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Abstract

Collective behavior refers to the coordinated movements that emerge from simple in-
teractions between individuals within a group. Traditionally, researchers have mod-
eled these interactions assuming individuals can sense their surroundings in all direc-
tions, like having eyes all around their heads. While this is a useful simplification, it
does not capture the diverse ways animals actually sense the world. In this thesis,
we take inspiration from the natural world, particularly from animals like bats and
dolphins that use a combination of hearing and sight to navigate their environments.
We explore how combining these sensory cues in a three-dimensional space affects the
way groups move and behave. Our findings reveal that integrating auditory and visual
information allows for more effective group coordination, combining the strengths of
both senses. We also look at another fascinating aspect of animal behavior: some
species pay attention to areas outside their direct line of movement. Imagine being
able to know what is happening behind you while walking forward. We investigate
how this kind of ‘offset’ sensing influences group dynamics. For instance, when the
sensing field is directed opposite to the movement direction, unique and unexpected
group behaviors emerge. Understanding these mechanisms can provide deep insights
into the behavior of animal groups and inspire innovative designs for artificial systems,
leading to better-coordinated and more efficient robotic swarms.

Thesis Supervisor: Dr. Subhradeep Roy
Title: Assistant Professor
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Chapter 1

Collective behavior and collective

behavior models

1.1 Introduction to collective behavior

Collective behavior refers to the coordinated actions and emergent patterns that arise

from local interactions among individuals within a group, leading to complex and

often emergent phenomena in both natural and artificial systems [1, 2, 3]. This

collective behavior exist in the world in macro and micro scales [4], and may contain

living and non-living entities [5, 6]. On a macro scale, systems that exhibit collective

behavior include flocking birds [1] and schooling fish [7]. On a micro scale, examples of

systems that exhibit collective behavior may be the movement, growth, and tracking

of bacteria and white blood cells [8, 9, 10].

There are several biological advantages to collective motion in animal groups,

usually relevant for survival. These include predation [11], foraging for food [12, 13],

sharing information [14, 15], reproduction [16], or migration and defense [17]. In

addition, group efficiency can be tailored through collective behavior where organisms

can collectively execute the same tasks, or share the burden of group survival through

highly specialized roles [18, 12]. This is especially prevalent in the case of foraging in

insect colonies [19, 18], migration in bird flocks and fish schools [17, 12], coordinated

hunting strategies of social predators such as dolphins, orcas, wolves, and peregrine

17



falcons [11, 16, 20], and movement strategies like those observed in elephant herds

and muskoxen [21, 22].

Collective motion phenomena are not restricted to living matter, and in recent

years have been studied in various experimental systems, such as active colloids,

driven granular matter, and ferro-magnetic particles in the presence of a magnetic

field [23, 24, 1, 2]. Though the emergent behavior is observable, the types of behaviors

and many of the controlling factors still remain obscure for such systems.

1.2 Collective behavior models

The study of collective motion is an ongoing endeavor which has produced a variety

of models attempting to replicate and describe the emergent behavior seen in nature.

These models facilitate the investigation of these different systems in a simulation

framework, and are used to provide some level of insight into how the dynamics of

these systems change when subject to changes in both intrinsic and extrinsic param-

eters. The numerous models generally fall into three categories: phenomenological

models, Eulerian models, and Lagrangian models [6].

Phenomenological models aim to explain collective behavior using simple mathe-

matical formulations providing quantitative outcomes from a small number of tunable

control parameters, generally analogous to systems with catalytic behavior [6]. A epit-

omic example is the use of non-linear differential equations to model the large-scale

recruitment of ants for a task through chemotaxis with positive reinforcement from

deposited pheromones [25, 26, 27]. Phenomenological models provide a general under-

standing of collective behaviour due to abstract reasoning and measurable parameters,

but are often not rigid enough to provide mechanistic insight [28]. Phenomenological

models, simplified from more complex models with numerous parameters, offer advan-

tages by reducing the need for excessive control variables [29]. However, representing

social interactions and sensory cues in these models remains challenging [30]. For

example, in a phenomenological model of collective behaviour, the general behaviour

of a swarm can be specified by a formula, however, if the method of information
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gathering is changed, then the model loses its applicability as the assumption that

the overall behaviour can be represented as an average is lost. Additionally, when

different considering sensory cues, it may be difficult or impossible to obtain closed

form expressions to represent these social interactions.

Eulerian models are useful for investigating patterns and large-scale behaviors. In

this paradigm, the group is treated as a continuum and does not consider microscopic

interactions, but relies on conservation laws for the development of group-level be-

havior [6, 1]. For example, Mogilner and Keshet model swarming behavior based on

non-local interactions using an advection-diffusion basis [31]. One of the earliest of

these investigations was a study conducted by Keller and Segel in 1971, motivated

by the study of collective motion in bacteria colonies [32]. This study uses non-linear

parabolic differential equations to model the movement of the Escherichia coli bac-

teria in the presence of a chemical stimulus. Comparing to the previously discussed

chemotaxis study using the phenomenological model, we see that similar motivations

can be investigated using different models subject to the desired level of granularity.

Lagrangian models, on the other hand, consider finer interactions and achieve col-

lective behavior by describing the interactions between entities. The working principle

is that the group-level behavior can be attributed to the local interactions between

the individuals of the group - an idea mirrored in statistical mechanics [6, 2, 1]. For

this reason, Lagrangian models are also called agent-based models [33, 34]. Unlike

Eulerian models, agent-based models operate in discrete time, where the trajectories

of the agents are computed at every time time step. The development of agent-based

models have generally been motivated by biological swarming systems, such as bird

flocks, where the driving force of decision making is influenced by direct interactions

with other members of the group [6]. Agent-based modelling is a popular tool for

research into biologically motivated collective behavior, especially when considering

swarming behavior.

Of the various developed agent-based models, one of the most popular models

used to simulate collective behavior is the Reynolds Boids model [17], first developed

for computer animations of birds in 1987. In Reynolds’ Boids model, the agents use
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differential equations to steer themselves and execute three manoeuvres: avoiding

nearby flock-mates, steering towards nearby flock-mates, and steering towards the

center of mass of local flock-mates [17, 1]. A similar, albeit less famous, study was

previously conducted by Aoki [35] in 1981 which aimed to model the schooling mech-

anism in fish for three manoeuvres: approach, avoidance, and movement in parallel

orientations. Both Reynolds’ model and Aoki’s model consider approach and avoid-

ance, however, the specific biological inspirations remain in each model: Reynolds

considered the clustering of birds, while Aoki considered the parallel movement of

fishes in schools.

Less overtly specific biologically inspired models have been developed with the

intention of describing animal groups in general and not replicate a particular organ-

ism’s behavior. Models, such as Couzin’s model [36], approach the question differently

and introduce zones of attraction and repulsion where the decision to aggregate or

separate depends on the spatial distribution of the agents within these zones. In

all these models, a great deal of consideration is given to the mathematical rules

that govern these behavior, however, studies have indicated that explicit steering and

alignment rules may force behavior not generally observed in the initially inspired

biological systems, and need not be modelled [1]. In an effort to remedy this in-

creasing constraint, agent-based models with more minimality have seen substantial

development.

Minimal agent-based models

Minimal agent-based models rely on very simple mathematical rules to govern only

local interactions between agents, and give rise complex emergent behavior dependent

on a few tunable parameters. One of the most studied minimal agent based model is

the original Vicsek model [2]. Developed by Tamás Vicsek in 1995, the genesis of the

Vicsek model lies in an attempt to simulate biologically inspired collective behavior

using a simple agent-based paradigm with limited rules [2]. The Vicsek model tackles

a similar problem as Reynolds’ Boids model, albeit with simpler mechanics. While

each boid in Reynolds’ model was an autonomous agent only taking partial influence
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from its surrounding boids, the agents in the Vicsek model are infinitesimal point-like

agents, with no autonomy and whose behavior is fully controlled by the properties of

its neighboring agents [17, 2]. Additionally, instead of following a kinematic (or other

rules to generate acceleration) model to inform motion, the motion of the agents in

the Vicsek model is governed by a simple rule to update their heading: the agents

maintain constant speed, and at every time step, they assume the average direction

of motion of the agents within their defined neighborhood [2].

One of the interesting characteristics of the Vicsek model is its ability to capture

the phase transition from disordered to ordered motion. In the original Vicsek model

order spontaneously emerges when particles align their trajectories with those in a

nearby neighborhood. This transition from a disordered state to an ordered state

occurs as the average particle density increases and magnitude of the random pertur-

bations decreases [2, 1]. The seminal study by Vicsek in 1995 [2] characterized the

phase transitions in terms how aligned the agents were, however, further work using

variant models have investigated phase transitions using different metrics for differ-

ent emergent structures [37, 3]. Much work has been done using proposed variants of

the Vicsek model, ranging from investigation of phase transitions [2, 37], quantifying

information transfer [38], implementing biologically inspired sensing modalities [3],

investigation of hydrostatics [39] and hydrodynamics [39], inclusion of both repulsive

and attractive interactions [40], application to robotic systems [41, 42], or simply as

a mathematical model for developing computational advances [40].

1.3 Sensing mechanisms

By and large, the majority of studies using the Vicsek model restrict their domains

to two dimensions and utilise a mechanism akin to that of vision; there is a field-of-

view within which neighbors exist [43, 44, 45, 46]. The study conducted by Roy and

collaborators [3] investigated three biologically inspired sensing modalities, namely:

vision, audition, composite (a combination of the vision and audition). The visual

sensing mode is analogous to flocking birds that employ vision for social cues, while the
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auditory mode may be used to more accurately study bats who use echolocation for

social and collective behavior [47, 48, 38, 49]. The use of a composite (combined audio-

visual) sensing may allow for the modelling of systems that employ sensory fusion for

localization, as in the case of collections of aerial and ground vehicles [50, 51, 52].

Additionally studies have also shown that the efficiency of decision making is affected

by the ability to sense relevant neighbors [53, 54], and thus, may be negatively affected

when the distribution of neighbors around an agent is not uniform. Due to this

anisotropy, the nearest observable neighbors are likely to exist on the sides of the focal

agent as opposed to in the direction of motion [6]. This phenomenon is supported

by empirical evidence within the observations of small groups of fishes [6, 55]. It

is then prudent to investigate different sensing mechanisms and their effect on the

emergent behavior. Additionally, because the original Vicsek model and subsequent

research uses a two-dimensional arena, it is important to investigate the effect of

different sensing mechanisms in three-dimensions as well, especially when considering

the relevance and applicability to real-world scenarios. Since these modifications do

not affect the dynamics of the Vicsek model, but instead changes how the agents

sense influential neighbors, the investigation of sensing modalities can be used to

elucidate general principles about the emergence of group-level properties and how

the application of these sensing mechanisms with possible restrictions can inform

other models in the areas of biology, physics, and even logistics.

1.4 This work

Sensing modalities are key to defining communications which determine how the

group level behavior will emerge. The application of sensing modalities to the Vicsek

model is useful for exploration of biological and engineering questions. The objective

in this study is to explore different sensing modalities and how they impact the

emerging collective behavior. The investigations presented in this work comprises

of two sections. Section 2 studies the emergent behavior in three dimensions of

the Vicsek model modified to simulate three biological sensing modalities: vision,
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audition, and a composite. Section 3 modifies the two-dimensional Vicsek model

consider neighbors not in the direction of motion, but in a field-of-view that is offset

from that directional heading.

The work presented mainly considers emergent behaviour in terms of the aggre-

gation and alignment. Typically, the emergent behavior of the agents in the system

(a) (b) (c)

Figure 1-1: Different group-level behaviors: (a) A closely packed group with no group
alignment; (b) A group collectively achieves a common heading direction, which
emerges naturally based on interactions with neighbor; (c) A group with high group
alignment and with some tightly packed clusters.

consist of three main qualities: aggregation, alignment, and some combination of the

two. Figure 1-1a depicts the principle of aggregation, where the agents amass spa-

tially with each other. Similarly, Figure 1-1b depict the principle of alignment, where

the agents assume a coherent direction. Finally, Figure 1-1c shows an example where

different group level formations may have a combination of properties. In this case,

this formation has highly aligned and distributed agents, along with the formation of

clusters.
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Chapter 2

The role of sensory cues in collective

dynamics: a study of

three-dimensional Vicsek models

The content of this chapter is ready to be submitted for possible publication in a

peer-reviewed journal.

2.1 Abstract

This study presents a three-dimensional collective motion model that integrates au-

ditory and visual sensing modalities, inspired by species like bats that rely on these

senses for navigation. Prior research predominantly focuses on vision-based sens-

ing models, likely due to an inherent human bias towards vision. However, numerous

species employ multiple sensory modalities. This study examines how combining these

modalities influences group behavior in a generalized scenario of three-dimensional

motion, an area not previously explored for combining sensory information. Using

numerical simulations, we analyze the combined effects of auditory and visual sensing

on group behavior, comparing them to the effects of using only vision or audition.

The results demonstrate that composite sensing allows particles to interact with more

neighbors, thereby gaining more information. This interaction enables the formation
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of a single, large, perfectly aligned group within a narrow sensing region, a feature

only achievable with vision at a wider field of view. Our findings demonstrate the

importance of integrating multiple sensory modalities in shaping emergent group be-

havior, with potential applications in both biological studies and the development of

robotic swarms.

2.2 Introduction

Collective behavior in animal groups involves the emergence of coordinated group-

level patterns from local interactions among individuals. Each group member acts

based on information received from local neighbors, leading to organized motion with-

out any central leader. This behavior is prevalent in various biological systems, such

as ant colonies [56], bird flocks [53], fish schools [57, 58], and mosquito swarms [59].

A significant advantage of group living is enhanced information access, aiding social

animals in locating food [60], evading predators [61], and finding mates [62].

To understand the mechanisms behind group-level pattern formation from local

interactions, various models have been proposed to simulate group coordination [63,

36, 64, 1, 65]. The mathematical modeling of collective behavior employs different

approaches, such as continuous medium modeling [63], continuous-time modeling [64],

and agent-based modeling in discrete-time [66]. A widely used agent-based model is

the original Vicsek model [2], which operates on behavioral rules at the individual

level. In the original Vicsek model, each individual moves at a constant speed within

a two-dimensional space, aligning with the average direction of its neighbors while

incorporating intrinsic noise to model individual randomness. Additionally, extrinsic

noise, representing errors from environmental assumptions or information, can be

considered [67]. The original Vicsek model defines neighbors as individuals within a

circular sensing region around a given particle. Simulations reveal a phase transition

from disordered to ordered states as the number of individuals or noise strength

changes [2]. Studies indicate that intrinsic noise leads to a continuous phase transition,

whereas extrinsic noise results in a discontinuous transition [67]. The simplicity of the
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Vicsek model has inspired numerous variants, including models with both attractive

and repulsive interactions [68, 69] and adaptations that extend the original model

into more realistic three-dimensional scenarios [70]. Real-world biological swarms

may not have omnidirectional vision, prompting modifications of the sensing region

from a circular disk to a sector [45, 46, 71].

Most existing models of collective behavior assume visual cues for communica-

tion [44, 45, 46]. However, some social animals, such as bats and dolphins, rely on

auditory cues [72]. There are few models that incorporate auditory interactions, such

as those inspired by acoustic sensing in midges [73] and echolocation in bats [74]. A

study in [3] explores auditory sensing in a modified two-dimensional Vicsek model,

comparing it to visual sensing and demonstrating differences in group-level behavior.

The auditory sensing is represented as a sector of a circle, mimicking the directivity

pattern of ultrasonic beams observed in biological systems [75]. The results in [3] re-

veal that auditory sensing results in higher alignment and lower aggregation compared

to visual sensing.

Despite advancements in studying group behavior through individual sensing cues,

few models integrate multiple sensory modalities. However, empirical evidence, such

as with bats, shows that they employ multimodal sensing—including audition, vision,

somatosensory input, vestibular perception, and chemoreception—for navigation and

communication [76, 75, 77]. Bats gather complementary information from vision and

audition; vision helps detect long-range objects, while audition aids in accurately

detecting small objects [77]. Multisensory integration offers several advantages, such

as reduced reaction times [78]. Studies show that bats rely more on multimodal

sensing in low-light conditions and adjust their behavior based on both visual and

auditory inputs [79, 80, 81, 82, 83]. This empirical evidence supports the importance

of multisensory integration in enhancing group behavior.

Improving our understanding of how multimodal sensing impacts group behavior

is essential. Previous approaches, like the graph-theoretic method using consensus

and synchronization protocols [84, 85], analyze the impact of multiple sensing modal-

ities but overlook spatial distribution. The study in [86] introduces a composite
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model that integrates auditory and visual cues however the model is restricted to

two dimensions. Extending collective behavior models to three dimensions is crucial

because it aligns more closely with the natural environments where these behaviors

occur. Many animal groups, such as bird flocks, fish schools, and bat swarms oper-

ate in three-dimensional spaces, and their interactions can be significantly different

from two-dimensional approximations [87, 88]. Three-dimensional models provide a

better understanding of the dynamics and can capture phenomena that are not ob-

servable in two-dimensional models, such as complex evasive maneuvers and spatial

formations [89, 90]. Therefore, incorporating three-dimensional extensions in collec-

tive behavior models is essential for accurately representing and analyzing real-world

scenarios.

In this paper, we present three collective motion models: one with visual sens-

ing, one with auditory sensing, and a composite model integrating both auditory and

visual sensing, all explored in three dimensions for the first time. We conduct simu-

lations to investigate how these sensory cues influences group behavior, measured by

various order parameters.

2.3 Modeling

In this section, we outline the three-dimensional (3D) Vicsek framework and introduce

our modifications to incorporate visual, auditory, and composite modalities through

sensory neighbor interactions. Subsequently, we define the order parameters used to

characterize collective behavior.

2.3.1 System dynamics

The 3D Vicsek model consists of 𝑁 particles that move within a cubic domain of

side length 𝐿, with the average particle density given by 𝜌 = 𝑁/𝐿3. The model

assumes that each agent travels at a constant speed, and the domain has periodic

boundary conditions. In the original Vicsek model, every particle has a spherical

sensing region with a radius 𝑅. Particles within this radius, including the particle
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itself, are considered its ‘neighbors’. During each discrete-time step, a particle updates

its heading direction to align with the average direction of its neighbors.

The position of particle 𝑖 at time step 𝑘, is given by the vector x𝑖(𝑘) ∈ R3, and

its direction of motion is represented by the unit vector v𝑖(𝑘) ∈ R3. The heading

direction of this particle 𝑖 at the next time step 𝑘 + 1 is updated as follows:

v𝑖(𝑘 + 1) = 𝒩

⎛⎝𝒩

⎛⎝ ∑︁
𝑗∈Λ𝑖(𝑘)

v𝑗(𝑘)

⎞⎠+ 𝜉𝑖(𝑘)

⎞⎠ , (2.1)

where 𝒩 (u) = u/‖u‖ represents the unit vector in the direction of u, and Λ𝑖(𝑘) is

the set of neighbors for particle 𝑖 including itself that lie within a sphere of radius 𝑅

centered at x𝑖(𝑘). The vector 𝜉𝑖(𝑘) introduces intrinsic (process) noise to the heading

direction, deviating it from the average neighbors’ heading and is uniformly sampled

from a sphere with a radius of 𝜂. Finally, the position update for particle 𝑖 is given

by:

x𝑖(𝑘 + 1) = x𝑖(𝑘) + 𝑣0v𝑖(𝑘 + 1), (2.2)

where 𝑣0 represents the constant speed, assumed to be the same for all particles at

all times.

2.3.2 Sensing modalities

We employ the same update protocol described above but modify the sensing regions

to implement visual, auditory, and composite modalities. The primary difference

between the visual and the auditory modalities lies in the index set of neighbors,

Λ𝑖(𝑘). For visual sensing, each particle’s field of vision is modeled as a spherical

cone with radius 𝑅, symmetric about the its current heading direction. The cone

represents field of vision with an opening angle of 2𝜑, where 𝜑 can range from 0 to 𝜋.

When 𝜑 = 𝜋, this model simplifies to the original 3D Vicsek model, where a particle’s

interaction neighborhood forms a sphere. At each time step, the visual neighbors

comprises of the particles within an individual’s field of vision.

For auditory sensing, an acoustic beam for each particle is modeled as a spherical
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cone, mimicking the directivity pattern of ultrasonic beams observed in biological

systems [75]. We assume the spherical cone is symmetric about the particle’s current

heading direction. Similar to the visual field, the acoustic beam has an opening angle

of 2𝜑, with 𝜑 varying from 0 to 𝜋. A particle’s auditory neighbors are those who it

can ‘hear’ from. Thus, the auditory neighbors for a particle includes all the particles

whose acoustic beams intersect with it.

To implement composite sensing, we independently construct the auditory and

visual schemes and then combine these two modes to determine the neighbors of an

individual at each time step. Consequently, the index set of neighbors for the 𝑖th

particle at time step 𝑘 in a composite sensing is given by

𝐶Λ𝑖(𝑘) =
𝑉Λ𝑖(𝑘) ∪ 𝐴Λ𝑖(𝑘),

where the left-superscripts 𝐶, 𝑉 , and 𝐴 represent composite, visual, and auditory

modalities, respectively. This means that in composite sensing, the neighbors of

an individual include particles who it can both ‘see’ and ‘hear’, without repetition.

Figure 2-1 illustrates the schematic of the three interaction modes.

(a) (b) (c)

Figure 2-1: Schematic explaining the implementation of sensing modalities, where
both the field of vision and the acoustic sonar are modeled as spherical cones in
three dimensions. (a) In the visual mode, the orange has the yellow particle as its
neighbor, but not the blue, since the yellow resides within its field of vision. (b) In the
auditory mode, the orange has the blue particle as its neighbor, but not the yellow,
since orange resides within the acoustic coverage of the blue and thus can hear it. (c)
In the composite mode, the orange particle can ‘see’ the yellow and ‘hear’ the blue,
making both yellow and blue its neighbors.
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2.3.3 Order parameters

Next, we define the order parameters used to describe collective behavior.

The first order parameter is polarization, which quantifies group alignment. It is

calculated as the average linear momentum of the system:

𝑃 (𝑘) =
1

𝑁

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑖=1

v𝑖(𝑘)

⃦⃦⃦⃦
⃦ ,

where ‖·‖ denotes the norm of the vector. Polarization values range from zero to one,

with higher values indicating a more aligned group.

The second order parameter is cohesion, which measures how particles are spatially

arranged in relation to the group’s center of mass. At time step 𝑘, the group’s center

of mass is calculated as X(𝑘) = (1/𝑁)
∑︀𝑁

𝑖=1 x𝑖(𝑘), and the position of each particle

relative to this center is given by r𝑖(𝑘) = x𝑖(𝑘)−X(𝑘). Cohesion is then defined as:

𝐶(𝑘) =
1

𝑁

𝑁∑︁
𝑖=1

exp

[︂
−‖r𝑖(𝑘)‖

𝑙𝑎

]︂
,

where we set the scaling coefficient 𝑙𝑎 = 4𝑅, following the study by [64]. Cohesion

ranges from zero to one, where one indicates all particles reside at the center of mass,

and zero indicates particles are infinitely far from the center of mass. Due to the

periodic boundary conditions in a finite arena, the system cannot achieve a cohesion

value of zero.

The third order parameter is cluster size, which represents the size of the largest

weakly connected component in the interaction graph at a given time [3]. Two par-

ticles are part of the same cluster if they are connected by a path of interacting

particles.

2.4 Results and discussion

We carry out numerical simulations to examine how combined visual and auditory

cues affect group-level behavior, comparing these effects to those of purely visual and
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auditory cues. In the composite model, each particle has two distinct sensing cones:

one for the field of vision and the other for the acoustic beam. In this study, we

ensure that the sensing cones for three different modalities are geometrically similar

when comparing group behaviors across these modalities. This approach enables us

to attribute any observed differences in group behavior to the nature of the sensing

cues themselves rather than to variations in the size of the sensing regions. In other

words, for any given simulation, the values of the sensing radius 𝑅 and the sensing

angle 𝜑 for auditory sensing are matched with those for visual sensing, and thus for

the composite sensing, which combines auditory and visual sensing regions. Note

that although the sensing cones for auditory and visual modalities are geometrically

identical, the method of defining neighbors in each modality differs, leading to distinct

sets of neighbors for each particle.

In our simulations, we set the side length of the cubic domain to 𝐿 = 5, the

constant particle speed to 𝑣0 = 0.03, and the radius of the sensing cones for both

auditory and visual modalities to 𝑅 = 1. The initial positions and heading vectors of

the particles are randomly selected within the cubic domain of side length 𝐿 and the

unit sphere, respectively, using uniform distributions. Sample simulation snapshots

for the auditory, visual, and composite sensing modalities at time step 𝑡 = 100, with

parameters 𝜌 = 10, 𝜂 = 0.2 and 𝜑 = 2𝜋/15, are presented in Figure 2-2. We observe

distinct group-level behavior emerge due to the differences in sensing modalities used.

(a) (b) (c)

Figure 2-2: Partial domain visualization of 3D simulation of the Visual (2-2a) Audi-
tory (2-2b) and Composite (2-2c) sensing modalities, for parameters 𝜌 = 5, 𝜂 = 0.2,
and 𝜑 = 2𝜋

15
, at time step 𝑡 = 100.
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To further explore these differences, we examine the evolution of group alignment

over time. Considering the presence of the generated uniform random noise in the

system, we perform a Monte Carlo simulation for 1000 time-steps with 20 repetitions.

Initial conditions are randomly generated from a uniform distribution and used across

simulations. This ensures that the agents are initially in an unaligned state and

distributed uniformly across the domain. While keeping the initial conditions fixed,

we vary five specific pairs of parameters to reflect increasing noise levels and varying

sensing angles as (𝜂, 𝜑) : (0.1, 2𝜋/15), (0.3, 2𝜋/15), (0.5, 3𝜋/15), (0.7, 5𝜋/15), and

(0.8, 4𝜋/15). The results are presented in Figure 2-3. Each sub-figure plots the

polarization as a function of time, with green lines representing visual, red lines

representing auditory, and blue lines representing composite modalities. The dotted

lines show the results from individual repetitions for each modality, while the dark

continuous lines represent the averages computed over 20 repetitions at each time

step.
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Figure 2-3: Monte Carlo simulations of polarization over 20 iterations for five different
pairs of parameters comparing three modalities at 𝜌 = 2.

For all five parameter sets, we observe that composite sensing results in a higher
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degree of alignment, as indicated by high polarization values, when compared to

both visual and auditory sensing modalities. Pure auditory sensing, on the other

hand, when compared with pure visual sensing, results in faster or higher group

alignment in certain instances. For example, as shown in Figure 2-3a with parameters

(𝜂, 𝜑) = (0.1, 2𝜋/15), both visual and auditory sensing achieve a polarization around

0.7, with auditory sensing reaching this value faster. Moreover, in Figures 2-3c, 2-

3d, and 2-3e, auditory sensing consistently exhibits higher polarization compared to

visual sensing. We also observe the dependence of group alignment on noise intensity

and the sensing angle when comparing the sub-figures. For instance, comparing sub-

figures 2-3a and 2-3b, where the sensing angle is fixed at 𝜑 = 2𝜋/15, an increase

in noise intensity from 𝜂 = 0.1 to 𝜂 = 0.3 results in a decrease in polarization for

each modality. Moreover, when the noise level is increased further from 𝜂 = 0.3

to 𝜂 = 0.5, an increase in the sensing angle from 𝜑 = 2𝜋/15 to 3𝜋/15, results in

regaining group alignment, as observed in the comparison between sub-figures 2-3b

and 2-3c. These results indicate an interplay between noise intensity and sensing

angle that dictates the resultant group behavior. To further explore this relationship,

we conduct a thorough investigation using a broader set of parameters, as well as

examining additional characteristics of group behavior, including cohesion and cluster

size.

Outside of the Monte-Carlo environment, we compare three distinct modalities,

maintaining consistent initial positions and heading directions of the particles, which

are randomly assigned as before. The simulations are run over the time interval

[0, 10000], with the initial transient period of 5000 time steps excluded from the

analysis. To compare group-level behavior, we calculate three observables, which

include the mean polarization, mean cohesion, and mean size of the largest cluster,

averaged over the last 5000 time-steps.

The results are illustrated in Figure 2-4. The left, middle, and right columns

correspond to the auditory, visual, and composite modes, respectively. The first,

second, and third rows display the mean polarization, mean cohesion, and mean

largest cluster size, respectively. In each plot, the two control parameters, noise
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Figure 2-4: Results of the order parameter analysis comparing three modalities. Mean
polarization (top row), mean cohesion (middle row), mean largest cluster size (bottom
row) are calculated for auditory (left column), visual (middle column), and composite
sensing (right column) modes.
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intensity 𝜂 and sensing angle 𝜑, are varied. Specifically, 𝜂 ranges from 0.1 to 0.9 in

increments of 0.1, and 𝜑 ranges from 0 to 𝜋 in increments of 𝜋/15.

By examining the three plots in Figures 2-4a - 2-4c, we observe that the mean

polarization values are zero when 𝜑 = 0, regardless of the noise intensity 𝜂. This

occurs because 𝜑 = 0 implies that particles lack any sensing capability, resulting in

no interactions and thus a random walk behavior. Additionally, a sensing angle of

𝜑 = 𝜋 establishes a spherical sensing neighborhood for the particles across all three

sensing schemes, similar to the original Vicsek model. As expected, with a sensing

angle of 𝜑 = 𝜋, we observe that polarization decreases with increasing noise intensity,

which is consistent with the findings from the original Vicsek model. This trend

of decreasing polarization with increasing noise is also observed for other values of

sensing angles for all three modalities.

Interestingly, for small noise intensities, we observe that polarization values are

also sensitive to the sensing angle. For instance, in all three sensing modalities, when

the sensing angle is reduced from a sphere to a cone, the polarization values decrease.

This effect can be attributed to the smaller sensing regions, which result in fewer

neighbors from which each particle can gather information, thereby impacting group

alignment.

To compare the sensing modalities, we observe notable differences in polarization

values when noise intensities are low and sensing angles are small. For example, when

𝜂 = 0.2 and 𝜑 = 2𝜋/15, polarization in the composite modality reaches a perfect

value of one, indicating complete group alignment. In contrast, at these parameter

values, polarization in the auditory modality is slightly lower (around 0.9), which

is still greater than the polarization observed in the visual modality (around 0.8).

Alternatively, the visual mode requires a larger sensing angle of 𝜑 = 5𝜋/15 at this

noise intensity to achieve perfect polarization, whereas the auditory mode can achieve

this level of alignment with a smaller sensing region of 𝜑 = 3𝜋/15. In comparison,

the composite mode attains perfect polarization with an even smaller sensing angle

of 𝜑 = 2𝜋/15. From these observations, we conclude that the auditory mode allows

particles to achieve perfect group alignment with a smaller sensing neighborhood
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compared to the visual mode. In contrast, the composite mode enables perfect group

alignment even when the sensing neighborhood is narrower. This is because, in the

composite mode, particles benefit from the combined information from both auditory

and visual sensing.

Next, we compare the group-level behavior in terms of mean cohesion (Figures 2-

4d - 2-4f) and mean largest cluster size (Figures 2-4g - 2-4i) between the modalities.

The largest cluster size is limited to the total number of agents, 𝑁 = 1250, which

occurs when the entire group forms a single large cluster. In the visual mode, when

the sensing angle is small (𝜋/15 ≤ 𝜑 ≤ 6𝜋/15), we observe higher cohesion values

and smaller largest cluster sizes compared to the auditory mode. This behavior

discrepancy between the two modalities can be explained by the formation of multiple

clusters in the visual mode within this range of sensing angles. In these clusters,

particles are densely packed, resulting in higher cohesion. However, because these

clusters are disjoint, the largest cluster size is smaller. The formation of multiple

clusters in the visual mode also leads to lower group alignment, as these individual

clusters move in different directions. This reduces polarization values, as shown in

Figure 2-4b. Conversely, in the auditory mode, within the same sensing angle range

(3𝜋/15 ≤ 𝜑 ≤ 6𝜋/15), the entire group typically forms a single large cluster (Figure 2-

4g). However, the particles are more evenly distributed in space, resulting in relatively

lower cohesion values compared to the visual mode.

In the composite sensing mode, as illustrated in Figures 2-4f and 2-4i, we observe

that group cohesion is lower, and particles begin to form a single large cluster at

a relatively smaller sensing angle of 𝜑 ≥ 3𝜋/15 compared with visual mode. The

findings suggest that the group behavior in the composite mode closely resembles that

of the auditory mode, where particles coalesce into a single large cluster with common

heading direction, resulting in a polarization value of one. However, the particles

within the cluster are uniformly dispersed throughout the entire arena, resulting in

reduced cohesion. In other words, in the composite sensing mode, auditory sensing

plays a dominant role in determining group behavior.
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2.4.1 Additional investigations

Comparison to 2D results

In the interest of completeness, additional investigations are conducted. First the

results of the three sensing modalities shown in Figure 2-4 are compared to the findings

in the study conducted by Roy and Lemus, who originally proposed and investigated

these sensing modalities in [86]. The findings of this study correspond with those

of the two-dimensional model in [86]. In both cases, agents using composite sensing

interact with a larger set of neighbors, at lower sensing angles. This phenomena is

even more prevalent in the three-dimensional implementation and lends credence to

the idea that the added benefit of extending the model to three dimensions is non-

trivial. Additionally, in both models, the composite sensing mode is dominated by

audition, and audition itself has higher number of interacting agents at lower sensing

angles compared to visual sensing.

The difference in polarization between the auditory sensing mode and the visual

sensing mode is less distinct in the 3D model compared to the 2D model, however

the agents still maintain higher alignment at lower sensing angles in the auditory

mode. Increasing noise has a more negative effect on polarization for all three sensing

modalities in the 3D model, resulting in lower polarization at high noise even at large

sensing angles. In contrast, in the 2D model, the debilitating effects of increasing

noise on polarization is redeemed by increasing sensing angles.

With regards to cohesion, both models maintain relatively low cohesion in all

three sensing modalities, however the differences are less distinct in the 3D model.

Nevertheless, both models show the formation of multiple clusters in the visual sensing

mode, indicated by higher cohesion values paired with lower number interacting agents

(cluster size).

In summary, the group level behaviour of the agents with different sensing modal-

ities in the 3D model are consistent with the findings in the study conducted with

the 2D model.
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Sensitivity analysis of density

The study by Roy et.al in [3] considered the effect of density on the emergent be-

havior characterized by the order parameters for different sensing modalities in a

two-dimensional model. Consequently, we also investigate the group-level order pa-

rameters at lower and higher densities of 𝜌 = 5 and 𝜌 = 20, simulated for 2000 time

steps, the results of which are shown in Figure 2-5 and Figure 2-6, respectively.

In our initial analysis (𝜌 = 10) shown in Figure 2-4, there is a clear progression into

phase transition from disordered to ordered motion as the sensing angle is increased,

and differences between the sensing modalities can be ascertained. Decreasing the

density from 𝜌 = 10 to 𝜌 = 5, as shown in Figure 2-5, results in less obvious distinc-

tions between sensing modalities. The subtle differences in polarization and cohesion

disappear, and the ability to identify emergent structures by considering the number

of interacting agents is lost.

Conversely, increasing the density from 𝜌 = 10 to 𝜌 = 20, as shown in Figure 2-6,

reveals more distinguishing features about the sensing modalities. In Figure 2-6c,

the polarization in the composite sensing mode is revealed to be more sensitive to

increasing noise. Considering the persistent low cohesion with high cluster sizes,

this may indicate the breaking and forming of clusters, or the formation of bands

characterized by spatially aggregated agents but with less aligned directions. This

phenomena occurs as the noise increased past a threshold of 𝜂 = 0.7.

The pattern of increasing sensing angles having less redeeming effects at high noise

is present at higher and lower densities. Similarly, the polarization does increase faster

in the auditory mode compared to the visual mode. The overall trends in the group

level behavior is maintained with increasing density.
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Figure 2-5: Order parameter results at 𝜌 = 5 simulated for 2000 time steps. Mean
polarization (top row), mean cohesion (middle row), mean largest cluster size (bottom
row) are calculated for auditory (left column), visual (middle column), and composite
sensing (right column) modes.
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Figure 2-6: Order parameter results at 𝜌 = 20 simulated for 2000 time steps. Mean
polarization (top row), mean cohesion (middle row), mean largest cluster size (bottom
row) are calculated for auditory (left column), visual (middle column), and composite
sensing (right column) modes.
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2.5 Conclusion

In this study, we introduce a three-dimensional collective motion model that inte-

grates auditory and visual sensing modalities, inspired by species like bats that use

these senses for effective navigation. The existing literature predominantly models

sensing schemes similar to fields of vision, possibly due to an inherent human bias

towards vision. However, there is substantial biological evidence indicating that many

species utilize multiple sensory modalities. This work aims to examine the influence

of combining sensing modalities on group behavior.

We explore the most generalized scenario of three-dimensional motion, a domain

that has not been previously studied to combine sensory information. Through nu-

merical simulations, we investigate the combined effects of auditory and visual sensing

on group-level behavior, comparing them to the effects of pure vision and audition.

The results reveal that composite sensing enables particles to interact with a larger

set of neighbors, thereby accessing more information. This interaction facilitates the

formation of a single, large, perfectly aligned group within a narrow sensing region—a

feature achievable with pure vision only at a wider field of view. The findings of this

study highlight the significant role that integrating information from multiple sen-

sory modalities plays in emergent group-level behavior. These insights could have

important applications in both biological and robotic swarms.

Future work will focus on several areas. Firstly, we will model the auditory and

visual sensing sectors using biologically relevant and geometrically distinct parameters

for 𝑟 and 𝜑. Secondly, we will implement differential weighting of information from

the two sensory modalities to better understand their combined effects.
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Chapter 3

The influence of visual field offset on

collective behavior: an exploration

using the two-dimensional Vicsek

model

The content of this chapter is ready to be submitted for possible publication in a

peer-reviewed journal.

3.1 Abstract

This study examines the effects of visual field offset on collective group behavior

using the Vicsek model. Our results indicate that introducing an offset leads to a

range of group behaviors, some of which are counter intuitive. Specifically, in the

case of flipped sensing, where agents acquire information from behind their heading

direction, we observe perfect group alignment and the entire group clustering at their

center of mass, even under high noise conditions. This finding is in contrast to the

typical properties of the Vicsek framework, where increased noise usually disrupts

group behavior. Inspired by biological observations, where animals often utilize in-

formation outside their current heading, these findings offer valuable insights into the
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advantages of such offset behaviors in natural systems and suggest applications in

artificial systems.

3.2 Introduction

Collective behavior refers to the emergence of complex group-level patterns arising

from the local interactions among individuals [1]. This phenomenon is evident in

various biological systems, including bird flocks [14], fish schools [13], and insect

colonies [19, 18, 91]. Such collective behaviors often confer advantages, such as im-

proved predation [11], efficient foraging [12], information sharing [14, 15], reproductive

success [16], and enhanced migration and defense strategies [17].

The efficiency of the group can be optimized through collective behavior, allowing

organisms to perform tasks collectively or distribute the responsibilities of group

survival through specialized roles [18, 12]. This is particularly apparent in the foraging

strategies of insect colonies [19, 18], the migratory patterns of bird flocks and fish

schools [17, 12], the hunting strategies of social predators like dolphins, orcas, wolves,

and peregrine falcons [11, 16, 20], and the movement dynamics observed in elephant

herds and muskoxen [21, 22].

Various models have been developed to study collective behavior, ranging from

continuous differential equations to discrete-time agent-based models [1]. Agent-based

modeling has become a popular tool for studying group behavior using computer

simulations. It allows each agent is specified simple rules or behaviors of interaction,

often leading to various distinct group behavior similar to that we see in nature[92].

A popular agent-based model for studying collective behavior is the Vicsek model,

renowned for its minimalistic approach. In the original Vicsek model, agents move

at a constant speed in a two-dimensional domain, aligning with the average direction

of their neighbors while incorporating some noise. Each agent has a circular sensing

region, and its neighbors are those within this region, including itself [2].

Due to its simplicity, the Vicsek model has inspired various modifications, such as

the inclusion of attractive and repulsive interactions [40], extensions to three dimen-
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sions [70], and biologically-inspired sensing modes [3, 93]. Additionally, the model

has been applied to financial markets [94] and hydrostatics [95]. Inspired from nature

that animals using visual sensing modes with limited fields of view, some studies limit

the agent’s sensing range to a sector instead of the full circular range [71, 45, 3, 93].

However these models assume that the sensing sector is symmetric to the agent’s

heading direction. However, empirical evidence suggests that there may be advan-

tages to having the sensing region offset from the direction of travel. Evolutionary

adaptations, such as saccadic head movements in blowflies and lateral scanning in

locusts, are used to establish gaze and measure distance for locomotion [96].

While it may seem counter-intuitive for an animal to look in a direction inde-

pendent of its movement, many animals scan areas outside their heading to gather

spatial information and inform response maneuvers through selective attention and

dynamic sensory loads [20, 97]. A fascinating example is bottlenose dolphins, which

direct their sonar beams slightly off-axis when locating and tracking a target [98].

Models that consider sensing sectors offset from an individual’s heading direction are

lacking in the literature, but there are strong incentives to such potential insight such

as informing sensor placement and reducing information obstruction [99, 100, 101].

Studying collective behavior in animals provides valuable insights into the nat-

ural world and motivates practical applications in engineered systems, particularly

bio-inspired multi-robot teams [102, 103]. Understanding how complex coordination

is achieved without centralized control in nature can inspire more effective control

systems and algorithms, leading to improved engineering designs [103, 50, 51, 52],

such as the development of target tracking and swarming maneuvers for autonomous

drones in a militaristic setting [104, 105]. In this context, investigating the impact of

offset on group-level behavior may drive technological advancements.

In this paper, the original Vicsek model is modified to have a variable-width sens-

ing sector whose axis of symmetry is offset from the heading of the agent. Simulations

are conducted to investigate how this change in the direction of sensing affects the

emergent group behaviour, quantified by well-defined order parameters.
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3.3 Modeling

3.3.1 System dynamics

Here we consider a modified version of the original Vicsek model where the agents

implement the use of a sector field-of-view, and the center of this sector is shifted

by some angle 𝛼 from the agent’s heading. The neighbors of each agent are those

that exist within that sector field of view. The update protocol is the same as in the

original Vicsek model, i.e. the heading is updated as the average resultant direction

of the neighbors. Each agent is modelled as having a sensing region akin to a field-

of-view. This region is modelled as a sector defined by a radius of length 𝑟 and a

central angle 2𝜑, where 𝜑 denotes the sensing angle. The sensing angle lies within the

range [0, 𝜋] and is symmetrical on either side of the sector centered around the axis

of the agent’s heading plus the offset 𝛼. Notice that when the sensing angle 𝜑 = 𝜋,

the interaction neighborhood is a full circle, regardless of offset 𝛼. The model is then

essentially reduced to the regular original Vicsek model.

The original two-dimensional (2D) Vicsek model is a popular agent-based frame-

work for studying collective behavior and pattern formation in systems of self-propelled

particles. In this model, each particle moves with a constant speed in a two-dimensional

space. In the original Vicsek model, the neighbors of a particle are defined as all par-

ticles within a specified radius, known as the sensing radius. Specifically, at each time

step, the direction of each particle is updated to align with the average direction of

all particles within its sensing radius, while incorporating some random noise. The

update rule for the heading direction 𝜃𝑖 of particle 𝑖 at time 𝑡+∆𝑡 is given by:

𝜃𝑖(𝑡+∆𝑡) = ⟨𝜃𝑗(𝑡)⟩𝑅 + 𝜂𝜉𝑖(𝑡), (3.1)

where ⟨𝜃𝑗(𝑡)⟩𝑅 represents the average direction of all particles 𝑗 within the sensing

radius 𝑅 of particle 𝑖, 𝜂 is the noise intensity, and 𝜉𝑖(𝑡) is a random variable uniformly

distributed in [−1, 1]. Each particle then updates its position according to its new
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direction:

r𝑖(𝑡+∆𝑡) = r𝑖(𝑡) + 𝑣0v𝑖(𝑡)∆𝑡, (3.2)

where r𝑖(𝑡) is the position of particle 𝑖 at time 𝑡, 𝑣0 is the constant speed, v𝑖(𝑡) is the

unit velocity vector of particle 𝑖 determined by its direction 𝜃𝑖(𝑡), and ∆𝑡 = 1.

The Vicsek model is notable for its simplicity and ability to reproduce a range of

complex collective behaviors, such as flocking and swarming, through local interac-

tion rules. This model has been the basis for numerous studies and modifications,

making it a fundamental tool in the exploration of collective dynamics in biological

and artificial systems.

3.3.2 Offset sensing

In this study, we consider a modified version of the original Vicsek model, where agents

use a sector instead of a complete circle as their sensing region to detect neighbors,

effectively implementing a field of vision. Specifically, the field of view is modeled

as a sector defined by a radius 𝑟 and an opening angle 2𝜑, where 𝜑 represents the

sensing angle. To create an offset field of view, we introduce another angle 𝛼, which is

the angle between the center of this sector and the agent’s current heading direction.

For a fixed offset 𝛼, the sensing angle is constructed symmetrically around the offset

angle. Figure 3-1 presents a schematic explaining the implementation of the offset

field of view.

(a) (b)

Figure 3-1: Schematic of the implementation of the offset. (a) Without an offset,
where the offset angle 𝛼 = 0. (b) With an offset, where the offset angle 𝛼 ̸= 0. The
sectors have an opening angle of 2𝜑, where 𝜑 is the sensing angle.
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Each agent uses this sector-shaped sensing region to identify neighbors, which are

those agents located within its field of view. Once neighbors are determined, the

position and direction update protocols (equations 3.1 and 3.2) remain the same as

in the original Vicsek model.

For the simulations, we consider different values of the sensing angle 𝜑 within the

range [0, 𝜋]. When the sensing angle 𝜑 = 𝜋, the interaction neighborhood forms a full

circle, similar to the original Vicsek model, regardless of the offset 𝛼.

3.3.3 Order parameters

To analyze the collective behavior of the system, we utilize order parameters such as

polarization, cohesion, cluster size, and coverage.

Polarization is a measure of the alignment of all agents in the system. It is

defined as the magnitude of the average velocity vector of all agents, normalized by

the number of agents. Specifically, it is given by:

𝑃 (𝑡) =
1

𝑁

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

v𝑖(𝑡)

⃒⃒⃒⃒
⃒ , (3.3)

where 𝑁 is the total number of agents, |·| denotes the norm of the vector, and v𝑖(𝑡)

is the unit velocity vector of the 𝑖-th agent at time 𝑡. A polarization value of one

indicates perfect group alignment, while a value close to zero indicates random ori-

entations.

Cohesion quantifies the degree to which agents are grouped together. It is typi-

cally defined as a scaled function of the average distance between each agent and the

center of mass of the group. Cohesion 𝐶 is written as:

𝐶(𝑡) =
1

𝑁

𝑁∑︁
𝑖=1

exp

[︃
−
⃒⃒
r𝑖(𝑡)− rcm(𝑡)

⃒⃒
𝑙𝑎

]︃
,

where r𝑖 is the position of the 𝑖-th agent, and rcm is the center of mass of the group.

We use the scaling coefficient 𝑙𝑎 = 4𝑅, following the study by [64]. Cohesion ranges

from zero to one, and higher values indicate a more tightly packed group.
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Largest cluster size refers to the size of the largest weakly connected group of

agents. In a group of 𝑁 agents, the largest possible cluster size is the total number

of agents, where all agents are weakly connected through their neighbors.

Coverage measures the spatial distribution of agents across the domain. It is

defined as the time-averaged fraction of the area occupied by agents. The domain

is divided into a grid, and the normalized mean number of times each grid cell is

occupied is computed. This gives an idea of how uniformly the agents are spread

across the space. High coverage values indicate that agents are well dispersed within

the domain.

Evaluating these order parameters provides a comprehensive understanding of the

system’s collective dynamics and spatial organization.

3.4 Results and discussion

We perform simulations across a broad range of parameters to analyze the group-

level behaviors. Specifically, we vary the noise parameter, 𝜂, and the sensing half-

angle, 𝜑, under different offset configurations by adjusting 𝛼. This allows us to study

group-level behaviors in terms of the previously defined order parameters. For our

simulations, we consider a square arena with side length 𝐿 = 10, assuming periodic

boundary conditions similar to those in the original Vicsek model. Simulations are

conducted for 5000 time steps, with the first 1000 time steps discarded to eliminate

any effect from transient. We assume a constant speed of 𝑣0 = 0.03 and a constant

sensing radius of 𝑅 = 1 for all agents at all times. All agents are initialized with

random positions and headings, within the square domain and the unit circle, re-

spectively, using uniform distributions. We generate the initial conditions once and

use the same conditions in all simulations. The density is set to 𝜌 = 8, resulting in

𝑁 = 800 agents.

Before examining the results of the order parameters, we present snapshots of

simulations in Figure 3-2 for various offset angles 𝛼 at time 𝑡 = 5000, with noise

intensity 𝜂 = 0.8 and sensing angle 𝜑 = 5𝜋/15. For these snapshots, the parameters
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𝜂 and 𝜑 are arbitrarily chosen, and the offset field of view is varied from 𝛼 = 0 to

𝛼 = 11𝜋/6 radians in increments of 𝜋/6 radians. Note that 𝛼 = 0 is equivalent to

𝛼 = 2𝜋, both indicating no offset and therefore, we only present 𝛼 = 0.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3-2: Snapshots of simulations for various offset angles 𝛼 at time 𝑡 = 5000, with
parameters 𝜂 = 0.8 and 𝜑 = 5𝜋

15
.

Comparing the sub-figures in Figure 3-2, we observe distinct group behaviors in

terms of alignment and cohesion as the offset angle varies. For example, at 𝛼 = 𝜋/2

and 𝛼 = 3𝜋/2, the agents are more spread out, occupying the entire simulation arena.

In contrast, at 𝛼 = 5𝜋/6, 𝛼 = 𝜋, and 𝛼 = 7𝜋/6, the groups display closely packed

clusters.

Next, we vary the control parameters, which include the noise intensity 𝜂, the

sensing angle 𝜑, and the offset angle 𝛼, and compute the mean polarization, mean

cohesion, and mean largest cluster size values. The mean values are computed by

taking an average over 4000 time steps and are presented in Figures 3-3 to 3-5. In

each sub-figure, we vary 𝜂 from 0 to 0.9 in increments of 0.1, and 𝜑 from 0 to 𝜋 in

increments of 𝜋/15 radians. Additionally, we explore different values of 𝛼 ranging

from 0 to 2𝜋 in increments of 𝜋/6 radians. We present the results for increasing 𝛼,

considering its symmetry. For instance, 𝛼 = 𝜋/6 means a 𝜋/6 radians offset to the

left of the heading direction, while 𝛼 = 11𝜋/6 means same 𝜋/6 radians offset but to

the right of the heading. To maintain symmetry, we arrange the sub-figures 3-3h to
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3-3l so that after 𝛼 = 𝜋, the sequence starts matching the sequence of increasing 𝛼

from 𝜋/6 to 5𝜋/6 as in sub-figures 3-3a to 3-3f.
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Figure 3-3: Results for mean polarization at varying noise intensity 𝜂 and sensing
angle 𝜑 for different offset angles 𝛼.
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Figure 3-4: Results for mean cohesion at varying noise intensity 𝜂 and sensing angle
𝜑 for different offset angles 𝛼.
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Figure 3-5: Results for mean largest cluster size at varying noise intensity 𝜂 and
sensing angle 𝜑 for different offset angles 𝛼.

In Figure 3-3, each sub-figure shows that the mean polarization values are zero

when the sensing angle 𝜑 = 0, and the polarization reaches one when 𝜑 = 𝜋. Notably,

𝜑 = 0 indicates that agents lack a sensing region, resulting in no interaction with

neighbors and consequently a random walk behavior. Conversely, when 𝜑 = 𝜋, the

sensing region forms a complete circle, similar to the original Vicsek model, regardless

of the different values of 𝛼.

Interestingly, we observe variations in group behavior, as indicated by polariza-

tion, cohesion, and largest cluster size, across different values of 𝛼. Starting with

polarization in Figure 3-3, we observe that polarization values reach one, indicating

perfect group alignment, when the sensing angles are relatively large (𝜑 ≥ 8𝜋/15) for

all values of 𝛼. Smaller polarization values are observed with smaller sensing angles,

although this depends on the offset angle. Specifically, with a small sensing angle,

polarization is low when there is no offset (𝛼 = 0), gradually increasing as 𝛼 increases,

peaking at 𝛼 = 𝜋/2, and then decreasing again, with a slight improvement at 𝛼 = 𝜋.

Additionally, at small sensing angles, the polarization values are symmetric with re-

spect to 𝛼, indicating that the behavior does not depend on whether the offset is to
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the right or left of the heading direction. For example, due to the symmetric nature,

the high polarization observed at 𝛼 = 𝜋/2 is also present at 𝛼 = 3𝜋/2 configuration.

For some fixed values of 𝛼, we observe that polarization values are sensitive to noise

at small sensing angles. For example, polarization decreases as noise increases, as

illustrated in Figures 3-3e, 3-3f, 3-3g, 3-3k, and 3-3l, for fixed 𝛼 values of 2𝜋/3, 5𝜋/6,

𝜋, 4𝜋/3, and 7𝜋/6, respectively.

Differences in group behavior are also evident in terms of cohesion for various

offset values, as illustrated in Figure 3-4. The cohesion of a group is symmetrical with

respect to the offset angle, indicating that group behavior is not dependent on whether

the offset is left or right of heading. Similar to polarization, the differences with

respect to 𝛼 emerge at small sensing angles. However, unlike polarization, cohesion

is high in the absence of offset (Figure 3-4a), then gradually decreases to a minimum

at 𝛼 = 𝜋/2 (Figure 3-4d), and subsequently increases with further increments in 𝛼.

The highest cohesion at small sensing angles is observed at 𝛼 = 𝜋 (Figure 3-4g),

and interestingly, this peak occurs at the high noise intensity. In contrast to the

polarization results, we observe that cohesion values increase with increasing noise

for fixed values of 𝛼. This behavior is evident in Figures 3-4f, 3-4g, and 3-4l, for fixed

𝛼 values of 5𝜋/6, 𝜋, and 7𝜋/6, respectively. This result is counter intuitive, as group

behaviors are generally expected to deteriorate with increasing noise. However, here

we observe that group behavior, specifically cohesion, improves with increased noise.

Next, we focus on the largest cluster size, which is determined by the number of

agents in the system, set to 𝑁 = 800 for our simulation parameters. As shown in

Figure 3-5, the largest cluster size exhibits symmetry across offset angles. Similar

to polarization and cohesion, differences in the largest cluster size are only noted

at small sensing angles. Initially, at small sensing angles, the largest cluster size is

small in the absence of an offset (Figure 3-5a) and improves with increasing offset,

reaching a maximum at 𝛼 = 𝜋/2 (Figure 3-5d) and at the symmetric configuration

of 𝛼 = 3𝜋/2 (Figure 3-5j), before decreasing again. Interestingly, the largest cluster

size is sensitive to noise but counter intuitively increases with noise. This behavior is

observed in Figures 3-5d, 3-5e, 3-5g, 3-5j, and 3-5k.
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Combining all the order parameter results, we observe interesting behaviors at

small sensing angles. For an offset angle of 𝛼 = 𝜋/2 (and the symmetric configu-

ration of 3𝜋/2), the entire group moves together with a common heading direction,

resulting in polarization values reaching the maximum of one and the agents form one

large cluster. However, the group is uniformly dispersed within the simulated arena,

reducing overall cohesion. This is supported by the visualization in Figures 3-2d and

3-2j Even more intriguing and counter intuitive results are observed at small sensing

angles when the offset angle is 𝛼 = 𝜋 and noise intensity is high. In this scenario,

not only does polarization reach its maximum possible value of one, but cohesion

is close to its maximum value of one, and the largest cluster size is also very high.

Figure 3-2g shows the corresponding formation of a singular dense cluster of highly

aligned agents.

To verify that agents are uniformly dispersed within the simulated arena based on

low cohesion, we compute the order parameter coverage, which is the time-averaged

fraction of area occupied by the agents within the domain. We calculate mean cover-

age in the same manner as the mean values for the other order parameters. Figure 3-6

presents the mean coverage.
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Figure 3-6: Results for mean coverage at varying noise intensity 𝜂 and sensing angle
𝜑 for different offset angles 𝛼.
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Results show that coverage is highly correlated with the inverse of cohesion, as

shown in Figure 3-4. The symmetry observed around the offset of 𝛼 = 𝜋 confirms that

spatial distributions do not depend on the direction of the offset from the heading

direction. The highest coverage across all noise and sensing angles is observed for

offset angle 𝛼 = 𝜋/2 and 𝛼 = 3𝜋/2, where we previously noted low cohesion, high

polarization, and single cluster formation. These results indicate that all the agents

are uniformly spread within the domain while achieving perfect alignment as a group.

The lowest coverage, on the other hand, is observed at high noise and small sensing

angles for an offset angle of 𝛼 = 𝜋, where we previously observed the counter intuitive

result of high cohesion. Specifically, a cohesion value close to one indicates that all

the agents collapse at their center of mass. When compared with the coverage results,

which are close to zero, this confirms that the group is very tightly packed.

3.4.1 Flipped sensing

To further investigate the intriguing case of 𝛼 = 𝜋, which we refer to as flipped

sensing, we conduct a new set of simulations with noise intensity varied over a larger

range. The results are presented in Figure 3-7. We also compare the results of the

flipped sensing to those obtained in the absence of an offset. Sub-figures 3-7a and 3-7b

show the mean polarization, while sub-figures 3-7c and 3-7d show the mean cohesion.

The results with no offset are indicated by 𝛼 = 0, while the results for flipped sensing

are indicaed by 𝛼 = 𝜋.

Comparing the polarization results, we observe that flipped sensing leads to higher

polarization at smaller sensing angles for higher noise values, before transitioning to

random walk behavior when noise levels become too high. For instance, at 𝜑 = 𝜋/15,

random walk behavior begins at approximately 𝜂 = 2 in the absence of offset, whereas

with flipped sensing, it starts at 𝜂 = 4 for the same sensing angle. Additionally, we

observe that polarization improves with increasing sensing angle for a fixed noise

level in the case of no offset. Interestingly, in the case of flipped sensing, this is not

observed. At high noise levels, polarization initially increases with the sensing angle,

then decreases again as the sensing angle is further increased.

55



0

1

2

3

4

5

(a)

0

0.5

1

(b)

0

1

2

3

4

5

(c)

0

0.5

1

(d)

Figure 3-7: Mean polarization ((a) and (b)) and mean cohesion ((c) and (d)) are
computed for a larger range of 𝜂 : [0, 5] with varying 𝜑 : [0, 𝜋]. Sub-figures (a) and (c)
show results with no offset, while sub-figures (b) and (d) show results with a flipped
sensing, i.e., offset of 𝛼 = 𝜋.

Notable differences are also observed in the mean cohesion values when comparing

high noise levels. Flipped sensing demonstrates very high cohesion with increasing

noise for a small range of sensing angles, but then cohesion decreases when noise 𝜂 ≥ 4.

When compared with the polarization results in flipped sensing, we already observe

an increase in polarization with increasing sensing angle (from 3𝜋/15 to 6𝜋/15) for

large noise values, which also corresponds to regions of high cohesion. These results

when combined indicate that the differences in sensing between no offset and 𝜋 offset

create variations in interaction that influence group behavior by increasing cohesion

in flipped sensing. This high cohesion eventually helps the group maintain moderate

polarization, a phenomenon not observed in the no offset case where both cohesion

and polarization remain low.

3.4.2 Additional investigations

Several supplementary investigations are done to study flipped sensing further. I an

attempt to explain the group-level emergent behavior, the pairwise interactions and

the number of unique neighbors between the agents are compared for the no offset

model and the flipped sensing model. The informative, but surprisingly, counter-

intuitive results observed further motivate the need for future research into the flipped

sensing and models with an offset sensing as a whole.
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Difference of closest approach - pairwise interaction

It is known and verified that the average particle density is a driving factor for the

emergent behavior in the Vicsek model [2, 1, 24]. Increasing density leads to increased

interaction between agents, thus, it is beneficial to investigate the pairwise interactions

between agents [3, 38, 106].

A pair of agents are simulated with initial positions 𝑥0
1 = [ 0

−2.25 ] and 𝑥0
2 = [ 50 ] and

initial direction of the first agent as 𝜃01 =
𝜋
2
. The initial heading of the second agent,

𝜃02, and sensing angle, 𝜑, are varied and the interactions are simulated for the regular

and flipped case. The set-up is shown in Figure 3-8.

(a) (b)

Figure 3-8: Domain arrangement for Pairwise Interaction between two agents when
𝛼 = 0 (3-8a) and 𝛼 = 𝜋 (3-8b). For this example 𝜃02 = 3𝜋

4
and 𝜑 = 3𝜋

15
. The radius

of the sensing sector is exaggerated for visualization purposes. The dotted lines show
the paths of the agents without interaction.

The distance of closest approach is calculated in each case. The differences be-

tween those distances are computed and shown in Figure 3-9. In order for the results

to be untainted by randomness and to ensure controllability of the trajectories, the

simulation is run without any noise 𝜂 = 0.

The flipped sensing maintains a higher distance for 𝜑 : [ 𝜋
15
, 7𝜋
15
]. Special cases

exist at
(︀
𝜑 = 6𝜋

15
, 𝜃2 =

31𝜋
40

)︀
,
(︁
𝜑 = 7𝜋

15
, 𝜃2 =

[30,31,32]
40

𝜋
)︁
,
(︁
𝜑 = 8𝜋

15
, 𝜃2 =

[30,31,32]
40

𝜋
)︁
, and(︀

𝜑 = 9𝜋
15
, 𝜃2 =

31𝜋
40

)︀
, where the flipped sensing has a smaller separation distance when
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Figure 3-9: Difference of Distances of Closest Approach: Flipped-Regular. Positive
value indicates a flipped sensing has a higher distance of closest approach relative to
regular sensing, and vice-versa.

compared to the no offset case.

The distances of closest approach may be related to cohesion in the group-level

behavior. Therefore, lower distances of closest approach may be expected indicate

higher cohesion, and vice-versa. Relating Figure 3-9 and Figure 3-4, the darker regions

on Figure 3-9 should indicate higher cohesion on Figure 3-4. This is not the case as

the cohesion for both regular and flipped sensing are low and equivalent at the queried

𝜑 values
(︀[︀

6𝜋
15
, 9𝜋
15

]︀)︀
, at the 𝜂 = 0 case. It is only when 𝜂 is increased past 𝜂 = 0.4 that

the flipped sensing shows higher cohesion than in the regular case.

Mean difference of closest approach – circular arrangement

In the previous analysis, interaction between the pair of agents is not guaranteed,

hence a lot of the data points are of little use. A new analysis is done where 𝑁 = 11

agents are arranged in a circular topography around the center of the arena, with

initial headings pointing towards the center, as depicted in Figure 3-10.

This arrangement forces interaction, allows for the inclusion of more agents, and

allows for the dynamics of agent decision-making in a cluster to be explored. The

distance of closest approach of all agents with each other is calculated, and the mean

of these values is computed. This is done for 𝜂 : [0, 5], and 𝜑 : [0, 𝜋] in increments
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(a) (b)

Figure 3-10: Domain configuration for interaction of 11 agents in circular arrangement
when 𝛼 = 0 (3-10a) and 𝛼 = 𝜋 (3-10b). For this example 𝜑 = 3𝜋

15
. The radius of the

sensing sector is exaggerated for visualization purposes. The dotted lines show the
paths of the agents without interaction.

of 𝜋
15

. Figure 3-11 shows the mean difference of distance of closest approach between

the flipped sensing case and the no offset case.
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Figure 3-11: Mean Difference of Distances of Closest Approach: Flipped-Regular,
Circular Arrangement. Positive value indicates a flipped sensing has a higher distance
of closest approach relative to regular sensing, and vice-versa.

Agents in the flipped sensing generally maintain a higher distance for 𝜂 ≤ 0.3,

especially in the range 𝜑 :
[︀
8𝜋
15
, 12𝜋

15

]︀
. At 𝜂 = 0.2, there is higher separation in flipped

sensing, occurring at lower sensing angles as well
(︀
𝜑 :

[︀
0, 3𝜋

15

]︀)︀
. For the deterministic

case (𝜂 = 0), regular sensing has higher separation distance for 𝜑 :
[︀
0, 4𝜋

15

]︀
. In all

other cases, the differences between the two cases are zero or negligible. For these

ranges where the flipped sensing maintains a higher separation distance, the associ-

ated cohesion values from Figure 3-4 are low. For the 𝜂 range, the cohesion is low,
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but as noise increases, the cohesion is especially in the range 𝜑 :
[︀
3𝜋
15
, 6𝜋
15

]︀
.

Mean number of unique neighbors

Figure 3-12 shows the mean number of unique neighbors for the no offset (𝛼 = 0) and

flipped (𝛼 = 𝜋) cases. This analysis case consisted of 𝑁 = 11 agents arranged in a

circular distribution about the center of the domain - the same as depicted in Figure 3-

10. The results shown depict the average of five independent simulations. These

results indicate that the agents generally have more neighbors in the regular (𝛼 = 0)

case when compared to the flipped case, with the only exception being when 𝜂 = 0

and 𝜑 ≤ 7𝜋/15. Disregarding 𝜑 = 𝜋, the flipped sensing case only has a relatively

high number of neighbors when there is no noise, i.e. 𝜂 = 0. This is counter-intuitive

as it has been previously observed that there is both high polarisation and cohesion

in the flipped case at high noise levels, at least for 𝜂 : [0, 2.3]. What does agree with

previous observations is that agents in the flipped sensing are able to have higher

neighbor interactions at lower sensing angles 𝜑. Although these high interactions

only occur in the 𝜂 = 0 case, the results do concur with previously observed trends

relating to sensing angle 𝜑.
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Figure 3-12: Comparison of mean number of unique neighbors between the no offset
(3-12a) and flipped (3-12b) models for 𝜂 : [0 : 1]. The average number of unique
neighbors is computed over 5 trials.
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3.5 Conclusion

This study investigates the impact of visual field offset on group collective behavior

using the Vicsek model. Our findings reveal that introducing an offset generates

a variety of group behaviors, some of which are counter-intuitive. Notably, in the

scenario of flipped sensing, which creates an offset of 𝜋 radians, we observe perfect

group alignment and the entire group clustering at their center of mass, even under

high noise conditions. This result contrasts with the traditional properties of the

Vicsek framework, where increasing noise typically deteriorates group behavior.

These findings are inspired by biological observations, where animals often use

information outside of their current heading. The results are significant as they

provide insights into the potential advantages of such offset behaviors in natural

systems and offer inspiration for designing artificial systems. For instance, this study

suggests that incorporating offset sensing in multi-robot teams could achieve desired

group behaviors.

Future work will extend this investigation to a three-dimensional Vicsek model

with offset, reflecting more natural systems that navigate in three-dimensional envi-

ronments. Additionally, rather than keeping the offset fixed for a given simulation, it

would be intriguing to explore the effects of dynamic offsets that change over time,

potentially leading to more complex behaviors. This initial exploration of offset vi-

sual fields opens numerous exciting questions for researchers interested in studying

collective motion.
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Chapter 4

Overall Conclusion and Future Work

In this thesis, we investigated the effects of bio-inspired sensing mechanisms on

collective behavior using modified versions of the Vicsek model. We developed a

three-dimensional collective motion model that integrates auditory and visual sensing

modalities, inspired by species like bats that utilize these senses for effective naviga-

tion. Existing literature predominantly focuses on sensing schemes akin to fields of

vision, likely due to an inherent human bias towards vision. However, substantial

biological evidence indicates that many species employ multiple sensory modalities.

This research aims to explore the influence of combined sensing modalities on group

behavior.

Through numerical simulations, we examined the combined effects of auditory and

visual sensing on group-level behavior, comparing them to the effects of pure vision

and audition. The results demonstrated that composite sensing enables particles to

interact with a larger set of neighbors, thereby accessing more information. This

interaction facilitates the formation of a single, large, perfectly aligned group within

a narrow sensing region—a feature achievable with pure vision only at a wider field of

view. These findings underscore the significant role of integrating information from

multiple sensory modalities in shaping emergent group-level behavior, with important

implications for both biological studies and the development of robotic swarms.

Furthermore, we explored the impact of visual field offset on group collective

behavior using the Vicsek model. Our findings indicated that introducing an offset
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generates a variety of group behaviors, some of which are counter intuitive. Notably,

in the scenario of flipped sensing, we observed perfect group alignment and the entire

group clustering at their center of mass, even under high noise conditions. This result

contrasts with the traditional properties of the Vicsek framework, where increasing

noise typically deteriorates group behavior. Inspired by biological observations where

animals often use information outside their current heading, these findings provide

insights into the potential advantages of such offset behaviors in natural systems and

offer inspiration for designing artificial systems. For instance, incorporating offset

sensing in multi-robot teams could help achieve desired group behaviors.

The investigation and use of different sensing mechanisms in collective behavior

modelling can have transferable advantages to real-world systems. For example, the

combination of auditory and visual sensing can be applied to sensor fusion in au-

tonomous vehicles for resilient collision detection and path planning, while the offset

sensing can be analogous to an entity’s selective attention to certain directional signals

or choosing specific crucial information.

Future work will focus on several areas. Firstly, we will model the auditory and vi-

sual sensing sectors using biologically relevant and geometrically distinct parameters

for sensing radius and sensing angle. Secondly, we will implement differential weight-

ing of information from the two sensory modalities to better understand their com-

bined effects. Additionally, we will extend the investigation to a three-dimensional

Vicsek model with offset, reflecting more natural systems that navigate in three-

dimensional environments. Exploring the effects of dynamic offsets that change over

time will also be intriguing, potentially leading to more complex behaviors. This ini-

tial exploration of offset visual fields opens numerous exciting questions for researchers

interested in studying collective motion.
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Appendix A

MATLAB Codes

Presented are simplified versions the MATLAB codes used to conduct the work done

in this thesis. The scripts and methods were optimized to use less memory for com-

putation through vectorization principles. For example, a single adjacency matrix

was used to represent the neighbors of all the agents at any given time. All work was

done on either a personal computer or using the resources provided by the Complex

Dynamical Systems Laboratory at Embry-Riddle Aeronautical University - Daytona

Beach. In several instances, parallel computing resources, via the VEGA HPC housed

at ERAU, were utilized to aid in computation time and facilitate the analysis of denser

systems.
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A.1 3D Vicsek model

1 function [posAll ,eVecAll ,DD] = vicsek3d(N,simTime ,dt,roi ,phi ,eta ,v0 ,

initialPosition ,initialOrientationAngles ,Domain ,typeBC ,mode)

2

3 % Initialise all Particles with random positions , orientations , and

initial velocity within the grid

4 pos = initialPosition;

5 theta = initialOrientationAngles (1,:);

6 zeta = initialOrientationAngles (2,:);

7 u = cos(zeta);

8 eVec = [sqrt(1-u.^2).*cos(theta); sqrt(1-u.^2).*sin(theta); u]; %

heading or direction of movement of particle

9

10 % Analysis and Simulation

11 DD = cell(simTime ,1);

12 posAll = zeros(3,N,simTime);

13 eVecAll = zeros(3,N,simTime);

14

15 for k = 1:dt:simTime

16 posAll(:,:,k) = pos;

17 eVecAll(:,:,k) = eVec;

18 DD{k} = determineNeighbours(mode ,pos ,eVec ,roi ,phi ,Domain ,typeBC)

;

19 [pos ,eVec] = determineNewParams(DD{k},pos ,eVec ,v0 ,eta ,Domain ,

typeBC ,dt);

20 end

21

22 end

23

24 %FUNCTIONS

25 function [adjacency] = determineNeighbours(mode ,pos ,eVec ,roi ,phi ,

Domain ,typeBC)

26 % for each particle , if a surrounding particle is within sensing

27 % region , then that particle is considered a neighbour

28 N = size(pos ,2);
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29 logical allisNeighbour;

30 allisNeighbour = false(N);

31

32 for i=1:N

33 resVec = pos -pos(:,i); %vectors from ith particle to all other

particles

34 if typeBC == "Periodic"

35 resVec = mod(resVec +( Domain (:,2)-Domain (:,1) )/2, Domain

(:,2)-Domain (:,1) ) - (Domain (:,2)-Domain (:,1))/2;

36 end

37 resMag = vecnorm(resVec ,2,1); %length of vector resPos

38 resDir = resVec ./ resMag; resDir(isnan(resDir)) = (1/ size(resDir

,1))*1./ eVec(isnan(resDir)); %unit direction vector of resVec

39

40 radiusCond = resMag <=roi ; %within cone radius , including itself

41 cosQA = transpose(resDir ’*eVec(:,i)); %dot product of two

vectors = cos(angle between vectors)

42 queryAngle = acos(cosQA); %gives angle in range [0,pi/2]

43 angleCond = queryAngle <= phi; %within sensing angle

44

45 isNeighbour = and(radiusCond ,angleCond);

46 allisNeighbour(i,:) = isNeighbour;

47 end

48

49 if mode == "Visual"

50 adjacency = allisNeighbour;

51 end

52 if mode == "Auditory"

53 adjacency = transpose(allisNeighbour);

54 end

55 if mode == "AudioVisual"

56 adjacency = or(allisNeighbour ,transpose(allisNeighbour));

57 end

58

59 end

60
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61 function [pos ,eVec] = determineNewParams(adjacency ,pos ,eVec ,v0,eta ,

Domain ,typeBC ,dt)

62 % determine new headings and velocity

63 % input: time k-1

64 % output: time k

65

66 N = size(pos ,2);

67

68 % Noise

69 u = 2*( rand(1,N) -0.5); % u=cos(zeta) random in [-1,1]

70 teta = 2*pi*rand(1,N);

71 x = sqrt(1-u.^2).*cos(teta);

72 y = sqrt(1-u.^2).*sin(teta);

73 z = u;

74 noise = eta*[x;y;z];

75

76 eVec = transpose(adjacency*eVec ’);

77 dist = vecnorm(eVec ,2,1);

78 eVec = eVec./dist;

79

80 eVec = eVec + noise; % adding noise

81 dist = vecnorm(eVec ,2,1);

82 eVec = eVec./dist;

83

84 pos = pos + v0*eVec*dt; %put this back above to match original

vicsek

85 if typeBC == "Periodic"

86 pos = mod(pos + (Domain (:,1)-Domain (:,2))/2, (Domain (:,1)-Domain

(:,2))) - (Domain (:,1)-Domain (:,2))/2;

87 end

88 end

Listing A.1: Script to execute simulation of 3D Vicsek Model with sensing modes
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1 close all

2 clear

3 clc

4

5 %%

6 % Compute Polarisations and Cohesions for a range of eta (noise) and

phi (sensing angle / half -openingAngle)

7

8 xL = -5;

9 yL = xL;

10 zL = xL;

11 xU = 5; %length of Domain [distance unit]

12 yU = xU; %height of Domain [distance unit]

13 zU = xU; %width of Domain [distance unit]

14

15 Domain = [xL xU; yL yU; zL zU];

16 typeBC = "Periodic ";

17 executePlot = true;

18

19 v0 = 0.03; %initial velocity [distance/time]

20

21 roi = 1;

22

23 rho = 10; %particle density [#/vol]

24 simTime = 2000; %simulation time [time units]

25 timeOffset = 1000; %timestep offset for computation of mean

Polarisation and mean Cohesion

26 dt = 1; %time step in [time units]

27

28 mode1 = ’Auditory ’;

29 mode2 = ’Visual ’;

30 mode3 = ’AudioVisual ’;

31 modes = {mode1 ,mode2 ,mode3};

32

33 N = floor(rho*det(diag(Domain *[ -1;1]))); %number of particles in

Domain based on density and Domain size [#]
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34

35 %% Initialise all Particles with random positions and orientations

36

37 xInit = (Domain (1,2)-Domain (1,1))*(rand(1,N)+Domain (1,1)/( Domain

(1,2)-Domain (1,1)));

38 yInit = (Domain (2,2)-Domain (2,1))*(rand(1,N)+Domain (2,1)/( Domain

(2,2)-Domain (2,1)));

39 zInit = (Domain (3,2)-Domain (3,1))*(rand(1,N)+Domain (3,1)/( Domain

(3,2)-Domain (3,1)));

40 initialPosition = [xInit;yInit;zInit ];

41

42 thetaInit = unifrnd(-pi ,pi ,1,N);

43 zetaInit = unifrnd(-pi,pi ,1,N);

44 initialOrientationAngles = [thetaInit;zetaInit ];

45

46 etaRange = [0:0.1:1]; %noise factor

47 phiRange = [0:pi/15:pi]; %sensing half -angle of particle - between 0

and pi [radians]

48

49 %% Execute Simulation || Compute Polarisation and Cohesion

50

51 path = "rho_"+ string(rho)+"t_"+ string(simTime);

52 if ~exist(path ,’dir’)

53 mkdir(path);

54 end

55

56 MN = length(modes);

57 EN = length(etaRange);

58 PN = length(phiRange);

59

60 tStart = tic;

61 for m = 1: length(modes)

62 mode = modes{m};

63 for e = 1: length(etaRange)

64 fprintf ("\ nRunning Simulation ...\n");

65 fprintf(’\t Mode: %d of %d\n’, m,MN);
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66 fprintf(’\t\t eta iter: %d of %d\n’,e,EN);

67

68 eta = etaRange(e);

69 parfor p = 1: length(phiRange)

70 phi = phiRange(p);

71 [pos ,eVec ,DD] = vicsek3d_rajuOpt(N,simTime ,dt ,roi ,phi ,

eta ,v0,initialPosition ,initialOrientationAngles ,Domain ,typeBC ,

mode);

72 [pol ,coh] = computePolCoh(pos ,eVec ,roi ,simTime ,

timeOffset);

73 cz = computeCZ(DD);

74 parsave3D(path ,pos ,eVec ,DD ,pol ,coh ,cz,eta ,phi ,mode);

75 end

76 end

77 end

78 tEnd = toc(tStart);

79 fprintf ("\ nSimulation Complete\n\n");

80 disp(" Elapsed Time to Compute Data is "+ sprintf(’%.4f’,tEnd)+"

seconds ");

Listing A.2: Script to compute group parameters for 3D Vicsek simulation
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1 function [pol ,coh] = computePolCoh(posAll ,eVecAll ,roi ,simTime ,

timeOffset)

2

3 N = size(posAll ,2);

4 Polarisation = zeros(simTime ,1);

5 Cohesion = zeros(simTime ,1);

6

7 la = 4*roi;

8 for k=1: simTime

9 Polarisation(k,:) = vecnorm(sum(eVecAll (:,:,k) ,2) ,2,1)/N;

10

11 centerOfMass = sum(posAll(:,:,k) ,2)/N;

12 relativePosition = posAll(:,:,k)-centerOfMass;

13 Cohesion(k,:) = sum(exp(-vecnorm(relativePosition ,2,1)/la))/N;

14 end

15 meanPolarisation = mean(Polarisation (1+ timeOffset:end ,:));

16 meanCohesion = mean(Cohesion (1+ timeOffset:end ,:));

17

18 pol = struct(’all’,Polarisation ,’mean’,meanPolarisation);

19 coh = struct(’all’,Cohesion ,’mean’,meanCohesion);

20

21 end

Listing A.3: Computation of Polarization and Cohesion
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1 function [CZ] = computeCZ(adjacencyAll)

2 % compute mean largest cluster size

3 simTime = length(adjacencyAll);

4 largestClusterSize = zeros(simTime ,1);

5 clusterSizes = cell(simTime ,1);

6 for k = 1: simTime

7 g = digraph(adjacencyAll{k});

8 weak_bins = conncomp(g,’Type’,’weak’);

9 [cz ,~] = histcounts(weak_bins ,unique(weak_bins));

10 clusterSizes{k}=cz;

11 largestClusterSize(k,:) = max(cz);

12 end

13 meanLargestClusterSize = mean(largestClusterSize);

14

15 CZ.all = largestClusterSize;

16 CZ.mean = meanLargestClusterSize;

17 end

Listing A.4: Computation of Cluster Size
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1 function [initialPosition ,initialOrientationAngles] =

generateInitialConditions(Domain ,N)

2 % generate initial positions and headings in 3D domain

3

4 xInit = (Domain (1,2)-Domain (1,1))*(rand(1,N)+Domain (1,1)/( Domain

(1,2)-Domain (1,1)));

5 yInit = (Domain (2,2)-Domain (2,1))*(rand(1,N)+Domain (2,1)/( Domain

(2,2)-Domain (2,1)));

6 zInit = (Domain (3,2)-Domain (3,1))*(rand(1,N)+Domain (3,1)/( Domain

(3,2)-Domain (3,1)));

7 initialPosition = [xInit;yInit;zInit ];

8

9 thetaInit = unifrnd(-pi ,pi ,1,N);

10 zetaInit = unifrnd(-pi,pi ,1,N);

11 initialOrientationAngles = [thetaInit;zetaInit ];

12 end

Listing A.5: Generate Initial Conditions

74



1 close all

2 clear

3 clc

4

5 % Compute Polarisations and Cohesions for a range of eta (noise) and

phi (sensing angle / half -openingAngle)

6

7 xL = -2.5;

8 yL = xL;

9 zL = xL;

10 xU = 2.5; %length of Domain [distance unit]

11 yU = xU; %height of Domain [distance unit]

12 zU = xU; %width of Domain [distance unit]

13

14 Domain = [xL xU; yL yU; zL zU];

15 typeBC = "Periodic ";

16 executePlot = true;

17

18 v0 = 0.03; %initial velocity [distance/time]

19 roi = 1;

20

21 rho = 10; %particle density [#/vol]

22 simTime = 2000; %simulation time [time units]

23 timeOffset = floor (0.5* simTime); %timestep offset for computation of

mean Polarisation and mean Cohesion

24 dt = 1; %time step in [time units]

25

26 mode1 = "Auditory ";

27 mode2 = "Visual ";

28 mode3 = "AudioVisual ";

29 modes = {mode1 ,mode2 ,mode3};

30

31 N = floor(rho*det(diag(Domain *[ -1;1]))); %number of particles in

Domain based on density and Domain size [#]

32

33 nsims = 20;
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34 epPair = [ [0.1;2* pi/15], [0.3;5* pi/15], [0.6;1* pi/15], [0.8;4* pi

/15] , [0.3;2* pi/15], [0.5;3* pi/15], [0.7;5* pi /15]];

35 npairs = size(epPair ,2);

36 nmodes = length(modes);

37

38 %% Initialise all Particles with random positions and orientations

39

40 xInit = (Domain (1,2)-Domain (1,1))*(rand(1,N)+Domain (1,1)/( Domain

(1,2)-Domain (1,1)));

41 yInit = (Domain (2,2)-Domain (2,1))*(rand(1,N)+Domain (2,1)/( Domain

(2,2)-Domain (2,1)));

42 zInit = (Domain (3,2)-Domain (3,1))*(rand(1,N)+Domain (3,1)/( Domain

(3,2)-Domain (3,1)));

43 initialPosition = [xInit;yInit;zInit ];

44

45 thetaInit = unifrnd(-pi ,pi ,1,N);

46 zetaInit = unifrnd(-pi,pi ,1,N);

47 initialOrientationAngles = [thetaInit;zetaInit ];

48

49 %% Execute Simulation || Compute Polarisation and Cohesion

50

51 path = "rho_"+ string(rho)+"t_"+ string(simTime);

52 if ~exist(path ,’dir’)

53 mkdir(path);

54 end

55

56 offset1 = 0;

57 offset2 = 3;

58 tStart = tic;

59

60 for pairk = (1+ offset1):(npairs -offset2)

61 epVals = epPair;

62 eta = epVals(1,pairk);

63 phi = epVals(2,pairk);

64

65 POL = cell(nmodes ,nsims);
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66 COH = cell(nmodes ,nsims);

67 CZ = cell(nmodes ,nsims);

68

69 polTime = cell(nmodes ,nsims);

70 polTimeMean = zeros(nmodes ,simTime);

71 cohTime = cell(nmodes ,nsims);

72 cohTimeMean = zeros(nmodes ,simTime);

73 czTime = cell(nmodes ,nsims);

74 czTimeMean = zeros(nmodes ,simTime);

75

76 for simk = 1: nsims

77 fprintf ("\ nRunning Simulation ...\n");

78 fprintf(’\t pair: %d of %d\n’,pairk ,npairs);

79 fprintf(’\t sim: %d of %d\n’, simk ,nsims);

80

81 parfor modek = 1: nmodes

82 mode = modes{modek};

83 fprintf(’\t\t mode: %d of %d\n’, modek ,nmodes);

84

85 [initialPosition ,initialOrientationAngles] =

generateInitialConditions(Domain ,N);

86 [pos ,eVec ,DD] = vicsek3d(N,simTime ,dt,roi ,phi ,eta ,v0,

initialPosition ,initialOrientationAngles ,Domain ,typeBC ,mode);

87

88 [POL{modek ,simk},COH{modek ,simk}] = computePolCoh(pos ,

eVec ,roi ,simTime ,timeOffset);

89 CZ{modek ,simk} = computeCZ(DD);

90

91 polTime{modek ,simk} = POL{modek ,simk}.all;

92 polTimeMean(modek ,:) = polTimeMean(modek ,:) + (POL{modek

,simk}.all.’)/nsims;

93

94 cohTime{modek ,simk} = COH{modek ,simk}.all;

95 cohTimeMean(modek ,:) = cohTimeMean(modek ,:) + (COH{modek

,simk}.all.’)/nsims;

96
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97 czTime{modek ,simk} = CZ{modek ,simk}.all;

98 czTimeMean(modek ,:) = czTimeMean(modek ,:) + (CZ{modek ,

simk}.all.’)/nsims;

99

100 end

101 end

102 clear pos eVec DD

103 save(path +"/ data_pair "+ string(pairk)+".mat","POL","COH","CZ","

polTime"," polTimeMean ","cohTime"," cohTimeMean ","czTime","

czTimeMean ","epVals","epPair","pairk","Domain","N","rho","eta","

phi","simTime"," timeOffset ","modes",’-v7.3’);

104 end

105 tEnd = toc(tStart);

106 fprintf ("\ nSimulation Complete\n\n");

107 disp(" Elapsed Time to Compute Data is "+ sprintf(’%.4f’,tEnd)+"

seconds ");

108 clear POL COH polTime cohTime polTimeMean cohTimeMean czTime

czTimeMean pairk modek simk

Listing A.6: Script to execute Monte-Carlo Simulation
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A.2 Offset Vicsek model

1 function [posAll ,eVecAll ,thetaAll ,DD,Neighbours] = vicsek2d(N,

simTime ,dt,roi ,phi ,sensingOffset ,eta ,v0,initialPosition ,

initialOrientation ,domain ,typeBC ,mode)

2

3 %Initialise all Particles with random positions , orientations , and

initial velocity within the grid

4 pos = initialPosition;

5 theta = initialOrientation; % theta = unifrnd(-pi,pi ,1,N);

6 eVec = [cos(theta);sin(theta)]; %heading of particle

7

8 %Simulation

9 DD = cell(simTime ,1);

10 thetaAll = zeros(simTime ,N);

11 posAll = zeros(2,N,simTime);

12 eVecAll = zeros(2,N,simTime);

13 Neighbours = cell(N,simTime);

14 for k = 1:dt:simTime

15 posAll(:,:,k) = pos;

16 thetaAll(k,:) = theta;

17 eVecAll(:,:,k) = eVec;

18

19 [D,allNeighboursIDX] = determineNeighbours(mode ,typeBC ,pos ,theta

,roi ,phi ,sensingOffset ,domain);

20 DD{k} = D;

21 Neighbours (:,k) = allNeighboursIDX;

22

23 [pos ,eVec ,theta] = determineNewParams(typeBC ,allNeighboursIDX ,

pos ,v0,eta ,theta ,dt ,domain);

24 end

25 end

26

27

28 function [adjacency ,allNeighboursIDX] = determineNeighbours(mode ,

typeBC ,pos ,theta ,roi ,phi ,sensingOffset ,domain)
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29 % for each particle , if a surrounding particle is within sensing

30 % region , then that particle is considered a neighbour

31 N = length(theta);

32 allisNeighbour = zeros(N);

33 allNeighboursIDX = cell(N,1);

34 eVec = [cos(theta+sensingOffset);sin(theta+sensingOffset)];

35

36 for i=1:N

37 resVec = pos -pos(:,i); %vectors from ith particle to all other

particles

38 if typeBC == "Periodic"

39 resVec = mod(resVec +( domain (:,2)-domain (:,1) )/2, domain

(:,2)-domain (:,1) ) - (domain (:,2)-domain (:,1))/2;

40 end

41 resMag = vecnorm(resVec ,2,1); %length of vector resPos

42 resDir = resVec ./ resMag; resDir(isnan(resDir)) = (1/ size(reVec

,1))*1./ eVec(isnan(resDir)); %unit direction vector of resVec

43 radiusCond = resMag <=roi ; %within cone radius , including itself

44

45 dp = transpose(resDir ’*eVec(:,i)); %dot product of two vectors =

cos(angle between vectors)

46 queryAngle = acos(dp); %gives angle in range [0,pi/2]

47 angleCond = cos(queryAngle)-cos(phi) > -0.00000000000001;

48

49 isNeighbour = and(radiusCond ,angleCond);

50 allisNeighbour(i,:) = isNeighbour;

51 end

52

53 if mode == "Visual"

54 VisualNeighbourMat = allisNeighbour;

55 adjacency = VisualNeighbourMat;

56 end

57 if mode == "Auditory"

58 AudioNeighbourMat = transpose(allisNeighbour);

59 adjacency = AudioNeighbourMat;

60 end
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61 if mode == "AudioVisual"

62 VisualNeighbourMat = allisNeighbour;

63 AudioNeighbourMat = transpose(allisNeighbour);

64 AudioVisualNeighbourMat = VisualNeighbourMat | AudioNeighbourMat

;

65 adjacency = AudioVisualNeighbourMat;

66 end

67 for i = 1:N

68 allNeighboursIDX{i} = find(adjacency(i,:));

69 end

70 end

71

72

73 function [pos ,eVec ,ttheta] = determineNewParams(typeBC ,

allNeighboursIDX ,pos ,v0,eta ,theta ,dt ,domain)

74 % determine new orientation , velocity , and positions

75 N = length(theta);

76 thetaAvg = zeros(size(theta));

77 deltaTheta = unifrnd(-eta/2,eta/2,1,N); %random number chosen with

uniform probability on interval [-eta/2,eta /2]

78

79 for i=1:N

80 thetaAvg(i) = atan2(sum(sin(theta(allNeighboursIDX{i}))),sum(cos

(theta(allNeighboursIDX{i}))));

81 end

82 ttheta = thetaAvg + deltaTheta; %new direction or orientation with

respect to origin of cartesian

83

84 pos = pos+ v0*[cos(theta);sin(theta)]*dt;

85 if typeBC == "Periodic"

86 pos = mod(pos + (domain (:,2)-domain (:,1))/2, domain (:,2)-domain

(:,1)) - (domain (:,2)-domain (:,1))/2;

87 end

88 eVec = [cos(ttheta);sin(ttheta)]; %new heading direction vector

89 end

Listing A.7: Script to execute simulation of 2D Vicsek Model with offset sensing
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1 function [pol ,coh ,cz,am] = computeGroupParameters(posAll ,eVecAll ,

adjacencyAll ,roi ,simTime ,timeOffset)

2 % compute polarisation , cohesion , cluster size , angular momentum

3 N = size(posAll ,2);

4 Polarisation = zeros(simTime ,1);

5 Cohesion = zeros(simTime ,1);

6 largestClusterSize = zeros(simTime ,1);

7 clusterSizes = cell(simTime ,1);

8 AngularMomentum = zeros(simTime ,1);

9

10 la = 4*roi;

11

12 for k=1: simTime

13 pos = posAll(:,:,k);

14 vDir = eVecAll (:,:,k);

15 DD = adjacencyAll{k};

16 centerOfMass = sum(pos ,2)/N;

17 relativePosition = pos -centerOfMass;

18

19 Polarisation(k,:) = vecnorm(sum(vDir ,2) ,2,1)/N;

20 Cohesion(k,:) = sum(exp(-vecnorm(relativePosition ,2,1)/la))/N;

21

22 g = digraph(DD);

23 weak_bins = conncomp(g,’Type’,’weak’);

24 [clusterSizes{k,:},~] = histcounts(weak_bins ,unique(weak_bins));

25 largestClusterSize(k,:) = max(clusterSizes{k,:});

26 crossProd = cross ([ relativePosition;zeros(1,N)],[vDir;zeros(1,N)

]);

27 AngularMomentum(k,:) = vecnorm(sum(crossProd ,2) ,2,1) / sum(

vecnorm(relativePosition ,2,1).* vecnorm(vDir ,2,1));

28 end

29 meanPolarisation = mean(Polarisation (1+ timeOffset:end ,:));

30 meanCohesion = mean(Cohesion (1+ timeOffset:end ,:));

31 meanLargestClusterSize = mean(largestClusterSize);

32 meanAngularMomentum = mean(AngularMomentum);

33
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34 pol = struct(’all’,Polarisation ,’mean’,meanPolarisation);

35 coh = struct(’all’,Cohesion ,’mean’,meanCohesion);

36 cz = struct(’all’,clusterSizes ,’largestSizes ’,largestClusterSize ,’

meanLargest ’,meanLargestClusterSize);

37 am = struct(’all’,AngularMomentum ,’mean’,meanAngularMomentum);

38 end

Listing A.8: Computation of Polarization Cohesion and Cluster Size

1 close all

2 clear

3 clc

4

5 rho = 5;

6 simTime = 5000;

7 offset = 3000;

8 L = 10;

9

10 b = 100;

11 bh = 10;

12 bv = b/bh;

13

14 binLength = L/bh;

15 binHeight = L/bv;

16

17 sensingOffsetRange = [0:pi /6:2* pi];

18 etaRange = [0.1:0.1:0.9];

19 phiRange = [0:pi/15:pi];

20

21 numSensingOffsets = length(sensingOffsetRange);

22

23 numEta = length(etaRange);

24 numPhi = length(phiRange);

25

26 b0 = zeros(numEta ,numPhi ,simTime -offset);

27 coverage = zeros(numEta ,numPhi);

28
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29 path = "rho_"+ string(rho)+"t_"+ string(simTime);

30

31 %%

32

33 for s = 1: numSensingOffsets

34 % clc;

35 % fprintf(’Sensing Range: %d degrees | %d of %d\n’, rad2deg(

sensingOffsetRange(s)), s, numSensingOffsets);

36 sensingOffset = sensingOffsetRange(s);

37 for ek = 1: numEta

38 eta = etaRange(ek);

39 % fprintf(’\t eta: %.1f | %d of %d\n’,etaRange(ek),ek ,

numEta);

40 for pk = 1: numPhi

41 phi = phiRange(pk);

42 pths = path +"/ offset_ "+ string(rad2deg(sensingOffset))+"/

phi_"+ string(rad2deg(phi))+"/ eta_"+ string(eta);

43 load(pths +"/ TrajectoryData.mat");

44 for tt = 1+ offset:simTime

45 [hasAgent ,numAgents] = hasAgentHist(bh,bv ,binLength ,

binHeight ,pos(:,:,tt));

46 b0(ek,pk,tt-offset) = sum(double(hasAgent),’all’);

47 end

48 coverage(ek ,pk ,s) = mean(squeeze(b0(ek,pk ,:))/b);

49 end

50 end

51 end

52 function [hasAgent ,numAgents] = hasAgentHist(bh ,bv ,binLength ,

binHeight ,pos)

53 numAgents = histcounts2(pos(1,:),pos(2,:),’NumBins ’,[bh,bv],’

BinWidth ’,[binHeight ,binLength ]);

54 hasAgent = numAgents >0;

55 end

Listing A.9: Computation of coverage
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1 close all

2 clear

3 clc

4

5 % Compute Polarisations , Cohesions , Angular Momemtum , and Cluster

Size for a range of eta (noise) and phi (sensing angle / half -

openingAngle)

6 % Visual Sensing Mode for a range of sensing offsets

7

8 typeBC = "Periodic ";% BC: Periodic , none

9

10 L0 = -5;

11 H0 = L0;

12 L1 = 5; %length of domain [distance unit]

13 H1 = L1; %height of domain [distance unit]

14 domain = [L0 ,L1;H0 ,H1];

15

16 v0 = 0.03; %initial velocity [distance/time]

17 roi = 1;

18

19 rho = 5; %particle density [#/ area]

20 N = floor(rho*det(diag(domain *[ -1;1]))); %number of particles in

domain based on density and domain size [#]

21

22 %% Initialise all Particles with random positions and orientations

23 xInit = (domain (1,2)-domain (1,1))*(rand(1,N)+domain (1,1)/( domain

(1,2)-domain (1,1)));

24 yInit = (domain (2,2)-domain (2,1))*(rand(1,N)+domain (2,1)/( domain

(2,2)-domain (2,1)));

25 thetaInit = unifrnd(-pi ,pi ,1,N);

26 initialPosition = [xInit;yInit];

27 initialOrientation = thetaInit;

28

29 %% Execute Simulation || Compute Polarisation and Cohesion

30 % Preambles

31
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32 etaRange = [0:0.1:5]; %noise factor

33 phiRange = [0:pi/15:pi]; %sensing half -angle of particle - between 0

and pi [radians]

34 sensingOffsetRange = [0,pi]; %sensing region offset

35

36

37 dt = 1; %time step in [time units]

38 simTime = 5000; %simulation time [time units]

39 timeOffset = 1000; %timestep offset for computation of mean

Polarisation and mean Cohesion

40

41 path = "rho_"+ string(rho)+"t_"+ string(simTime)+"_new2";

42 mkdir(path);

43

44 mode1 = ’Visual ’;

45 modes = {mode1 };

46

47 MeanPolarisations = cell(length(modes),length(sensingOffsetRange));

48 MeanCohesions = cell(length(modes),length(sensingOffsetRange));

49 MeanLargestClusterSizes = cell(length(modes),length(

sensingOffsetRange));

50 MeanAngularMomentums = cell(length(modes),length(sensingOffsetRange)

);

51

52 AllPolarisations = cell(length(modes),length(sensingOffsetRange));

53 AllCohesions = cell(length(modes),length(sensingOffsetRange));

54 AllAngularMomentums = cell(length(modes),length(sensingOffsetRange))

;

55

56 tStart = tic;

57 for m = 1: length(modes)

58 mode = modes{m};

59 for s = 1: length(sensingOffsetRange)

60 MeanPolarisations{m,s} = zeros(length(etaRange),length(

phiRange));

61 MeanCohesions{m,s} = zeros(length(etaRange),length(phiRange)
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);

62 MeanLargestClusterSizes{m,s} = zeros(length(etaRange),length

(phiRange));

63 MeanAngularMomentums{m,s} = zeros(length(etaRange),length(

phiRange));

64

65 AllPolarisations{m,s} = cell(length(etaRange),length(

phiRange));

66 AllCohesions{m,s} = cell(length(etaRange),length(phiRange))

;

67 AllAngularMomentums{m,s} = cell(length(etaRange),length(

phiRange));

68

69 sensingOffset = sensingOffsetRange(s);

70 for e = 1: length(etaRange)

71 eta = etaRange(e);

72 for p = 1: length(phiRange)

73 phi = phiRange(p);

74 [pos ,eVec ,~,DD] = vicsek2d(N,simTime ,dt,roi ,phi ,

sensingOffset ,eta ,v0 ,initialPosition ,initialOrientation ,domain ,

typeBC ,mode);

75 [pol ,coh ,cz,am] = computeGroupParameters(pos ,eVec ,DD

,roi ,simTime ,timeOffset);

76 MeanPolarisations{m,s}(e,p) = pol.mean;

77 MeanCohesions{m,s}(e,p) = coh.mean;

78 MeanLargestClusterSizes{m,s}(e,p) = cz.meanLargest;

79 MeanAngularMomentums{m,s}(e,p) = am.mean;

80 AllPolarisations{m,s}{e,p} = pol.all;

81 AllCohesions{m,s}{e,p} = coh.all;

82 AllAngularMomentums{m,s}{e,p} = am.all;

83

84 %save data for simulation

85 pths = path +"/ offset_ "+ string(rad2deg(sensingOffset)

+"/ phi_"+ string(rad2deg(phi))+"/ eta_"+ string(eta));

86 mkdir(pths);

87 save(pths +"/ TrajectoryData.mat","pos","eVec","DD",’-
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v7.3’);

88 % clear unnecessary data

89 clear pos eVec DD pol coh cz am pths

90 end

91 end

92 end

93 end

94 tEnd = toc(tStart);

95 save(path +"/ data.mat");

96 disp(" Elapsed Time is "+ sprintf(’%.7f’,tEnd)+" seconds ");

Listing A.10: Extended parameter analysis for Flipped Sensing
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1 close all

2 clear

3 clc

4

5

6 % Comparison of flipped and unflipped sensing

7

8 %% Preambles

9 typeBC = "none";% BC: Periodic , none

10 mode = "Visual ";

11

12 L0 = -20;

13 H0 = L0;

14 L1 = 20; %upper x bound of domain [distance unit]

15 H1 = L1; %upper y bound of domain [distance unit]

16 domain = [L0 ,L1;H0 ,H1];

17

18 v0 = 0.03; %initial velocity [distance/time]

19 roi = 1;

20 % phi = 3*pi/15;

21 eta = 0;

22

23 simTime = 1000;

24 dt = 1;

25

26

27 %% Variables

28 strat = 60;

29 theta1Range = 0:pi/strat:pi;

30 phiRange = pi/15:pi/15:pi;

31 diffClosestApproach = zeros(length(theta1Range),length(phiRange));

32

33 sensingOffset1 = 0;

34 sensingOffset2 = pi;

35 sensingOffsetModes = [0,pi];

36 numAgents = 2;
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37

38 for t = 1: length(theta1Range)

39 for p = 1: length(phiRange)

40

41 phi = phiRange(p);

42

43 leadStartPos = [0; -2.25];

44 leaderDir = pi/2;

45 followerDir = theta1Range(t);

46 followerPos = [5;0];

47

48 P1init = [leadStartPos ,followerPos ];

49 T1init = [leaderDir ,followerDir ];

50 N1 = length(T1init);

51

52 P2init = [leadStartPos ,followerPos ];

53 T2init = [leaderDir ,followerDir ];

54 N2 = length(T2init);

55

56 Pinit = cat(3,P1init ,P2init); %concatenate in 3rd dimension.

coordinate x numAgents x numModes

57 Tinit = [T1init;T2init ];

58

59 % 1 and 2 in P1init. P2init , T1init , T2init indicate modes (

unflipped and flipped)

60

61 pos = cell(1,length(sensingOffsetModes));

62 eVec = cell(1,length(sensingOffsetModes));

63 resVec = cell(1,length(sensingOffsetModes));

64 dist = cell(1,length(sensingOffsetModes));

65 closestDist = zeros(1,length(sensingOffsetModes));

66

67 for s = 1: length(sensingOffsetModes)

68 [pp ,eV] = vicsek2d(numAgents ,simTime ,dt,roi ,phi ,

sensingOffsetModes(s),eta ,v0 ,Pinit(:,:,s),Tinit(s,:),domain ,

typeBC ,mode);
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69 pos{s} = pp; eVec{s} = eV;

70 resVec{s} = squeeze(pp(:,1,:)-pp(:,2,:));

71 if typeBC == "Periodic"

72 resVec{s} = mod(resVec{s}+( domain (:,2)-domain (:,1))

/2,domain (:,2)-domain (:,1)) -(domain (:,2)-domain (:,1))/2;

73 end

74 dist{s} = vecnorm(resVec{s},2,1); dd = dist{s};

75 closestDist(s) = abs(min(dd(abs(dd) >0)));

76 end

77 distDiff = closestDist (2) - closestDist (1); %differerence

between two modes: flipped -regular

78 diffClosestApproach(t,p) = (distDiff);

79 end

80 end

81 save(’data’+string(strat)+’.mat’);

Listing A.11: Closest approach analysis for Flipped Sensing
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