
Doctoral Dissertations and Master's Theses 

Summer 5-31-2024 

Machine Learning Based Analysis Of Civil Infrastructure In The Machine Learning Based Analysis Of Civil Infrastructure In The 

Presence Of Sparse Data Presence Of Sparse Data 

Megan Butcher 
Embry-Riddle Aeronautical University, butchem3@my.erau.edu 

Follow this and additional works at: https://commons.erau.edu/edt 

 Part of the Civil Engineering Commons, and the Structural Engineering Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Butcher, Megan, "Machine Learning Based Analysis Of Civil Infrastructure In The Presence Of Sparse 
Data" (2024). Doctoral Dissertations and Master's Theses. 838. 
https://commons.erau.edu/edt/838 

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted 
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons. 
For more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/252?utm_source=commons.erau.edu%2Fedt%2F838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/256?utm_source=commons.erau.edu%2Fedt%2F838&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/838?utm_source=commons.erau.edu%2Fedt%2F838&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


MACHINE LEARNING BASED ANALYSIS OF CIVIL INFRASTRUCTURE IN THE

PRESENCE OF SPARSE DATA

by: Megan Lee Butcher

Ashok Gurjar, Ph.D.

Civil Engineering Department Chair

Siddharth Parida, Ph.D.

Committee Chair

Dan Su, Ph.D.

Committee Member

Prashant Shekhar, Ph.D.

Committee Member

Jeff Brown, Ph.D.

Committee Member

Date: August 7, 2024



MACHINE LEARNING BASED ANALYSIS OF CIVIL INFRASTRUCTURE IN THE

PRESENCE OF SPARSE DATA

Megan Lee Butcher

A thesis/dissertation submitted in partial fulfillment of the requirements

for the degree of Master of Science in Civil Engineering - Structures Track

at Embry-Riddle Aeronautical University

August 2024



Acknowledgements

It has been an immense privilege to undertake this research, and I owe much of its success to the

support of Embry-Riddle Aeronautical University. Foremost, I extend my deepest gratitude to my

thesis advisor, Dr. Siddharth Parida, Assistant Professor of Civil Engineering. Dr. Parida not

only entrusted me with an impactful research topic but also guided me with profound insight and

encouragement since May 2021. His mentorship has not only shaped my academic journey but

also fostered my growth as a researcher and an individual.

In addition, I am indebted to my esteemed committee members: Dr. Jeff Brown, Professor of

Civil Engineering and former Program Coordinator for the B.S. and M.S. in Civil Engineering; Dr.

Dan Su, Assistant Professor of Civil Engineering; and Dr. Prashant Shekhar, Assistant Professor of

Data Science/Math. Their collective wisdom, constructive feedback, and scholarly guidance were

pivotal in navigating this thesis topic.

Furthermore, I extend my appreciation to all faculty members within the civil engineering

department at Embry-Riddle Aeronautical University. Their unwavering support, valuable ad-

vice, and extensive knowledge significantly contributed to the development of my professional

life. Their dedication to fostering academic excellence has been instrumental in my academic jour-

ney. I am also grateful to the American Society of Civil Engineers (ASCE) for providing invaluable

opportunities for professional, personal, and academic growth.

Lastly, I wish to acknowledge my family, friends, and classmates whose steadfast encourage-

ment and unwavering belief in my abilities have been a constant source of motivation throughout

my educational career. Their support has been invaluable, and I am profoundly grateful for their

presence in my life. I am deeply thankful to all who have supported me on this journey. Their

encouragement and guidance have been instrumental in my success, and I carry their lessons and

support with me as I embark on future endeavors.

1



Abstract

The high computational cost of estimating engineering demand parameters (EDPs) via finite ele-

ment (FE) models, which incorporate uncertainties in earthquake events and material properties,

limits the application of the Performance-Based Earthquake Engineering (PBEE) framework. Pre-

vious efforts to replace FE models with surrogate models have typically focused only on building

parameters, necessitating re-training for new, unseen earthquakes. This paper introduces a machine

learning-based surrogate model framework that addresses both earthquake and material parame-

ter uncertainties to predict responses for unseen seismic events. Earthquakes are characterized by

their projections on an orthonormal basis, computed using Singular Value Decomposition (SVD)

of a representative ground motion suite, allowing for the generation of varied earthquake scenarios

by sampling these weights. These weights, along with constitutive parameters, serve as inputs to

the machine learning models, with EDPs as the output. Four competing machine learning mod-

els were evaluated, with deep neural networks (DNNs) demonstrating the highest accuracy. The

framework’s validity is shown through its successful prediction of the peak responses of one-story

and three-story shear frame buildings, represented as nonlinear spring–mass–damper systems, sub-

jected to unseen far-field ground motions. Furthermore, the study highlights the importance of

rigorously characterizing forcing functions, as predictions are highly sensitive to these parameters.

Machine learning tools, due to their flexibility and efficiency, have emerged as powerful alterna-

tives in various engineering fields. In this study, the application of machine learning for predicting

EDPs, while considering uncertainties in both forcing functions and model parameters, is assessed.

Results indicate that DNNs perform the best among the tested models. This comprehensive frame-

work integrates machine learning into the PBEE framework, offering a cost-effective solution for

structural analysis under uncertain conditions.
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1 Motivation of Research

Performance-based earthquake engineering (PBEE) is used to analyze and design structures based

on their expected performance during earthquakes. This approach was developed by the Pacific

Earthquake Engineering Research (PEER) center which provides data, models, and software re-

sources to support a structured performance-based earthquake engineering approach [Cornell and

Krawinkler, 2000, Snaiki and Parida, 2023a,b]. Compared to traditional seismic design methods

that focus primarily on ensuring that structures remain standing, also known as life safety [Pessiki,

2017], PBEE evaluates the performance of structures across a range of performance objectives,

including safety, functionality, and ability to be repaired. This approach considers the potential

consequences of various seismic hazard levels and assesses how well a structure can withstand

those hazards while minimizing damage and ensuring occupant safety.

This framework for the PBEE approach is illustrated in Figure 1.1 and has four sequential

stages: hazard analysis, structural analysis (SA) through finite element (FE) simulation, convert-

ing engineering demand parameters (EDPs) obtained from SA into damage measures (DMs), and

translating DMs into different decision variables (DVs) [Porter et al., 2004]. The PBEE framework

begins by defining a ground motion intensity measure, which characterizes the critical aspects of

ground motion hazard affecting structural response. EDPs are then determined to depict structural

response through deformations, accelerations, or other simulated response metrics to the input

ground motions. These EDPs are then correlated with DMs, describing the structure and its com-

ponents’ condition. This process concludes with a comprehensive probabilistic depiction of dam-

age that calculates the DVs. These variables, are aligned with the decision-makers requirements,

with metrics like repair costs, downtime, and casualty rates, to facilitate effective risk management

decisions [Moehle and Deierlein, 2004].

While it serves as an exemplary framework for performance evaluation, its application is

constrained by computational expenses involved with the nonlinear probabilistic finite element
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Figure 1.1: Overview of the PEER PBEE framework

simulation of the structure, required for the SA. The problem is expanded if uncertainties in future

earthquakes and constitutive material parameters are considered [Parida et al., 2020, Parida, 2019,

Zaker Esteghamati and Flint, 2021]. To mitigate this computational burden and facilitate swift

decision-making, surrogate models can be utilized for computing engineering demand parameters

(EDPs). Typically, a surrogate model seeks to establish a computationally economical mathemat-

ical function that directly links the inputs of the finite element model to its outputs, thus skipping

the expensive nonlinear dynamic analysis.

This simple computational mapping found in surrogate models can replace the finite element

model in the structural analysis phase of the PBEE, enabling the rapid acquisition of EDPs while

accounting for uncertainties in both material parameters and future earthquakes. Frequently, this

mapping function is formulated using fundamental principles of structural dynamics in conjunc-

tion with Newtonian mechanics. Such physics-based methodologies are extensively employed in
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earthquake engineering practice owing to their inherent physical robustness and intuitive nature

[Guan et al., 2021]. However, these approaches often rely on numerous simplistic assumptions,

potentially diminishing the accuracy of response predictions. In contrast, data-driven approaches

construct the underlying mathematical mapping function through training on a substantial dataset

of input-output pairs [Panagiotis G. Asteris and Nikoo, 2019, Nguyen-Minh et al., 2011].

In recent research endeavors, machine learning techniques such as logistic regression (LR),

decision trees (DT), random forest (RF), support vector regression (SVR), artificial neural net-

works (ANN), and others are have been used within the civil engineering sphere as effective data-

driven surrogate models for forecasting EDPs. Their appeal lies in their straightforward imple-

mentation and capacity to capture significant levels of non-linearity [Xie et al., 2020b, Asteris

et al., 2022]. This arises from multiple factors, such as adaptability, affordability in assessment,

a wide array of well-established techniques, and notably, widespread accessibility facilitated by

third-party toolboxes integrated into programming environments, all contributing to practical ap-

plicability [Koziel and Pietrenko-Dabrowska, 2022].

Surrogate models based on LR, RF, and SVR were employed in [Ataei and Padgett, 2015] for

assessing the fragility of deck unseating failure in coastal bridges. Mangalathu and Jeon [2019a]

utilized RF to create and refine bridge-specific fragility curves, while ANN [Mangalathu et al.,

2018] was employed to establish multidimensional seismic fragility for single and two-column

bent box-girder bridges. Segura et al. [2020] adopted a polynomial response surface surrogate

model to develop fragility surfaces for the efficient seismic evaluation of gravity dams. Addition-

ally Hwang et al. [2021], employed machine learning techniques to boost algorithms utilized for

predicting responses in reinforced concrete frame buildings. These studies, along with numerous

similar works [Möller et al., 2009, Kocamaz et al., 2021, Wu and Jahanshahi, 2019, Perez-Ramirez

et al., 2019, Ahmed et al., 2022, Kiani et al., 2019], demonstrate the diverse applications of ma-

chine learning in structural engineering and demonstrated that once the machine learning model is

properly trained, it can replicate a non-linear finite element model output accurately.
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It is important to acknowledge that a significant computational investment is required ini-

tially to train machine learning models for replicating the nonlinear behavior of structures [Al-

Jarrah et al., 2015]. However, the utility of these methods lies in their ability to rapidly estimate

nonlinear predictions and damage assessments once trained. Nevertheless, most studies in the

literature train data-driven surrogate models for specific sets of earthquakes. When faced with

new, “unseen" earthquakes not included in the original training data, the surrogate model must

be retrained, leading to additional computational costs. This challenge is partly due to the lim-

ited availability of high magnitude earthquake datasets [Xie et al., 2020b]. Unlike fields such as

data science and computer science, where datasets are typically much larger, earthquake engineer-

ing datasets, particularly those containing recordings of large-magnitude earthquakes, are scarce.

Consequently, training these machine learning models can be particularly challenging, especially

given their numerous model parameters that require estimation.

Addressing the “small-data" challenge can involve employing data augmentation techniques

[Shorten and Khoshgoftaar, 2019], which generate new data with similar characteristics to the

available dataset. This transforms the “small-data" issue into a “big-data" scenario, facilitating

more effective training of machine learning models. Several studies, as referenced in Refs. [Gi-

daris et al., 2015, Kyprioti and Taflanidis, 2021], utilize Kriging surrogate models in conjunction

with stochastic ground motion models to predict nonlinear structural responses. These models

use uncertain parameters from both ground motion and finite element models as inputs to predict

structural responses. However, while this approach effectively tackles the “small-data" problem

associated with retraining, it relies on stochastic ground motion models, which are typically based

on empirically derived equations. This reliance may restrict their applicability, especially for struc-

tures of greater complexity, size, and nonlinearity. Additionally, the performance of Kriging mod-

els heavily depends on the specific variogram chosen to capture spatial structure [Cressie, 2015],

making them less robust for modeling complex nonlinear behaviors. Importantly, when faced with

an “unseen" earthquake that is not present in the original training dataset, it becomes challenging
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to extract corresponding parameters for the stochastic ground motion model. As a result, there is

no deterministic inverse relationship between earthquake time history and stochastic ground mo-

tion model parameters, hindering the reuse of surrogate models for predicting responses to such

"unseen" earthquakes. Other studies, such as those cited in [Zhang et al., 2019, Ahmed et al., 2022]

utilize advanced neural network architectures like Long Short-Term Memory cells to predict seis-

mic responses while considering earthquake uncertainty. These studies augment small historical

earthquake datasets by scaling ground motions using approaches like incremental dynamic analy-

sis [Zhang et al., 2019] or by adding white noise [Ahmed et al., 2022]. However, these approaches

involve complex networks that are computationally intensive to train. Moreover, surrogate mod-

els do not account for material parameter uncertainty, potentially limiting their applicability to

specific parameter sets and requiring retraining for different scenarios. Furthermore, data augmen-

tation techniques may not introduce sufficient variability into the training set, thereby restricting

the applicability of surrogate models beyond the initially trained dataset.

To this end, this research study proposes a surrogate modeling framework based on data

augmentation that:

i) Transforms a "small data" problem into a "big data" problem, allowing machine learning

models to be trained for better generalization performance.

ii) Evaluates and selects the best-performing model from a set of machine learning models as

the surrogate.

iii) Validates the model with unseen earthquakes not included in the training set to ensure ro-

bustness.

The organization of this thesis is as follows. Chapter 1 motivates the reader to better un-

derstand the importance of the research work presented in this thesis. Chapter 2 introduces the

surrounding literature on ML models, the application of ML in the earthquake engineering field,

12



and explanations of specific techniques and processes used throughout this study. Chapter 3 ex-

plores various machine learning models to capture the non-linear dynamic response of structures

in terms of EDPs, using traditional ground motion characteristics and material property values.

Chapter 4 proposes a machine learning-based surrogate model framework utilizing SVD-enabled

data augmentation. A representative suite of far-field ground motions recorded on a firm rock site

was selected as the dataset. Using SVD, an orthonormal basis was identified that spans the space

of the ground motion suite. The basis vector weights, assumed as random vectors, along with the

constitutive parameters as random variables, were used to generate a large set of synthetic earth-

quakes and constitutive parameters. These synthetic inputs were fed into a finite element model.

The resulting data, comprising the randomly generated weights, material parameter values, and

finite element model outputs, were used to train machine learning models. Various models, includ-

ing DNN, Support Vector Regression (SVR), Decision Trees (DT), and RF, were used to map the

input (weights of the basis vectors and constitutive model parameters) to the output (finite element

model response). Lastly, In Chapter 5 conclusions from Chapter 3. and 4. are drawn and possible

future research has been discussed.
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2 Literature Review

2.1 Surrogate Models using ML

Surrogate modeling is a technique that has gained traction in the civil engineering community.

Traditional methods are often physically demanding and take a lot of time so alternative methods

are often looked into. Surrogate models are used in a wide variety of fields and have also been

used in civil engineering. Eslamlou et al.[Dadras Eslamlou and Huang, 2022] address the com-

putational expenses of traditional models used in structural health monitoring. Ly et al. [2021]

focuses on enhancing structure robustness by developing probabilistic-based soft computing mod-

els for predicting the load-carrying capacity of Composite-Filled Steel Tube (CFST) under uniax-

ial compression. Three hybrid Artificial Intelligence (AI) models, ANFIS-BBO, ANFIS-GA, and

ANFIS-PSO, were developed and validated, incorporating Monte Carlo simulations to account for

the variability of input parameters. ANFIS-PSO was identified as the most efficient model due to

its high capability in quantifying the contribution of input variables to load-carrying capacity. This

model also highlights the importance of cross-sectional geometry and material properties, as it has

potential to estimating confidence intervals of mechanical behavior in composite members under

axial loading. In Hung and Thang [2022], the use of temporal deep learning-based methods is con-

sidered for predicting dynamic responses of structures prone to wind excitation as a way to reduce

computational time and maintain high accuracy of performance. This framework was verified with

a case study of a 9-story RC frame structure that was able to reduce the time by three orders of

magnitude and have an accurate result for maximum top-floor displacement compared to the FEM

model. This framework suggests that surrogate models are practical for real, large-scale scenarios

where calculations for reliability, sensitivity, or parametric analysis become too complicated and

computationally expensive.

The development of these models has also led to identifying key areas of performance and

research that need to be considered and developed. Al Kajbaf and Bensi proposed a surrogate
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model for coastal storm surge hazard assessment and wanted to understand the performance of

ANNS, Gaussian Process Regression (GPR), and SVR for predicting storm surge [Al Kajbaf and

Bensi, 2020]. They found that the use of physically-motivated parameter scaling and more accurate

features to inform surrogate models should be used in order to gain more accurate results and

provide complete information about the performance of the surrogate models. The set of data

these models are being trained on could be influential to results. Hariri-Ardebili and Mahdavi

[2023] looked at the use of surrogate modeling for concrete strength prediction, it was suggested

that the Kriging regression model was the primary choice of the surrogate models to predict the

mechanical properties of concrete and asphalt mixtures with a performance that does better than

85% of the other soft computing algorithms. This study also suggests that further research is

needed to confirm performances for other concrete databases as only one output parameter was

considered in the study. Next different machine learning models used in engineering for surrogate

modeling are described briefly.

2.2 Review of machine learning algorithms

Machine learning is categorized into two primary types: supervised learning and unsupervised

learning. In supervised learning, the algorithm is trained with known labels, allowing it to learn

from provided answers. This prior knowledge is utilized during training. Within unsupervised

learning, algorithms are further divided into classification and regression based on the nature of

the output [Kong et al., 2020]. Supervised learning can be subdivided into classification and re-

gression, depending on the nature of the data (discrete or continuous) and the objectives of the

task. Similarly, unsupervised learning encompasses clustering and dimensionality reduction meth-

ods. Figure 2.1 summarizes the two types of ML and some commonly used ML algorithms [Kong

et al., 2020].
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Figure 2.1: ML types and some commonly used ML algorithms [Kong et al., 2020]

The surrogate modeling problem is essentially a supervised regression problem therefore the

ML models that need to be focused on are ANN, SVR, RF, and Decision Tree (DT)

2.2.1 Artificial neural network

An Artificial Neural Network (ANN) consists of interconnected artificial neurons, which are de-

signed to mimic the action of biological neurons. ANNs are not easily defined, but they can be

compared to a black box with multiple inputs and outputs, operating using a large number of par-

allel connected simple arithmetic units [Zupan, 1994]. The emphasis is on the network structure

rather than the individual neuron’s operation [Dongare et al., 2012]. In most applications, networks

typically consist of three fundamental types of layers: input, hidden, and output. The input layer

receives data either from input files or directly from electronic sensors in real-time scenarios. The

output layer transmits information either to external systems, secondary computer processes, or
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other devices like mechanical control systems. Situated between these layers, numerous hidden

layers exist. These internal layers contain many interconnected neurons arranged in various struc-

tures [Maind and Wankar, 2014]. The inputs and outputs of each hidden neuron are simply routed

to other neurons within the network. Figure 2.2 illustrates the setup of the basic ANN model. It can

be used for tasks such as sample selection, classification, clustering, and making predictive models.

ANNs are quite flexible for adaptation to different types of problems and can be custom-designed

to almost any type of data representation. Within the existing literature, predictive modeling prob-

lems using ANNs are the most relevant within the engineering field [Abiodun et al., 2018].

Figure 2.2: Simple neural network structure [Maind and Wankar, 2014]

2.2.2 Support vector regression

A Support Vector regression (SVR) is a supervised machine learning algorithm primarily used for

regression tasks [Xie et al., 2020b]. The fundamental concept involves discovering a hyperplane
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that accurately divides the d-dimensional data into its respective classes [Boswell, 2002]. However,

as real-world data is often not linearly separable, SVMs introduce the concept of a “kernel-induced

feature space" to transform the data into a higher-dimensional space where separation is achiev-

able. Typically, this transformation could pose computational challenges and increase the risk of

overfitting [Jakkula, 2006]. Some generalized steps to use SVM for classification and regression

analysis is to first prepare the pattern (feature) matrix required. While classification and regression

have different matrices, after they are prepared the data can be further partitioned into training,

testing, and validation sets. Next, a kernel function is selected based on the degree of nonlinearity

and parameters are selected to best suit the dataset. The algorithm is then trained with the input

and output data which will define the optimal hyperplane between classes. Finally, unseen data is

classified or predicted based on these factors, with errors traced back to feature extraction, kernel

selection, or parameter estimation, prompting iterative refinement for enhanced accuracy [Gholami

and Fakhari, 2017]. A generalized schematic of SVM in training and testing processes can be seen

in Figure 2.3.

2.2.3 Decision tree and Random forest

A decision tree is a supervised learning algorithm used for classification and regression tasks in

machine learning. It works by recursively partitioning the data into subsets based on the values

of input features, creating a tree-like structure of decision nodes and leaf nodes [Ali et al., 2012].

An overview of the ML model’s structure can be found in Figure 2.4. At each decision node, the

algorithm selects the feature that best splits the data into homogeneous subsets, typically using

metrics. This process continues until a stopping criterion is met, such as reaching a maximum

depth or minimum number of samples in a node [Fratello and Tagliaferri, 2018]. Decision trees

are interpretable and intuitive, as they mimic human decision-making processes. However, they

can be prone to overfitting, especially when the tree grows too deep, capturing noise in the data.

To mitigate this issue, techniques like pruning or using ensemble methods like Random Forests are
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Figure 2.3: Support vector regression (SVR) schematic diagram for training and testing process
[Sarraf Shirazi and Frigaard, 2021].

often employed [Speiser et al., 2019].

Random Forest is a learning technique that builds multiple decision trees during training and

combines their predictions to improve accuracy, robustness, and avoid overfitting. An overview of

the ML model’s structure can be found in Figure 2.5. Each tree in the forest is trained on a random

subset of the training data (bootstrap samples) and a random subset of the input features. This

randomness introduces diversity among the trees, reducing the risk of overfitting and increasing

the model’s generalization ability [Louppe, 2014]. During inference, the predictions of individual

trees are aggregated through averaging (for regression) or voting (for classification) to produce the

final output [Kulkarni and Sinha, 2013]. Random Forests are highly flexible and perform well on a

wide range of datasets without requiring extensive hyperparameter tuning. They are also resistant

to overfitting and outliers due to the averaging effect of multiple trees.
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Figure 2.4: Structure of decision tree example [Camana et al., 2020].

Figure 2.5: Diagram of random forest example [Khan et al., 2021].
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2.3 ML-based surrogate modeling in Earthquake Engineering

These surrogate models have been used in many different applications but within the earthquake

engineering community, there have been instances of surrogate models used to spearhead ground

motion prediction and generation, damage detection, and seismic fragility assessment.

Ground motion prediction and generation are important components of assessing seismic

risk for civil structures. Traditional empirical approaches have depended on regression analyses to

establish attenuation equations. These equations relate various measures of ground motion inten-

sity to factors such as source characteristics, distance traveled, and site conditions. [Anbazhagan

et al., 2013, Atkinson and Boore, 2006]. When abundant data is available, machine learning tech-

niques generally outperform these conventional linear regression models. Among these methods,

Random Forest (RF) stands out for its superior prediction accuracy. However, linear regression

remains valuable when data is limited, as its equations are based on established physical principles

[Khosravikia and Clayton, 2021]

Surrogate models used in damage detection focus on creating ML models that identify, cat-

egorize, and evaluate seismic damage in civil structures. Vibration-based damage identification

methods can be classified into three domains according to vibration parameters: time domain,

frequency domain, and time-frequency domain approaches. Time domain methods rely on time-

history responses, while frequency domain methods utilize modal parameters. Time-frequency

domain techniques leverage time–frequency analytical tools. Regarding algorithms, damage de-

tection methods can be divided into non-model-based or data-driven approaches and model-based

methods[Hou and Xia, 2021]. A notable surrogate model within damage detection is Convolution

Neural Networks (CNNs) as there is no manual extraction of features, meaning the the raw signals

can be used as input without the need to pre-process [Avci et al., 2022].

Seismic fragility analysis is a methodology used to quantify the vulnerability of civil struc-

tures to seismic events. It assesses the likelihood of structural damage or failure at varying levels
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of ground shaking intensity. Traditional methods for seismic fragility analysis, include the safety

factor method, numerical simulation method, regression analysis, and maximum likelihood esti-

mation. These methods are used to construct fragility curves, which are essential for evaluating the

vulnerability of structures to seismic events [Zentner et al., 2017]. These methods and additional

methods such as Intensity Measures (IMs) and Incremental Dynamic Analysis (IDA) demand so-

phisticated modeling processes, often reliant on high-speed computers, are commonly employed

to evaluate collapse states. To expedite seismic risk assessment, innovative methods have been de-

veloped using machine learning algorithms [Kazemi et al., 2023]. In a particular study, the use of

three different training algorithms for Artificial Neural Networks (ANN) in the context of fragility

assessment of reinforced concrete buildings is discussed. The study compares their performance

based on mean square error (MSE) and found that the ML models produced very similar fragility

curves as were obtained using numerical modeling [Rasheed et al., 2022].

2.4 Data Augmentation and Feature Extractions

2.4.1 Fourier’s Transformation

The Fourier Transform (FT) converts a time-domain function into a frequency-domain function,

revealing the different frequency components present in the original signal [Kido, 2014]. Mathe-

matically, the FT of a continuous function f (t) is defined as F(ω), where ω represents the angular

frequency [Giron-Sierra, 2017]. This transformation is expressed by the integral:

F(ω) =
∫

∞

−∞

f (t)e−iωt dt (2.1)

where e−iωt serves as the kernel of the transform, incorporating complex exponential func-

tions that oscillate at different frequencies. The result F(ω) is a complex-valued function, provid-

ing both amplitude and phase information of the frequency components. To retrieve the original

time-domain function from its frequency-domain representation, the inverse Fourier Transform is
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used, given by:

f (t) =
1

2π

∫
∞

−∞

F(ω)eiωt dω (2.2)

This operation reconstructs f (t) by summing up all the frequency components F(ω) mod-

ulated by eiωt . For discrete signals, the Discrete Fourier Transform (DFT) is used, and it can be

efficiently computed using the Fast Fourier Transform (FFT) algorithm. The DFT of a discrete

signal x[n] is defined as:

X [k] =
N−1

∑
n=0

x[n]e−i 2π

N kn (2.3)

where N is the number of samples, x[n] is the signal in the time domain, and X [k] represents

the frequency-domain coefficients [Smith, 2007]. The DFT provides a way to analyze the spectral

content of discrete signals, which is crucial in various applications such as signal processing, au-

dio analysis, and communications. The Fourier Transform and its discrete counterpart, the DFT,

are indispensable in modern science and engineering, providing deep insights into the frequency

characteristics of signals and enabling efficient processing and analysis techniques.

2.4.2 Singular Value Decomposition

Singular Value Decomposition (SVD) is a fundamental matrix factorization that decomposes a

matrix into three simpler matrices, providing valuable insights into the properties and structure of

the original matrix. Let’s denote a matrix A as having dimensions m×n. This matrix represents a

suite of m earthquakes with n times steps. The SVD of the matrix A can be represented as:

An×m =Un×mSm×mV T
m×m (2.4)

where U is an m×m orthogonal matrix with its columns representing the left singular vectors

of A. S is an m×m square diagonal matrix with the singular values of A. These values are arranged
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in descending order. V T is the transpose of an m×m orthogonal matrix V, with its rows representing

the right singular vectors of A. In order to obtain an alternate representation for columns of A to

be projected onto the U matrix, Sm×m and V T
m×m can multiplied to obtain:

An×m =Un×m∑m×m (2.5)

where _m×m is the product of Sm×m and V T
m×m matrices. The columns of ∑m×m represent

the weights of each earthquake in the suite. This means to reproduces the ith earthquake in the

suite the ith column of the ∑ matrix would need to be multiplied into the U basis matrix. This

produces an m-dimensional encoding for each earthquake as represented by the columns of ∑,

which can serve as a feature representation for input into a machine learning model. To construct

new earthquake data, one can generate m-dimensional vectors with random weights and utilize

them to generate the corresponding time histories. Additionally, any new earthquake’s feature

representation Pn×1 that the machine learning model is tasked with predicting, can be projected

onto the U basis.

σm×1 =UT
m×nPn×1 (2.6)

where σm×1 a weighted vector of the new earthquake’s feature representation. It is important to

note that the larger and more diverse the U basis matrix is the better the weighted vectors that are

being produced will turn out. A smaller U basis could result in less unique datasets that are being

produced as it is only able to relate to the original suite used to create the U basis matrix.

In Figure 2.6, 1000 random samples in 2 dimensions that exhibit clear directional features

or correlation are considered. After performing SVD on this 1000 × 2 matrix, we observe that

the direction of the first column of U (represented as u1) captures almost the entire variation in

the dataset (91%). The direction of the second column of U (u2) captures the remaining variance.

For many practical applications involving this dataset, the first column of U alone can serve as a
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(a) (b) (c)

Figure 2.6: (a) The directions of first 2 columns of U (represented u1 as and u2) capturing the entire
variance of a random bivariate dataset. Projection of the data set on (b) u1 preserves the maximum
variation of the dataset while (c) u2 captures the remaining small variation.

sufficient uni-variate representation.

2.4.3 Discrete Wavelet Transform

Discrete Wavelet Transform (DWT) is used as a multi-resolution analysis tool in signal processing

and data compression. The earthquake data can be assumed to be generated from a function f (t),

one can represent it in terms of basis functions, φ(t) and ψ(t) , which can be scaled to give multiple

resolutions of the earthquake data function. The Jth scale representation of the time-dependent

earthquake function f (t) can be written in terms of orthogonal basis function families that are

generated by father φ(t) and mother ψ(t) wavelets as seen below:

f (t) = ∑kcaJ,kφJ,k(t)+∑
J
j=1∑kcd j,kψ j,k(t) (2.7)

where k is the number of coefficients, caJ, and cd j, are the approximation and detailed coeffi-

cients at a specified scale. The father and mother wavelets generate φJ,k(t) and ψ j,k(t) by scaling

and shifting as:

φJ,k = 2−J/2
φ(

t −2Jk
2J ), (2.8)
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ψ j,k = 2− j/2
ψ(

t −2 jk
2 j ), j = 1, ...,J (2.9)

The shift parameter in the numerator can be represented as α = 2 jk and the scale parameter

is β = 2 j. These parameters are responsible for manipulating the size and shape of the wavelets for

example when α is increases the spread of the wavelet increases and the height decreases. These

parameters apply a specific wavelet such as Daublets, Symmlets, Haar, etc. through the entire

dataset at a given level.

Using 2.7 on the earthquake dataset the DWT can produce the approximate and detailed

coefficients as:

caJ,k = n1/2
∑

n
t=1 f (t)φJ,k(t), (2.10)

da j,k = n1/2
∑

n
t=1 f (t)ψ j,k(t) j = 1, ...,J (2.11)

where n is the number of points within the earthquake dataset. These approximate and de-

tailed coefficients represent weights that describe each wavelet that goes toward the earthquake

data function f (t). The approximation coefficients represent the overall “structure” in the dataset

at a specific level and the detailed coefficients are finer and higher frequency behavior. In order

to successfully conduct a multi-scale feature extraction scheme the approximation coefficients at

every level are more conducive to use. The scale J is also an important factor to consider. A

high-scaled representation of the data results in very coarse or smooth features and a low-value

representation results in features corresponding to noise in the data. Because these features will be

used to train ML models, it is important to select the correct scaled representation of the data and

will become a hyperparameter to adjust within the training period.
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2.4.4 Auto-encoders

Auto-encoders are a tool used in data processing, particularly where feature extraction is needed.

The initial dataset is pre-processed and split into training and testing sets. In the auto-encoder

architecture, both the encoder and decoder components are constructed using convolutional layers

within a neural network framework [Lange and Riedmiller, 2010]. An overview of the ML model’s

structure can be found in Figure 2.7. To determine optimal performance, various configurations,

including both 1D and 2D setups, are tested to determine the most suitable arrangement for the

dataset.

In the encoder, an initial setup of the convolutional layers is established, and a desired latent

space h is determined [Zhai et al., 2018]. It should be noted that the dimension of the latent space

was tested to see if that has any affect on the reconstruction results. To systematically evaluate

performance, a range of setups are tested and compared. A tabulated summary of these different

configurations aids in assessing their efficacy in feature extraction. The training earthquake input

data X is fed into the encoder, generating a latent space representation h of the dataset. The

function to describe this is h = fenc(X) where fenc(X) represents the encoder’s neural network.

This latent space representation is then passed to the decoder, which works to reconstruct the

original data from this compressed representation. The decoder’s task is to construct a signal X
′

from the latent space representation. The function to describe this process is X
′
= fdec(h) where

fdec(h) represents the decoder’s neural network. This constructed signal is then compared to the

original dataset, aiming to minimize the loss incurred during reconstruction. During the training

stage, the model iterates through the training dataset, adjusting its parameters to minimize the loss

function. This involves back-propagating the calculated loss throughout the model, giving it the

opportunity to refine the ability to reconstruct the input data. Training is typically conducted over

multiple epochs, with the dataset size and number of epochs carefully selected to ensure robust

model convergence.
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Figure 2.7: Diagram of auto-encoder [Song et al., 2021].

The objective of this auto-encoder framework is to develop an encoder capable of producing

a latent space representation that can be reconstructed by the decoder. This latent space serves as a

condensed feature set, which can subsequently be leveraged in various ML models for predictive

tasks. The adaptability of the encoder is crucial in scenarios where additional data becomes avail-

able. The encoder must adeptly accommodate new data, generating a latent space representation

that captures the features of the updated dataset. This capacity ensures the continued relevance

and effectiveness of the auto-encoder in processing evolving datasets. AE can be hypothetical to

obtain a condensed representation of EQ time history that can be used in ML model training

2.4.5 Generative Adversarial Networks

The Generative Adversarial Network (GAN) architecture comprises of two components: the gen-

erator G and the discriminator D [Hong et al., 2019]. An overview of the ML model’s structure

can be found in Figure 2.8. In this framework, the generator is provided with a random noise latent

sample z from a predetermined distribution. This noise serves as the input in which the generator
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constructs fake data, generating signals with the exact dimensions of the real seismic data. The

generator can be represented as a function G(z,θG), where θG represents the parameters of the

generator network. Simultaneously, the discriminator undergoes training to identify the character-

istics of real seismic data, using the predefined dataset used for all feature extraction purposes. It

takes input data x and outputs a probability D(x,θD) indicating the likelihood that x comes from

the real data distribution. The θD represents the parameters of the discriminator network. At every

iteration, it evaluates whether the presented data is real or fake, and then provides feedback to its

own decision-making architecture and to guide the generator’s learning.

The generator operates in a feedback loop, working to improve its ability to deceive the

discriminator. Since real earthquake data is never seen by the generator, it relies solely on the

discriminator’s feedback to adjust its synthetic output. The training process of GANs involves

optimizing the following minimax objective function:

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (2.12)

where pdata(x) is the distribution of the earthquake data, pz(z) is the distribution of the ran-

dom latent space noise. D(x) is the output of the discriminator when given real earthquake data

while D(G(z)) is the output of the discriminator when given fake earthquake data. The generator’s

proficiency level will improve over iterations to a point where the discriminator is deceived into

perceiving synthetic signals as authentic. In reaching this state, the discriminator iteratively refines

its discriminative abilities, adapting to the evolving capabilities of the generator. Both the genera-

tor and discriminator architectures are constructed with convolutional layers within the framework

of neural networks.
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Figure 2.8: Diagram of GAN setup [Gu et al., 2018].

To understand the optimal performance of the GAN, various setups, including both 1D and

2D configurations, are tested to identify the most accurate arrangement for the dataset under con-

sideration. The objective of this GAN framework is to train the generator to a proficiency where the

discriminator is unable to reliably distinguish between real and synthetic earthquake data. Once

this threshold is achieved, the generator becomes a tool for generating diverse and novel earth-

quake datasets. By leveraging predefined latent spaces or noise distributions, an abundance of

synthetic earthquake data can be produced and used as training and testing datasets for ML mod-

els. This approach not only adds to the quantity of available data but also enhances the capabilities

of earthquake-related ML applications.
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3 Surrogate models using existing features to predict EDPs

The work presented in this chapter builds upon prior research and was originally presented at the

12th National Conference on Earthquake Engineering in 2022 [Parida et al., 2022]. This study

introduces a novel surrogate modeling framework utilizing machine learning to address the chal-

lenges of repeated training and uncertainties in future earthquakes and material parameters. The

aim is to have a surrogate model in place for the structural analysis portion of the Performance-

Based Earthquake Engineering (PBEE) framework in order to be cost effective. This approach

effectively tackles issues including:

a) Identifying a which traditional features are suitable to represent earthquake data and can

serve as input for training ML models.

b) Resolving the “small-data" problem by generating the traditional earthquake features from

the historical dataset to have a variety of training data.

d) Identifying the most suitable ML model for predicting EDPs.

3.1 Training Data

The structures observed in this study consisted of a 1-story and 2-story building, which were

modeled as idealized mass-damper systems. OpenSEES was utilized to create single-degree-of-

freedom (SDOF) and two-degree-of-freedom systems (2-DOF) for the structures [McKenna et al.,

2010]. The Steel01 material in OpenSEES was employed to represent uniaxial bilinear steel mate-

rial with kinematic hardening and no isotropic hardening. More details on Steel01 can be found in

Chapter 4. To capture the damping behavior of the material, a combination of a nonlinear spring

and an elastic material element with specified damping stiffness was considered, and the represen-

tative lumped mass at each story was treated as a whole.

31



Building Type
Forcing Function

Single Harmonic Two Harmonics
Input EDP Input EDP

One Story (SDOF) PGA, A1, ω1, E, Fy, ζ Dmax PGA, ω1, ω2, A1, A2, E, Fy, ζ Dmax

Two Story (2-DOF) PGA, A1, ω1, E, Fy, ζ
Dmax
ISD

PGA, ω1, ω2, A1, A2, E1,
Fy1, ζ1, E2, Fy2, ζ2

Dmax
ISD

Table 3.1: Input parameters and corresponding EDPs for training ML models

The ML models typically require a large set of input data, so to provide a wide range of data,

the constitutive model parameters were represented as uniform random variables, and the range

of realizations came from their probability density functions (PDFs). To ensure large nonlinear

deflections, the mean elastic modulus (E) was chosen such that the natural angular frequency of

the structural systems was 1s, the mean of Fy was 0.5% of the elastic modulus, and the mean of

ζ was 5%. These values fell within the typical range for these types of structures. A coefficient

of variation (COV) of 30% was chosen to generate the realization of the model parameters. For

the 2-story (2-DOF) scenarios, the mean value of model parameters was assumed to be the same

as the first, but the set of parameters for the second story was considered a separate set of random

variables. This resulted in a set of model parameter values that differed for the first and second

story in each realization. The use of single and two harmonic excitations was considered in the FE

model. To ensure that some of the realizations would have resonance in the structure, the mean of

cyclic frequency (ω1) was taken as the first natural frequency of the structure for single harmonic

cases, and the mean of the second harmonic (ω2) was chosen to be equal to the second natural

frequency of the two-story building for the two harmonic cases. The forcing functions for the

realizations used a 30% COV. The Engineering Demand Parameters (EDPs) relevant to this specific

topic were peak roof displacement (Dmax) and inter-story drift (ISD). The inputs and the output for

each case were summarized in Table 3.1, where PGA represented the peak ground acceleration,

and Ai denoted the amplitude associated with the peak frequency of the forcing function.
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3.2 Selection of ML Model

Four competing ML models discussed in the previous chapters: Decision Trees (DT), Random

Forest (RF), Support Vector Regression (SVR), and Deep Neural Network (DNN)s [Géron, 2022]

will be used and systematically select the best model based on their performances. Further infor-

mation on how these ML Models work can be found in the literature in previous chapters. It is

important to understand that the hyper-parameters within these models have a great affect on the

model output. Within the DNN model, the number of hidden layers, number of neurons in each

layer, activation function, etc. are the hyperparameters that needs to be tuned to ensure that the

performance of the model is good enough for training and testing. To best see if the models were

tuned accurately, the data that was generated was split into training and testing in a 75:25 ratio.

Each ML model was trained with the training data and the performance scores for both training

and testing data were observed for different hyper-parameter configurations. To capture an inter-

pretable score to determine performance explained variance ratio [Géron, 2022] and R2 El-Sayed

et al. [2023] was used as the metric. The best model was chosen based on the performance of the

testing data set.

To avoid overfitting the models, the model that had the best performance based on the testing

data set was selected as the model best suited. Figure 3.1 shows two examples of different hyper-

parameters configurations for the models considered in both one-story and two harmonic forcing

cases. Figure 3.1(a) shows a situation where overfitting is prevalent since it does well on training

data but not as good within testing data while Figure 3.1(b) is a better balance between training and

test data scores. Looking at RF for example, in Figure 3.1(a), the RF consists of an ensemble of

150 trees resulting in better training performance compared to the ensemble of 100 trees in 3.1(b).

The difference is that the RF performs better with the testing case in Figure 3.1(b), so the hyper-

parameters of Figure 3.1(b) have better performance than Figure 3.1(a) within the performance

metric that has been set. It should be noted that the positive change in performance plateaus at
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about 15,000 data points.

(a) (b)

Figure 3.1: (a) Example of bad performing ML model (b) Example of ML model with superior
performance

3.3 Results

The performances of the ML models chosen are shown below in Figure 3.2. In order to compare

the best configurations for each chosen ML model, iterations of tuning hyper-parameters were con-

ducted till it resulted in a suitable setup for each ML model. This concept was previous discussed

where the “poor" DNN in Figure 3.1(a) had a single layer of 50 neurons with ReLU activation

functions and a “good" DNN had three layers of neurons each consisting of 75 neurons.

After finalizing the tuning, it can be seen in Figure 3.1(b) that DNN performs the best,

followed by random forest, support vector regression and decision tree, in that order, for all the

cases considered in this study. Comparing single harmonic and two harmonic excitations, there

is a decrease in model performance that can be observed. Feature importance was conducted

in order to understand this decrease in performance that was occurring using the random forest

model [Mangalathu and Jeon, 2019b]. From this, the excitation function, PGA, peak frequencies,
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(a) (b)

Figure 3.2: Performance of various ML models on testing data, (a) SDOF system with single
harmonic forcing, (b) SDOF system with two harmonic forcings.

(a) (b)

Figure 3.3: Performance of various ML models on testing data, (a) 2DOF system with single
harmonic forcing, and (b) 2-DOF system with two harmonic forcings.
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Figure 3.4: Performance of various ML models on seismic testing data, SDOF system with single
harmonic and two harmonic forcings

and corresponding amplitudes were the most important features that the predictions relied on. The

importance and affect listed inputs were further explored by using local differentiation to determine

the sensitivity of the inputs. It was observed that several different models were highly sensitive to

the change of variation in inputs for certain input intervals as compared to others.

3.3.1 Application to real EQ data

A suite of real earthquake time history that was similar to the training data was also tested. Using

Fourier’s Transform, the frequencies and amplitudes were determines for each realization and used

as input data for the various ML models. This resulted in poor predictions ranging from 35% to

55% as seen in Figure 3.4.

The poor results from the real earthquake suite raise the necessity of exploring new ways to

extract data features from these suites that can be used to accurately portray the characterization

of the excitation time history in terms of parameters that can train ML models. Once an accurate
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data feature extraction method can be identified and used to train ML models it can be used to

predict EDPs to be used in PBEE. Additionally, the bad results might be due to the limited set of

earthquake data. The means of feature extraction methods using Fourier transform cannot be used

in data augmentation as it does not capture the essential part of the historical EQ set that an ML

surrogate model can understand and be trained with.

In the next chapter, using SVD-enabled feature extraction will be presented as a technique

that can be used in both feature extraction but also data augmentation.
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4 SVD enabled data augmentation for machine learning-based

surrogate modeling of non-linear structures

4.1 Systematic development of the surrogate model

The work discussed in this chapter pertains to the publication [Parida et al., 2023]. This work

proposes a novel surrogate modeling framework based on ML to tackle the challenges associated

with repeated training and uncertainties in future earthquakes and material parameters. The goal is

to seamlessly integrate this surrogate model into the PBEE framework for cost-effective structural

analysis. Essentially, this approach addresses four simultaneous issues:

a) Identifying a comprehensive set of features that effectively represent historical earthquake

data and can serve as input for training ML models. Moreover, these features should be ex-

tractable from “unseen" earthquakes to predict response, establishing an inverse relationship

between earthquake time histories and features.

b) Resolving the “small-data" problem by augmenting small earthquake datasets into larger

ones while encompassing significant variability.

c) Determining a set of material parameters to which the finite element model output is sensi-

tive.

d) Identifying the most suitable ML model for predicting EDPs.

4.1.1 Selecting features and generating training data

As discussed briefly at the end of the last chapter, input features used to train ML models are highly

sensitive and need to accurately capture characteristics of earthquake time history and building

model parameters. Once this set of input features is acceptable, different realizations of the vari-

ables are given to the FE model to produce EDPs used to determine the accuracy of the ML model’s
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performance. A supervised learning method is chosen [Zaker Esteghamati and Flint, 2021, Hwang

et al., 2021, Möller et al., 2009]. All input features chosen for the ML models need to be all-

encompassing to predict EDPs with high degrees of accuracy. These inputs should have the ability

to be used in data augmentation that can be used to create realizations for the FE model to use

and produce the corresponding EDP’s outputs. Traditional Earthquake input features include peak

frequency, corresponding Fourier amplitude, peak ground acceleration (PGA), peak ground ve-

locity (PGV), pseudo-spectral acceleration, Arias intensity, and spectral moment, among others

[Kramer, 1996, Bose et al., 2019]. These single-value input features were explored in the previous

chapter and was found that these features cannot generate earthquake time-series data for differ-

ent realizations of input parameters. An inverse relationship does not exist between the intensity

measures and earthquake time-series data which is a vital relationship needed for data augmenta-

tion. This inverse relationship is imperative to generating enough training data for the ML model

which is a topic that is discussed in the cited literature previously. As concluded in the previous

chapter the traditional intensity measures of earthquake characterization often lead to ML models

that are highly sensitive to the input parameters so this has driven the need to consider alternative

techniques for ground motion characterization. The method used to extract these data features is

singular value decomposition (SVD). Details on this data augmentation process can be found in

the previous chapters.

4.1.2 Selecting optimal suitable ML models

As discussed in previous chapters, tuning the hyper-parameters is a task that needs to be meticu-

lously conducted as it can significantly affect the surrogate model’s accuracy and efficiency. The

ML models that will be considered are Decision Trees (DT), Random Forest (RF), Support Vector

Regression (SVR), and Deep Neural Networks (DNN). The framework of this work can also allow

other ML models to be interpreted if appropriate but these 4 models are within the scope of this

work. A brief description of the models can be found in the previous chapters while a detailed
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description of these models can be found in [Géron, 2022, Goodfellow et al., 2016, Hastie et al.,

2009, Xie et al., 2020a, Asteris and Mokos, 2020, Lu et al., 2020]. With these models, the dataset

will be divided in training and testing sets. The optimal values for the hyperparameters will be

determined for each ML model, using cross-validation in DT, RF, and SVR [Géron, 2022, Ng,

1997]. Cross-validation is the method of training a ML model on a subset of the training data and

evaluating its performance on the subset of training data (cross-validation set) that the ML model

has not seen. By cross-validating multiple times, the set of parameters that yield the most optimal

and generalized model can be produced [Mohri et al., 2018]. For DNN, a heuristic approach is is

the most widely used and accepted method to determine the number of neurons and layer com-

binations [Mitropoulou and Papadrakakis, 2011]. Once the optimal ML models are selected and

trained, the performance of these models can be assessed using the testing data.

4.1.3 Validation of selected ML model

The ML models are validated using testing data. The quality of the testing dataset is important as it

should consist of input-output ordered pairs that have not been seen by the ML model. A successful

validation from the ML model allows it to be deployed within the PBEE framework. Unsuccessful

validation of the ML model requires the input set, Θ, to be altered with a higher number of features

or a set of higher-quality features that will retrain the ML model. The framework for this section

is illustrated in Figure 4.1 and the application of this framework will be discussed in the upcoming

sections.

4.2 Results and discussion

4.2.1 1-story and 3-story building FE models

The most detailed and accurate seismic analysis can be found in a three-dimensional FE model

as the seismic demands at a component level for beam and column members can be observed if
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Figure 4.1: Flowchart illustrating the proposed framework.

distributed plastic elements are used. For typical seismic analysis, the global seismic response

and performance of the structure are most important as they have correlating EDPs such as the

story drifts and floor accelerations. The use of a simplified model can accurately capture the

nonlinear response of the structure in terms of drifts and acceleration. A one-story and three-story

nonlinear frame buildings are considered for the proposed framework. A simplified nonlinear

spring–mass–damper model in OpenSees [McKenna et al., 2000] is used as the structure. These

models are also referred to as “stick” models (see Figure 4.2) and are used widely to perform

nonlinear seismic analysis [Roh et al., 2013, Gaetani d’Aragona et al., 2021, Liu et al., 2012].

These springs are assumed to be an uniaxial bilinear steel material with kinematic hardening while

isotropic hardening is not considered in this study without the loss of generalizing. This is imple-

mented using the Steel01 material model in OpenSees [Menegotto, 1973]. The Steel01 material

model in OpenSEES is an isotropic elastic-perfectly plastic model commonly used to simulate the

behavior of steel in structural analysis. It assumes linear elastic behavior up to the yield point,
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~

~a)

b)

Figure 4.2: Approximation of a) Single bay one story shear frame as 1Dof non-linear spring mass
damper system and b) single bay three-story shear frame as 3Dof non-linear spring mass damper
system.

followed by perfect plastic deformation beyond yield. Figure 4.3 describes the stress-strain curve

for Steel01 material. The material properties required for Steel01 include the elastic modulus (E),

yield strength ( fy), and strain hardening ratio (b). Dampering is minimized using viscous material

in conjunction with zero-length elements in OpenSEES. The objective of this work is to precisely

replicate the response of these finite element models to ground motion utilizing ML techniques,

given a set of constitutive model parameters and earthquake features.

4.2.2 Choice of the initial suite of ground motion

Selecting a set of appropriate ground motions for training and testing of surrogate models must

encompass a wide range of historical earthquakes. To this end, 22 pairs of ground motions with

magnitudes ranging from 6.5 to 7.6, recorded on firm soil (rock or stiff, 180 m/s), were pulled

from the FEMA P695 far-field suite. Table 4.1 provides a list of these ground motions and their

characteristics. All motions were captured at sites located 10 km or more away from fault rup-
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Figure 4.3: Stress-Strain curve diagram of Steel01 material.

ture (including strike-slip and reverse-thrust faults), which classifies them as "far-field" motions.

To have a well-rounded representation of various recorded earthquakes, this set includes far-field

records drawn from the majority of large-magnitude events in the PEER NGA database [Chiou

et al., 2008]. The differences in event magnitude, source distance, source type, and site conditions

of these ground motions account for the record-to-record variability required to capture uncertain-

ties in ground motion. Further details on the criteria for record selection can be found in [ATC,

2009]. Figure 4.4 displays the acceleration time histories of the earthquakes in the suite.

4.2.3 Characterization of ground motion using SVD

The FEMA P695 far-field suite chosen was first processed to facilitate SVD analysis. This dataset

has varying sampling frequencies and record lengths, initially interpolated to a standard sampling

frequency and record length. The chosen sampling frequency was set at 50 Hz (time step of 0.02

s), aligning with the smallest sampling frequency of the records. The chosen time history length
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Figure 4.4: The FEMA P695 earthquake suite.
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Figure 4.5: (a) Cumulative percentage of variance explained by increasing the number of basis
vectors used. (b) Contribution of each basis vector to the total explained variance.

was designated as 90 seconds, representing the longest record length in the suite. For data with a

duration of less than 90 seconds, zero padding was used. This results in A4500×44 in Equation 2.5,

with n, the number of time steps (4500), and m, the number of earthquakes (44). SVD was then

performed on matrix A, creating an orthonormal basis matrix U4500×44 that has 44 columns. The

basis vectors were placed in descending order of their singular values and the cumulative explained

variance was plotted against the number of basis vectors in Figure 4.5a. It was determined that

the first 40 basis vectors account for 99% of the variation in the ground motion data. This is

illustrated in Figure 4.5b, where the percentage of explained variance is plotted against the basis

vector number. The contribution of the last 4 vectors is negligible meaning only the first 40 vectors

were selected as the basis vectors for the ground motion suite, resulting in a U4500×40 orthonormal

basis matrix. These 40 basis vectors are shown in Figure 4.6. 40 basis vectors were selected to

reduce the size of the U matrix but this size can be reduced even further with a concurrent reduction

in the level of accuracy.
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Table 4.1: FEMA P695 far-field ground motions

PGA (g)
ID Event Station Soil M Major Minor
1 Northridge, 1994 Beverly Hills - Mulhol D 6.7 0.516 0.416
2 Northridge, 1994 Canyon County - WLC D 6.7 0.482 0.410
3 Duzce, 1999 Bolu D 7.1 0.822 0.728
4 Hector Mine, 1999 Hector C 7.1 0.337 0.266
5 Imperial Valley, 1979 Delta D 6.5 0.351 0.238
6 Imperial Valley, 1979 El Centro Array #11 D 6.5 0.380 0.364
7 Kobe, Japan, 1995 Nishi-Akashi C 6.9 0.509 0.503
8 Kobe, Japan, 1995 Shin-Osaka D 6.9 0.243 0.212
9 Kocaeli, Turkey, 1999 Duzce D 7.5 0.358 0.312
10 Kocaeli, Turkey, 1999 Arcelik C 7.5 0.219 0.150
11 Landers, 1992 Yermo Fire Station D 7.3 0.245 0.152
12 Landers, 1992 Coolwater D 7.3 0.417 0.283
13 Loma Prieta, 1989 Capitola D 6.9 0.529 0.443
14 Loma Prieta, 1989 Gilroy Array #3 D 6.9 0.555 0.367
15 Manji, Iran, 1990 Abbar C 7.4 0.515 0.496
16 Superstition Hills, 1987 El Centro Imp. Co. D 6.5 0.358 0.258
17 Superstition Hills, 1987 Poe Road (temp) D 6.5 0.446 0.300
18 Cape Mendocino, 1992 Rio Dell Overpass D 7.0 0.549 0.385
19 Chi-Chi, Taiwan, 1999 CHY101 D 7.6 0.440 0.353
20 Chi-Chi, Taiwan, 1999 TCU045 C 7.6 0.512 0.474
21 San Fernando, 1971 LA - Hollywood Stor D 6.6 0.210 0.174
22 Friuli, Italy, 1976 Tolmezzo C 6.5 0.351 0.315
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Figure 4.6: First forty basis vectors for FEMA P695 earthquake suite which are responsible for
99% of variability in the suite.Each plot represents a column of the U4500×40 matrix.
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Figure 4.7: Mean values of each row of Σ along with the bounds used for creating augmented
dataset.

4.2.4 Training and testing ML models

The ML models need to be trained using large sets of input-output pairs, the input being material

parameters and ground motion features from the SVD analysis and the output being peak inter-

story drift (ISD) and peak floor acceleration. These two output parameters are commonly used

in structural engineering to represent structural and non-structural performance. Using SVD, de-

scribed in the previous section, the FEMA P695 far-field ground motion suite was projected onto

the U basis and produced a set of 40 weights that corresponded to each column vector in the basis

and also related to the columns of the weight matrix Σ40×44 in Equation 2.5. Every column of the

weight matrix Σ can be assumed to have a uniform random vector Θ140x1 realization that is bounded

by the minimum and maximum values of the row Σ. The mean values and bounds of Θ1 are shown

in Figure 4.7. These bounds can be altered to account for a wider range of earthquake variation

but this configuration was kept to reflect the data being used. With the mean values and bounds of

Θ1 known, a set of new earthquakes can be produced by randomly generating values for Θ1 and

multiplying it with U . Examples of theses generated earthquakes can be seen in Figure 4.8

The next step is to account for constitutive model parameters of lateral story stiffness (K),

story yielding shear force (Fy), and equivalent viscous damping ratio (ζ ) along with their respective
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Figure 4.8: Earthquake realizations obtained by multiplying random samples of Θ1 with U .
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Table 4.2: Mean and bounds of the structural parameters.

Parameter Mean Bounds
Lateral story stiffness(K) 40 MN/m [32 MN/m, 48 MN/m]

Story yielding shear force (Fy) 0.28 MN [0.21 MN, 0.35 MN]
Damping ratio (ξ ) 0.05 [0.04, 0.06]

uncertainties. These Uniform random variables were normalized by the mass of each story which

is assumed to be 1.0 kN-s2/m. By normalizing these values by the mass the diagonal mass matrix

turned into the identity matrix. A mean value of K = 40 MN/m and a variation of ± 20% was

used so that the mean fundamental period of the structure would be 1 s, which represents the

fundamental period of buildings. The mean story yielding lateral force used was Fy = 0.28 MN

with bounds that are ± 20% of the mean. This was chosen so that the response of the FE models

reaches the nonlinear regime for the majority of the realizations in order to have the ML models

trained for non-linearity. The mean of ζ was 0.05 with ± 20% variation. A summary of the

constitutive model parameters is shown in Table 4.2.

For the ML model, the material parameter input resulted in a uniform random vector Θ23x1

for the 1-story model, and Θ29x1for the 3-story model. The final input vector for the ML model Θ

can be written as Θ = [Θ1,Θ2]
T for both the 1-story model (43 dimensional vector) and the 3-story

model (49 dimensional vector).

500,000 realizations were generated from the input random vector Θ and its PDF as this

number of realizations produced the best results across all ML models considered. It should be

noted that a convergence study was not conducted to determine the number of points for individual

ML models as it is not within the scope of the work. Next, the FE model was simulated by

corresponding to the set of Θ and the structural response corresponding EDPs of peak ISD and

floor acceleration were obtained. This resulted in a 2-dimensional output vector corresponding to

each Θ. These simulations were run on 64 Intel i9 computing cores with 64 GB of RAM which
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Table 4.3: Hyperparameter values that yield the best results for each ML model

Machine Learning Model Hyperparameters Values
Decision trees (DT) Maximum depth [100]
Random forests (RF) Number of trees [250]
Support vector regression (SVR) λ and ε [1.5,0.5]
Deep neural networks (DNN) Number of layers and neurons in

each layer
[10, 500]

took a total simulation time of around 4 hours. The force deformation plots that relate to the

earthquake time histories generated in Figure 4.8 are presented in Figure 4.9

There was highly non-linear behavior evident in approximately 99% of all realizations from

the earthquakes and material parameters. The 500,000 input-output data points were split into

training data (90%) and testing data (10%). The ML models can now be trained on these input-

output order pairs and the performance can be determined from the testing input–output order

pairs. The performance metric chosen was R2 and can be described in Equation 4.1

R2(Y,Ŷ ) = 1− Variance(Y − (Ŷ ))
Variance(Y )

(4.1)

where the numerator is the error variance between the FE model output, Y , and ML model

output, Ŷ .

As mentioned earlier, to choose among the competing ML models the best set of hyperpa-

rameters for each model type must be determined. Once this is determined, the model that has

the least error within its optimal model configuration is considered the best overall ML model. A

cross-validation study, as described earlier, was conducted to find the best hyper-parameters for

SVR, DT, and RF. This was achieved using a built-in cross-validation function within the Scikit-

Learn library [Pedregosa et al., 2011]. The values of hyperparameters for each ML model are listed

in Table 4.3.
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Figure 4.9: Force-deformation plots relating to realizations of earthquakes shown in Figure 4.8 and
material parameters sampled from Table 4.2.
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DNN hyper-parameters were chosen heuristically by varying the numbers of layers and neu-

rons in each layer until a suitable level of performance was achieved as shown in Figure 4.10. As

the number of trainable parameters increased due to varying the number of layers and neurons in

each layer, the variation of error also increased. This can be seen with a DNN that has 3,634,802

trainable parameters (10 layers with 600 neurons) compared to a DNN that has 1,527,002 trainable

parameters (8 layers with 200 neurons).
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Figure 4.10: Variation of normalized mean squared error and time take for training with increasing
size of DNN as measured by the number of trainable parameters in the network.

Figure 4.10 also shows how the amount of time to train the networks is related to the number

of trainable parameters. It is seen generally that as the depth of the neural network increases, the

error decreased while also seeing an increase in the training time needed to train the network.

Therefore the optimal combination of hyperparameters for DNN was found to have 10 layers with

500 neurons in each layer, resulting in 2,529,002 trainable parameters. After a point, increasing

the depth of the network led to an increase in error which could be due to the lack of data to train

such a large number of training parameters. Considering all the ML models chosen, Figure 4.11

shows the computational complexity of each ML model in terms of the time taken to train each

model. The simplest structure, DT, trains the quickest, and the most complicated, DNN, takes the

longest to train.
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Figure 4.11: Time taken to train each ML model with the chosen optimal hyperparameters.

Figure 4.12 and Figure 4.13 show the R2 error for each of the ML models in configuration

with the best hyperparameter configuration. Figure 4.12(a) corresponds to the training error for the

one-story building and Figure 4.12(b) corresponds to the testing error for the one-story building.

Similarly, Figure 4.13(a) corresponds to the training error for the three-story building and Figure

4.13(b) corresponds to the testing error for the three-story building.
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Figure 4.12: Performance of various ML models in predicting peak floor acceleration (PFA) and
peak inter-story drift (PISD) in terms of R2 for (a) training data and (b) testing data for the one-
story building.
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Figure 4.13: Performance of various ML models in predicting peak floor acceleration (PFA) and
peak inter-story drift (PISD) in terms of R2 for (a) training data and (b) testing data for the three-
story building.

From these results, it can be concluded that DNN has the best performance in both training

and testing, followed by RF, SVR, and DT in both 1-story and 3-story buildings. Due to the highly

non-linear nature of the finite element response, it was expected that DNN would be able to perform

better compared to the other ML models. The use of multiple layers with non-linear functions

allows DNNS to process intricate data correlation. The stochastic nature of gradient-based training

methods used in the DNN encourages robust generalization to unseen data instances, reducing the

risk of overfitting. Note that the DNN architecture comprises 10 layers, each having 500 neurons,

as the accuracy performance justifies this configuration. This is further shown by a performance

comparison against DT in Figure 4.13, where DT shows a large difference in performance between

training and testing errors which indicates overfitting.

Before this DNN model can be deployed to be used in the PBEE framework, it must be

validated. While the testing set of data did not get used in the training sequence it did get used to

select hyper-parameters of the SVR, RF, and DT models. The convergence of error for the testing

set was used to stop the forward and backward propagation loops for the DNN model which have

leaked information from the test set to the training set. This DNN model could also coincidentally
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perform well on a particular test set. A validation process is key to being able to deploy the best-

performing ML model chosen, ie. DNN, to be used in the prediction of EDPs.

4.2.5 Unseen earthquakes and parameters for validation

The validation process accounts for 50 ground motions (Θ1) and 50 material parameters (Θ2) to

create 50 realizations of Θ. It is ideal for these generated ground motions to be different from the

original suite of 22 ground motion pairs. Figure 4.14(a), 4.14(b), and 4.14(c) show the peak ground

acceleration (PGA), Arias Intensity (IA), and first spectral moment, respectively, of the generated

earthquake motions compared to the original suite of earthquakes used. Looking at Figure 4.14,

it can be seen that there are significant differences between the generated ground motions and the

original earthquake suite so it can be considered as a new unseen earthquake dataset.
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Figure 4.14: Comparison of ground motion intensity measures of (a) PGA, (b) Arias intensity, and
(c) 1st spectral moment of the validation dataset with FEMA P695 ground motion suite.

The realization was used in the FE models to obtain the true value of the EDPs (Y ). The

DNN model predicted the output Ŷ using the input Θ. Ŷ and Y are then compared to determine the

prediction accuracy.
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Figure 4.15: Histogram of prediction error (%) between DNN and FE estimate for (a) peak ISD
and (b) peak floor acceleration of the one-story building when using generated earthquake.
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Figure 4.16: Histogram of prediction error (%) between DNN and FE estimate for (a) peak ISD
and (b) peak floor acceleration of the three-story building when using generated earthquake.

The median error was 9% for peak ISD and 3% for peak floor acceleration for the 1-story building.

For the 3-story building scenario, a median error of 10% was observed for peak ISD and 3% for

peak floor acceleration. Figure 4.15 and Figure 4.16 depict the histograms of the errors in predict-

ing the outputs for the 1-story and 3-story buildings, respectively. For both structural systems, the

95th percentile error is less than 25% for peak ISD and less than 10% for peak floor acceleration.
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4.2.6 Prediction for Loma Prieta earthquake

For a more rigorous validation, the DNN models were tasked with predicting the response for the

Loma Prieta earthquake recorded at the station Hollister—South and Pine. This specific earthquake

is not within the original suite so an accurate prediction would suggest that this ML model is robust.

The Loma Prieta earthquake was projected onto the U basis matrix to get the weights according to

Equation 2.5. These weights were then multiplied back into the U basis to create the reconstructed

time history which can be seen in Figure 4.17 as it is superimposed over the original ground motion.
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Figure 4.17: (a) Comparison of Loma-Prieta earthquake and reconstructed earthquake using U ba-
sis and weights obtained by projecting the earthquake onto U basis. (b) Zoomed-in strong motion
portion of the time history.

Using SVD to obtain weights of the Loma-Prieta earthquake the actual record can be reproduced

with high accuracy and capture the important features of the ground motion. There is an observed

level of high frequencies in the reconstructed motion but, this should not be a problem for predict-

ing EDPs as only the weights on the U basis are used as input for the ML model. Comparing the

intensity measures for the original earthquake and reconstructed earthquake a difference of 5%,

4%, and 8% error for PGA, Arias intensity, and spectral moment respectively was observed. Using

the original Loma-Prieta earthquake and 50 realizations of Θ2 in the FE models, the output Y was

obtained. The inputs Θ were provided to the ML model to produce an output Ŷ . For the 1-story
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building, the surrogate model predicted the peak ISD and the acceleration with a median error of

16% and 10%, respectively, while the 3-story building, had median errors of 19% and 17%, re-

spectively. Figure 4.18 and Figure 4.19 illustrate the histograms of the prediction errors for the

1-story and 3-story buildings, respectively.

0 5 10 15 20 25 30 35 40
Error (%)

0

1

2

3

4

5

6

Fr
eq

ue
nc

y

5th

25th
50th

75th
95th percentile

(a)

0 5 10 15 20 25 30 35 40
Error (%)

0

2

4

6

8

10

Fr
eq

ue
nc

y
5th

25th
50th

75th
95th percentile

(b)

Figure 4.18: Histogram of prediction error (%) between DNN and FE estimate for (a) peak ISD
and (b) peak floor acceleration of the one-story building using Loma Prieta earthquake.

5 10 15 20 25 30
Error (%)

0

2

4

6

8

10

12

Fr
eq

ue
nc

y

5th

25th
50th

75th
95th percentile

(a)

0 5 10 15 20 25 30 35 40
Error (%)

0

2

4

6

8

Fr
eq

ue
nc

y

5th

25th
50th

75th
95th percentile

(b)

Figure 4.19: Histogram of prediction error (%) between DNN and FE estimate for (a) peak ISD
and (b) peak floor acceleration of the three-story building using Loma Prieta earthquake.

The 95th percentile error is less than 30% for both peak ISD and peak floor acceleration. This

is considered very successful as this ground motion was not a part of the initial suite of the 22
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pairs and suggests that the application of this framework to predict structural response to far-field

motions recorded at firm rock sites is attainable.

4.2.7 Ibarra-Medina-Krawlinkler deterioration model

While the robustness of the ML model to unseen earthquake sets was verified, the sensitivity to

more complex material models and parameters needs to be considered. A three-story shear frame

using the modified Ibarra-Medina-Krawinkler (IMK) deterioration model with bilinear hysteretic

response (“Bilin” material in OpenSees) was considered in this section [Lignos and Krawinkler,

2013]. The IMK deterioration model in OpenSEES is an advanced material model that simu-

lates the behavior of deterioration of reinforced concrete and steel elements under seismic ground

motions [Lignos and Krawinkler, 2011]. It accounts for deterioration phenomena such as stiff-

ness degradation, strength degradation, and energy dissipation capacity reduction over time due to

cyclic loading [Ibarra et al., 2005]. The IMK model considers the deterioration of both concrete

and steel components separately and typically requires input parameters such as concrete and steel

strengths, ductility capacities, deterioration parameters, and degradation rules. The deterioration

of material properties is typically modeled using degradation laws or curves that define how the

material properties vary with increasing damage. The FE model and ML model was rerun with

the new material considered using the procedure developed in previous sections. The histograms

of the prediction errors corresponding to the 3-story building with the modified IMK deterioration

model are shown in Figure 4.20 below. The respective median errors are 16% and 17% and the

95th percentile error is less than 27% for both peak ISD and peak floor acceleration. These er-

rors are within the range of the FE models developed with Steel01, showing the robustness of the

proposed framework for predicting the nonlinear response using deterioration hysteretic modeling.
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Figure 4.20: Histogram of prediction error (%) between DNN and FE estimate for (a) peak ISD and
(b) peak floor acceleration of the three-story building using modified Ibarra-Medina-Krawlinkler
deterioration model.

The findings from sections 4.2.5, Unseen Earthquakes and Parameters for Validation, 4.2.6,

Prediction for Loma Prieta Earthquake, and 4.2.7, Ibarra-Medina-Krawinkler Deterioration Model,

demonstrate that the median errors in peak floor acceleration typically remain lower than those in

peak inter-story drift (ISD), with only one exception observed for the 3-story building subjected

to Loma-Prieta ground motion. In this case, the difference in median error, approximately 1%, is

deemed statistically insignificant. It is important to emphasize that the approach is data-driven,

aimed at capturing uncertainties in earthquake and material parameters. Hence, errors are reported

in terms of statistical measures such as the median. The errors observed are specific to the analyzed

ground motion, and strongly influenced by variations in weights on the U basis used for training.

The consistent observation of median errors below 16% throughout this study underscores the

robustness of the U basis in characterizing the “unseen" Loma-Prieta earthquake.
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5 Conclusion and Future Works

PBEE framework is a decision-making tool used in earthquake engineering. Use of PBEE is often

limited by its high computational cost stemming from probabilistic non-linear finite element anal-

ysis used in the framework. These FE models take into account uncertainties in both earthquakes

and constitutive parameters. This research proposes a surrogate modeling framework based on

data augmentation that

i) Converts a “small data" problem to a “big data" problem so that ML models can be trained

to have better generation performance.

ii) Chooses from a set of ML models and selects the model that best performs as a surrogate

model and

iii) Validates with unseen earthquakes outside the set used for training, to check for the robust-

ness of the model.

Chapter 3 attempts to use the different ML models to capture the non-linear dynamic re-

sponse of structures in terms of EDPs given traditional ground motion characteristics and material

property values. DNNs was determined to have the best performance followed by random forest

in predicting the EDPs chosen. It was also observed that the predictions were more sensitive to the

forcing function parameters than to the building model parameters. The traditional ground motion

characterization techniques like Arias intensity, PGA, PGV, etc. were relevant, but, limited in their

use in training ML models for generalization to prediction for unseen earthquakes.

To this end, in Chapter 4, a ML-based surrogate model framework based on SVD-enabled

data augmentation is proposed. A representative suite of far-field ground motions recorded on

a firm rock site was selected as the dataset. Using SVD, an orthonormal basis was chosen that

spans the space of the ground motion suite. The weights of the basis vectors were assumed as

random vectors along with the constitutive parameters as random variables to generate a large
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set of earthquakes and constitutive parameters. The finite element model is fed these randomly

generated earthquakes and constitutive parameters. The randomly generated weights, material

parameter values and, the finite element model output were used as training data for the ML model.

DNN, SVR, DT, and RF were used as ML models to map the input (weights of the basis vectors

and constitutive model parameters) to the output (finite element model response).

R2 was used as the performance metric to determine the best model. One-story and three-

story buildings represented by spring–mass–damper systems were used as the structures to be

subjected to far-field ground motions and ultimately predict peak ISD and peak floor acceleration.

Among the competing set of ML models, DNN showed it was able to be used to accurately estimate

the non-linear response of the buildings subject to unseen earthquakes. A validation stage was also

conducted to estimate building response for earthquakes and model parameters that were not a

part of the training set. The DNN could predict the response of the FE models with reasonable

accuracy (median error less than 20%). This proposed framework supported by the validation

results on unseen earthquakes and model parameters provides a firm basis for the validity and

applicability of the ML-based surrogate model in predicting non-linear building response.

5.1 Future Works

While the use of the ground motion set, ML models, and SVD-enabled data augmentation methods

yielded good results, this framework has limitations that should be expanded on in future research

endeavors.

• The use of the far-field motions in this study was for an initial starting point of the pro-

posed framework and was a good representation of the characteristics of far-field motions

on firm soil representing soil classes C and D and originating from strike-slip and reverse

thrust faults. The use of ground motion suites such as near-field motions or motions with

long-period pulses (expected in soft soil) in the training phase could further expand on the
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robustness of the existing framework.

• The use of SVD for data augmentation proved to be highly successful but this method is

a linear representation. Future studies will utilize non-linear representations such as radial

basis functions, Gaussian functions [Parida, 2019, Parida et al., 2018, 2019], Fourier basis,

wavelet transform, and auto-encoders [Liou et al., 2014]. Generative Adversarial networks

will also be explored to create generated earthquake suites[Marano et al., 2024].

• This framework will extend to more complex, high-fidelity finite element models. Computa-

tional efficiency will be achieved by employing multi-fidelity deep neural network surrogate

models, where the surrogate for a low-fidelity model will guide the solution direction for

the surrogate of a high-fidelity model. This approach will help achieve convergence with a

limited number of training data points.
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