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Lorentz symmetry violations can be parametrized by an effective field theory
framework that contains both General Relativity and the Standard Model of
particle physics, called the Standard-Model Extension or SME. We consider in
this work only the pure gravitational sector of the minimal SME. We present
new constraints on the SME coefficients obtained from lunar laser ranging,
very long baseline interferometry, and planetary motions.

1. Introduction

The solar system remains the most precise laboratory to test the theory of

gravity, that is to say General Relativity (GR). Constraints on deviations

from GR can only be obtained in an extended theoretical framework that

parametrizes such deviations. The parametrized post-Newtonian formalism

is one of them and has been widely used for decades. More recently, other

phenomenological frameworks have been developed like the Standard-Model

Extension (SME), which is an extensive formalism that allows a system-

atic description of Lorentz symmetry violations in all sectors of physics,

including gravity. We present here new constraints on pure-gravity sector

coefficients of the minimal SME obtained with very long baseline interfer-
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ometry (VLBI), lunar laser ranging (LLR) and planetary motions. We also

assess the possibility to constrain them using future asteroids observations

by Gaia.

2. Very long baseline interferometry

VLBI is a geometric technique which measures the time difference in the

arrival of a radio wavefront emitted by a distant radio source (typically a

quasar) between at least two Earth-based radio telescopes, with a precision

of a few picoseconds. Although this technique is initially dedicated to

tracking the Earth’s rotation and enabling the realization of global reference

frames, it allows also performing fundamental physics tests by measuring

the relativistic bending of light rays due to the Sun and the planets.1,2

Recently, the VLBI gravitational group delay has been derived in the SME

formalism (see Eqs. (7) and (10) from Ref. 3). Using observations between

August 1979 and mid-2015 consisting of almost 6000 VLBI 24-hr sessions

(corresponding to 10 million delays), we turned to a global solution in

which we estimated s̄
TT as a global parameter together with radio source

coordinates. We obtained3

s̄
TT = (−5± 8)× 10−5

, (1)

with a global postfit rms of 28 ps and a χ
2 per degree of freedom of 1.15.

Correlations between radio source coordinates and s̄
TT are lower than 0.02,

the global estimate being consistent with the mean value obtained with the

session-wise solution with a slightly lower error.

3. Lunar laser ranging

Some years ago, a first estimate of SME coefficients with LLR data has been

obtained.4 However it was a fit of theoretical SME signatures in residuals of

LLR measurements analyzed previously in pure GR. This kind of approach

is not fully satisfactory and provides order of magnitude upper limits on

SME coefficients but not real estimates or constraints on them (see the

discussion in Ref. 3). Therefore, we built a new numerical lunar ephemeris

called the Ephéméride Lunaire Parisienne Numérique (ELPN) computed

in the SME framework, taking into account effects of the SME on the or-

bital dynamics and on the propagation of light.5 A global adjustment to

LLR observations allows us to estimate properly some linear combinations

of SME coefficients, as illustrated in Table 1 (see also Ref. 6). Those con-

straints take into account correlations between SME coefficients and other
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parameters (such as positions, velocities, masses, . . . ) and are more reliable

than the first analysis from Ref. 4.

Table 1. Estimated values of SME coefficients obtained from LLR.6

SME coefficients LLR estimation from Ref. 6

s̄
TX (−0.9± 1.0)× 10−8

s̄
XY (−5.7± 7.7) × 10−12

s̄
XZ (−2.2± 5.9) × 10−12

s̄
XX − s̄

Y Y (+0.6± 4.2) × 10−11

s̄
TY + 0.43s̄TZ (+6.2± 7.9)× 10−9

s̄
Y Z − 22.2

(

s̄
XX + s̄

Y Y − 2s̄ZZ
)

(−0.5± 1.0)× 10−9

4. Gaia observations of solar system objects

Launched in December 2013, the ESA Gaia mission is scanning the whole

celestial sphere once every 6 months providing high precision astrometric

data for a huge number (≈ 1 billion) of celestial bodies. In addition to

stars, it is also observing solar system objects. In particular, about 360,000

asteroids will regularly be observed at the sub-mas level. We simulated the

trajectories of 10,000 asteroids within the SME framework and performed

a realistic covariance analysis taking into account the Gaia trajectory and

scanning law (see Ref. 7 for more details about the strategy). The covari-

ance analysis leads to the estimated uncertainties presented in Table 2 (see

Ref. 8). These uncertainties are better than the current best estimations

of the SME parameters available in the literature.9 In particular, they are

better than ones obtained with planetary ephemerides.10 This is due to the

variety of asteroid orbital parameters while planetary ephemerides use only

8 planets with similar orbital parameters (same orbital planes and nearly

circular orbits). Therefore, the estimation of the SME coefficients with

planetary ephemerides are highly correlated, which degrades the marginal-

ized SME estimates (see the discussion in Ref. 10). Using our set of as-

teroids, the correlation matrix for the SME coefficients is very reasonable:

the three most important correlation coefficients are 0.71, −0.68, and 0.46.

All the other correlations are below 0.3. Therefore, Gaia offers a unique

opportunity to constrain Lorentz violation through the SME formalism.

5. Conclusion

We presented our latest constraints on gravity-sector SME coefficients ob-

tained with LLR and VLBI observations. We highlighted also the improve-



Proceedings of the Seventh Meeting on CPT and Lorentz Symmetry (CPT’16), Indiana University, Bloomington, June 20-24, 2016

4

Table 2. Sensitivity on SME parame-
ters.

SME coefficients Sensitivity

s̄
XX − s̄

Y Y 9× 10−12

s̄
XX + s̄

Y Y − 2s̄ZZ 2× 10−11

s̄
XY 4× 10−12

s̄
XZ 2× 10−12

s̄
Y Z 4× 10−12

s̄
TX 1× 10−8

s̄
TY 2× 10−8

s̄
TZ 4× 10−8

ment that we can expect from Gaia observations of asteroids in the future.

A combined analysis with planetary ephemerides analysis,10 Lunar Laser

Ranging,4,6 atom interferometry,11 and binary pulsars12 would also be very

interesting in order to decorrelate almost all gravity-sector SME coefficients

and produce the most stringent estimate on the SME coefficients. Our anal-

ysis needs to be extended to include gravity-matter Lorentz violation in the

SME framework.
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