184 ≈ 0.92 2×(0.95×0.92)
0.95+0.92 ≈ 0.93 2358+3134

28845 ≈ 0.92

Table 6.8: Metrics performance K-mean

Attack Type Precision Recall F1 Score Accuracy

Jamming 14321
14321+937 ≈ 0.938 14321

14321+336 ≈ 0.977 2×(0.938×0.977)
0.938+0.977 ≈ 0.93 14321+2541

18322 ≈ 0.957

Table 6.9: Metrics performance K-mean

Attack Type Precision Recall F1 Score Accuracy

Algorithm-combined 37995
37995+2531 ≈ 0.937 37995

37995+1761 ≈ 0.955 2×(0.937×0.955)
0.937+0.955 ≈ 0.945 45427

49619 ≈ 0.915

Table 6.10: Metrics performance combined
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Figure 6.4: Overall evaluation

Algorithms Accuracy FNR FN TP

Autoencoder 0.98 0.06 2348 34621

K-means 2358+3134/28845=0.92 1394/(1394+23844)=0.05 1394 25844

Algorithms-
combined

0.95 0.11 4722 60465

Table 6.11: Metrics performance K-means

6.2 Discussion

Recently, with the significant development of artificial intelligence, security mechanisms

have become modern, and adversary techniques have constantly evolved. Unlike pre-

vious network technology, 6G is expected to have a high volume of data, resulting

in noise in the channel, similar to a jamming attack. Therefore, robust and effective

security techniques are essential, so designing efficient anomaly detection mechanisms

considering these characteristics is required. Owing to supporting the 6G network to

Non-Terrestrial Network (NTN) to deploy the UAV to enhance terrestrial network in-
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Table 6.12: Attack confirmed

Attack Type Number
of Normal

Logs

Number
of Attack

Logs

AUC

Jamming Attack 25437 5836 0.9168

Figure 6.5: K-meanse with Autoencoder

Figure 6.6: Overall evaluation
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Algorithms Accuracy FNR FN TP

Autoencoder 0.98 0.06 2348 34621

Oc-svm 0.94 0.08 2374 31748

K-means 0.92 0.05 1394 25844

Algorithms-
combined

0.94 0.06 6116 92213

Table 6.13: Overall evaluation

Figure 6.7: Overall evaluation

frastructure for critical missions, this work designed a new security mechanism as two

layers of algorithms to enhance security in the UAS. This technique improves system se-

curity by monitoring network traffic and UAV behavior to identify changes in the signal

communication parameters, geospatial coordinates, and dynamic behavior of the UAV.

The first algorithms used in the unsupervised technique were trained on normal data to

detect anomalies during the mission; therefore, this model plays a crucial role in improv-

ing the accuracy of the suggested technique by giving initial detection decisions. In the

second layer, two algorithms are designed, and each was trained separately to confirm

the anomaly detected received from the first layer algorithm and identify the deviation

as either a jamming attack or a spoofing attack. Therefore, the model improves perfor-

mance in the second layer by reducing false alarms that cause mission destruction, as

shown in Figure 6.8 and Table 6.13.
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Figure 6.8: Anomaly detection methodology

The 6G network is expected to handle high data rates because of the significantly

increasing number of connected devices. Hence, it leads to presenting unintentional

noise signals because of the congestion at the channel. The two-layer algorithms in this

work provide the ability to distinguish jamming attacks and congestion in the channel

represented in a 6G UAV environment, starting from the autoencoder to detect anomaly

detection on the network-related signal parameters features to the second algorithm

k-means to confirm anomaly as a jamming attack. Therefore, these two algorithms

exploited signal parameters such as RSS, SNR, PDR, and throughput to identify the

jamming attack from noise caused by congestion in the channel. Hence, the approach

can identify maliciously intentional jamming accurately, providing reliability in the com-
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munication.

Additionally, this work handles the main security issue of securing UAVs from being

hijacked or disrupted. GPS spoofing attack is an obstacle facing UAVs during missions,

which leads to interrupting the connectivity in the coverage area when it is used to

enhance the terrestrial network. These algorithms are designed efficiently to detect

deviations in the UAV GPS coordination such as alt, lat, long, and dynamic behavior

such as velocity and acceleration. Therefore, these algorithms enhance security when

integrated onboard UAV systems within 6G networks. In addition, this method ensures

stable connections to devices connected to UAVs where the interruption affects the

safety and quality of service provided to users. An interruption or deviation in the UAV

is expected during the launching of the jamming and spoofing attack. Therefore, this

technique is expected to enhance defense mechanisms such as changing the channels or

flying away from malicious areas.

• 6G UAV system layer

The 6G UAV network is expected to handle large amounts of data, so the algorithm

in the first layer is essential as a primary detection algorithm to analyze the traffic

data and identify the deviation patterns. Therefore, it ensures that the suspicious

event is detected and identified correctly. Combining this layer with the second

layer, which includes the OC-SVM and K-means, decreases the false positive rate.

F1(z) is the algorithm used in the first layer at time z. R(z) represents traffic data

in the transmission. T(z) is the feature of abnormality. FP(z) is the false positive

rate.

F1(z) = FN (R(z), T (z))
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The primary goal of F1(z) is to recognize and identify the changes in the normal

transmission pattern to guarantee that abnormality is detected. Also, the reduction

of the false positive rate is represented by combining both algorithm layers as

F (z) = F (F1(z), F2(z))

• It meets the adaptability in the dynamic environment of the 6G UAV networks.

Label data collection is a critical process in ML training, but it is limited and

expensive; therefore, an unsupervised learning technique is preferred. This model

can be effectively updated with unseen data will address the issues of UAVs oper-

ating on 6G network. Furthermore, the unsupervised technique can detect a new

type of attack.

The adaptability of the suggested approach represented in n(t) included the algo-

rithms in the time duration T and n(t).

The state of the approach is represented in this equation as

A(t+∆t) = f(A(t), V (t), Ad(t), Ac(t))

where is A(t +∆t) the time that was selected to update the system at this time.

f is the process function of the system A(t), and V (t) is the threat vector.

• leveraging 6G resources;

Two features are expected in 6G, higher data rate volume and faster speeds. There-

fore, by handling the anomaly detected in two levels of algorithms, computational

resource issues are mitigated; hence, the system response is adequate.

• It is suited for UAV network security issues.
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The main target of the jamming attack is to disrupt the communication between

UAV and satellite or GC: so the RF is used to recognizes the sequential patterns.

In addition, the main goal of the spoofing attack is to mislead the UAV from its lo-

cation by manipulating the navigation system. Therefore, OC-SVM can effectively

identify the deviation in the UAV path.

• It meets module adaptability

The evolution of the threat vectors of the 6G UAV network is adaptable, with the

suggested model able to add new algorithms to enhance the system’s longevity.

In this model, adaptability is represented as the ability to adjust the model based

on the threat model T (z) and expected vulnerabilities in the system described as

V (z) at the time. Therefore, it allows new algorithms G(z) to be added to the

model to enhance longevity and support the system’s resilience to face emerging

hackers. Therefore, the adaptability is represented as

D(t+∆t) = f(T (t), V (t), A(t))

• Ensures reliability in UAV operation.

The system’s two layers provide a robust validation process. This process guaran-

tees the integrity of the mission, the safety of the UAV operation, and the reliability

of the received data.

Reliability in UAV performance is represented as S(t) to ensure high safety and

trustworthiness in the UAV mission. G1(z) is the first algorithm to detect anoma-

lies for validation. G2(z) is the second algorithm used to ensure the integrity and

safety of the mission in the second layer. The reliability in the two algorithms is

achieved in this form

S(t) = f(G1(z), G2(z))
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f() represents reliability achieved through two detection and confirmation algo-

rithms.

• Scalability in the 6G UAV network scenarios

UAVs can be deployed in swarms and singles based on the mission plan. Jamming

and spoofing have multiple impacts on the UAV mission, so the two layer algorithm

detection techniques are comprehensive and meet scalability to address changes

and various threats.

It is considered that U is the group of several UAVs forming a swarm. J(s) is the

jamming attack at time T, and (t) represents the spoofing attack action during the

mission. A1(z) is the algorithm at the first level to detect anomalies, and A2(z) is

the confirmation algorithm at the second level. The swarm that forms in

S(t) = f(A1(z), A2(z), J(t), T (t), U)

where f() is the function to represent the swarm, with the UAV number and

the presence of the jamming and spoofing attack, and A1 and A2 are the two

algorithms’ detection. Therefore, scalability is achieved by keeping the swarm’s

performance stable and ensuring the detection of any changes in the overall swarm

performance.



7
Future Research Directions and

Conclusions

7.1 Future Research

The two layer algorithm detection technique in the 6G UAV network provides a signif-

icant step forward. This technique provides the ability to be extended to achieve new

research goals and adapt to meet the rapid evolution of the upcoming technology. This

technique is expected to be used in the future for security protection as follows.

Detecting anomalies is practical in critical systems. Therefore, measuring the severity

of the detected anomaly increases the algorithms’ efficiency. Using specific techniques by

100
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incorporating them with the primary algorithm is effective. The algorithm can determine

the potential impact and the severity level, either high or low. The statistical method is

an efficient technique to assess the severity of threats. It can monitor the magnitude of

the normal pattern and decide whether the severity is high or low. A security breach is

another technique to determine the impact of severity by monitoring the fluctuation that

could result from the low severity issue. In addition, temporal analysis can be included

by using the time duration anomaly and frequency as metrics. Given the proposed

technique, the primary algorithm autoencoder can be integrated with this technique to

enhance an effective response strategy.

The K-means algorithm can be used to classify the jamming detected into more event

types. This could improve countermeasures based on the classification of the detected

anomaly.

7.2 Conclusions

The proposed methodology is composed of two-level algorithmic approach, including au-

toencoder as the first algorithm to detect the anomaly and the secound layer algorithms,

OC-SVM to confirm the anomaly as a spoofing attack, and the K-means to confirm the

anomaly as a jamming attack. This could provide significant advancement to enhance

security in the UAV 6G network. The first algorithm, the autoencoder, is used as a filtra-

tion method to analyze the network data and convert it to be used to extract deviation

in the data pattern. The second layer includes the OC-SVM and K-means algorithms

used as detection system to validate the identified anomalies and categorize them as

jamming or spoofing attack, respectively.
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Using the unsupervised learning technique allows deployment even if the labeled data

does not exist, making the suggested method scalable and practical. OC-SVM provides

the ability to distinguish between input data that is normal and abnormal, especially in

attempts of the spoofing attack to deviate the UAV from its planned path. On the other

hand, the LSTM identifies the temporal and spatial patterns related to the jamming

attack in the stream data.

In conclusion, the approach suggested for designing two-level algorithms represents

an effective front-line defense methodology for the 6G UAV network. As the technology

matures, this proposed approach can be key to enhancing UAV communication and

assurance.
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92. Šimon, O. & Götthans, T. A Survey on the Use of Deep Learning Techniques for
UAV Jamming and Deception. Electronics 11, 3025 (2022).

93. Titouna, C., Naıt-Abdesselam, F. & Moungla, H. An online anomaly detection
approach for unmanned aerial vehicles in 2020 International Wireless Communi-
cations and Mobile Computing (IWCMC) (2020), 469–474.

94. Price, J. et al. Real-time Classification of Jamming Attacks against UAVs via
on-board Software-defined Radio and Machine Learning-based Receiver Module in
2022 IEEE International Conference on Electro Information Technology (eIT)
(2022), 1–5.



References 109

95. Bae, G. & Joe, I. in Advanced Multimedia and Ubiquitous Engineering 305–310
(Springer, 2019).

96. Ajakwe, S. O., Ihekoronye, V. U., Kim, D.-S. & Lee, J. M. Pervasive Intrusion De-
tection Scheme to Mitigate Sensor Attacks on UAV Networks., 1267–1268 (2022).

97. Park, K. H., Park, E. & Kim, H. K. Unsupervised intrusion detection system for
unmanned aerial vehicle with less labeling effort in International Conference on
Information Security Applications (2020), 45–58.

98. Khan, S., Liew, C. F., Yairi, T. & McWilliam, R. Unsupervised anomaly detection
in unmanned aerial vehicles. Applied Soft Computing 83, 105650 (2019).

99. Park, K. H., Park, E. & Kim, H. K. Unsupervised fault detection on unmanned
aerial vehicles: Encoding and thresholding approach. Sensors 21, 2208 (2021).

100. Viana, J. et al. A Convolutional Attention Based Deep Learning Solution for 5G
UAV Network Attack Recognition over Fading Channels and Interference in 2022
IEEE 96th Vehicular Technology Conference (VTC2022-Fall) (2022), 1–5.

101. Bae, G. & Joe, I. UAV anomaly detection with distributed artificial intelligence
based on LSTM-AE and AE in Advanced Multimedia and Ubiquitous Engineering:
MUE/FutureTech 2019 13 (2020), 305–310.

102. Moustafa, N. & Slay, J. UNSW-NB15: a comprehensive data set for network in-
trusion detection systems (UNSW-NB15 network data set) in 2015 Military Com-
munications and Information Systems Conference (MilCIS) (2015), 1–6. doi:10.
1109/MilCIS.2015.7348942.


	Machine Learning for Intrusion Detection into Unmanned Aerial System 6G Networks
	Scholarly Commons Citation

	Deep CNN-Based Automated Optical Inspection for Aerospace Components

