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M. Bejger,55 I. Belahcene,27 A. S. Bell,45 B. K. Berger,1 G. Bergmann,10 J. J. Bero,56 C. P. L. Berry,57

D. Bersanetti,58 A. Bertolini,14 J. Betzwieser,7 S. Bhagwat,43 R. Bhandare,59 I. A. Bilenko,60 G. Billingsley,1

C. R. Billman,5 J. Birch,7 R. Birney,61 O. Birnholtz,10 S. Biscans,1,15 S. Biscoveanu,62,6 A. Bisht,21 M. Bitossi,29,23

C. Biwer,43 M. A. Bizouard,27 J. K. Blackburn,1 J. Blackman,47 C. D. Blair,1,63 D. G. Blair,63 R. M. Blair,46

S. Bloemen,64 O. Bock,10 N. Bode,10 M. Boer,65 G. Bogaert,65 A. Bohe,37 F. Bondu,66 E. Bonilla,50 R. Bonnand,8

B. A. Boom,14 R. Bork,1 V. Boschi,29,23 S. Bose,67,19 K. Bossie,7 Y. Bouffanais,38 A. Bozzi,29 C. Bradaschia,23

P. R. Brady,20 M. Branchesi,17,18 J. E. Brau,68 T. Briant,69 A. Brillet,65 M. Brinkmann,10 V. Brisson,27

P. Brockill,20 J. E. Broida,70 A. F. Brooks,1 D. A. Brown,43 D. D. Brown,71 S. Brunett,1 C. C. Buchanan,2

A. Buikema,15 T. Bulik,72 H. J. Bulten,73,14 A. Buonanno,37,74 D. Buskulic,8 C. Buy,38 R. L. Byer,50 M. Cabero,10

L. Cadonati,75 G. Cagnoli,25,76 C. Cahillane,1 J. Calderón Bustillo,75 T. A. Callister,1 E. Calloni,77,4 J. B. Camp,78

P. Canizares,64 K. C. Cannon,79 H. Cao,71 J. Cao,80 C. D. Capano,10 E. Capocasa,38 F. Carbognani,29 S. Caride,81

M. F. Carney,82 J. Casanueva Diaz,27 C. Casentini,31,32 S. Caudill,20,14 M. Cavaglià,11 F. Cavalier,27 R. Cavalieri,29
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F. Kéfélian,65 D. Keitel,45 A. J. Kemball,12 R. Kennedy,104 C. Kent,35 J. S. Key,127 F. Y. Khalili,60 I. Khan,17,32

S. Khan,10 Z. Khan,103 E. A. Khazanov,128 N. Kijbunchoo,24 Chunglee Kim,129 J. C. Kim,130 K. Kim,90 W. Kim,71

W. S. Kim,131 Y.-M. Kim,89 S. J. Kimbrell,75 E. J. King,71 P. J. King,46 M. Kinley-Hanlon,124 R. Kirchhoff,10

J. S. Kissel,46 L. Kleybolte,33 S. Klimenko,5 T. D. Knowles,40 P. Koch,10 S. M. Koehlenbeck,10 S. Koley,14

V. Kondrashov,1 A. Kontos,15 M. Korobko,33 W. Z. Korth,1 I. Kowalska,72 D. B. Kozak,1 C. Krämer,10
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Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France
9University of Sannio at Benevento, I-82100 Benevento,
Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy

10Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany
11The University of Mississippi, University, MS 38677, USA

12NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
13University of Cambridge, Cambridge CB2 1TN, United Kingdom

14Nikhef, Science Park, 1098 XG Amsterdam, The Netherlands
15LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

16Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil
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Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known
pulsars a fully coherent search, based on matched filtering, which uses the position and rotational
parameters obtained from electromagnetic observations, can be carried out. Matched filtering max-
imizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very
small mismatch between the assumed and the true signal parameters. For this reason, narrow-band
analyses methods have been developed, allowing a fully coherent search for gravitational waves from
known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe
a narrow-band search of eleven pulsars using data from Advanced LIGO’s first observing run. Al-
though we have found several initial outliers, further studies show no significant evidence for the
presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain
amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched: in the case
of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the
median upper limit across the search bands is below the spin-down limit. This is the most sensitive
narrow-band search for continuous gravitational waves carried out so far.

I. INTRODUCTION

On September 14th 2015 the gravitational wave (GW)
signal emitted by a binary black hole merger was de-
tected by the LIGO interferometers (IFOs) [1] followed

on 26th December 2015, by the detection of a second
event again associated to a binary black hole merger[2],
thus opening the era of gravitational waves astronomy.
More recently, the detection of a third binary black hole
merger on Jan 4th 2017 has been announced[3]. Binary
black hole mergers, however, are not the only detectable
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FIG. 1. Simplified flowchart of the narrow-band search pipeline for CW. The method relies on the use of FFTs to simultaneously
compute the detection statistic, for each given spin-down value, over the full explored frequency range. See [28] for more details
on the method.

sources of GW. Among the potential sources of GW there
are also spinning neutron stars (NS) asymmetric with re-
spect to their rotation axis. These sources are expected
to emit nearly monochromatic continuous waves (CW),
with a frequency at a given fixed ratio with respect to
the star’s rotational frequency, e.g. two times the rota-
tional frequency for an asymmetric NS rotating around
one of its principal axis of inertia. Different flavors of
CW searches exist, depending on the degree of knowl-
edge on the source parameters. Targeted searches assume
source position and rotational parameters to be known
with high accuracy, while all-sky searches aim at neu-
tron stars with no observed electromagnetic counterpart.
Various intermediate searches have also been developed.
Among these, narrow-band searches are an extension of
targeted searches for which the position of the source
is accurately known but, the rotational parameters are
slightly uncertain. Narrow-band searches allow for a pos-
sible small mismatch between the GW rotational param-
eters and those inferred from electromagnetic observa-
tions. This can be crucial if, for instance, the CW signal
is emitted by a freely precessing neutron star [4], or in the
case no updated ephemeris is available for a given pul-
sar. In both cases a targeted search could assume wrong
rotational parameters, resulting in a significant sensitiv-
ity loss. In this paper we present the results of a fully
coherent, narrow-band search for 11 known pulsars using
data from the first observation run (O1) of the Advanced
LIGO detectors[5]. The paper is organized as follows. In
Sec. II we briefly summarise the main concepts of the
analysis. Sec. III is dedicated to an outline of the anal-
ysis method. Sec. IV describes the selected pulsars. In
Sec. V we discuss the analysis results, while the reader
can refer to the Appendix for some technical details on
the computation of upper limits. Finally, Sec. VI is ded-
icated to the conclusions and future prospects.

II. BACKGROUND

The GW signal emitted by an asymmetric spinning NS
can be written, following the formalism first introduced

in [6], as the real part of:

h(t) = H0(H+A+(t) +H×A×(t))e2πifgw(t)t+iφ0 (1)

where fgw(t) is the GW frequency, φ0 an initial phase.
The polarisation amplitudes H+, H× are given by:

H+ =
cos(2ψ)− iη sin(2ψ)√

1 + η2
, H× =

sin(2ψ)− iη cos(2ψ)√
1 + η2

,

η being the ratio of the polarisation ellipse semi-minor to
semi-major axis and ψ the polarization angle, defined as
the direction of the major axis with respect to the celes-
tial parallel of the source (measured counter-clockwise).
The detector sidereal response to the GW polarisations is
encoded in the functions A+(t), A×(t). It can be shown
that the waveform defined by Eq. 1 is equivalent to the
GW signal expressed in the more standard formalism of
[8], given the following relations:

η = − 2 cos ι

1 + cos2 ι
, (2)

where ι is the angle between the line of sight and the star
rotation axis, and

H0 = h0

√
1 + 6 cos2 ι+ cos4 ι

4
(3)

with

h0 =
1

d

4π2G

c4
Izzf

2
gwε, (4)

where d, Izz and ε are respectively the star’s distance, its
moment of inertia with respect to the rotation axis and
the ellipticity, which measures the star’s degree of asym-
metry. The signal at the detector is not monochromatic,
i.e. the frequency fgw(t) in Eq. 1 is a function of time.
In fact the signal is modulated by several effects, such
as the Römer delay due to the detector motion and the
source’s intrinsic spin-down due to the rotational energy
loss from the source. In order to recover all the signal to
noise ratio all these effects must be properly taken into
account. If we have a measure of the pulsar rotational
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frequency frot, frequency derivative ḟrot and distance d,
the GW signal amplitude can be constrained, assuming
that all the rotational energy is lost via gravitational ra-
diation. This strict upper limit, called spin-down limit,
is given by[30]:

hsd = 8.06 · 10−19I
1/2
38

[
1kpc

d

][
ḟrot

Hz/s

]1/2[
Hz

frot

]1/2

(5)

where I38 is the star moment of inertia in unit of
1038kg m2. The corresponding spin-down limit on the
star equatorial fiducial ellipticity can be easily obtained
from Eq. 4.

εsd = 0.237 I−1
38

[
hsd

10−24

][
Hz

frot

]2[
d

1kpc

]
. (6)

Even in the absence of a detection, establishing an am-
plitude upper limit below the spin-down limit for a given
source is an important milestone, as it allows us to put a
non-trivial constraint on the fraction of rotational energy
lost through GWs.

III. THE ANALYSIS

The results discussed in this paper have been obtained
by searching for CW signals from 11 known pulsars us-
ing data from the O1 run from the Advanced LIGO de-
tectors (Hanford - LIGO H, and Livingston - LIGO L
jointly). The run started on September 12th 2015 at
01:25:03 UTC and 18:29:03 UTC, respectively, and fin-
ished on January 19th 2016 at 17:07:59. LIGO H had
a duty cycle of ∼60% and LIGO L had a duty cycle of
∼51%, which correspond respectively to 72 and 62 days
of science data available for the analysis. In this paper we
have used an initial calibration of the data [9]. In order to
perform joint search between the two detectors a common
period from September 13th 2015 to January 12th 2016
1, with a total observation time of about Tobs ≈ 121 days
is selected. The natural frequency and spin-down grid
spacings of the search are δf = 1/Tobs ≈ 9.5 · 10−8 Hz

and δḟ = 1/T 2
obs ≈ 4.57 · 10−15 Hz/s. A follow-up anal-

ysis based on the LIGO’s second observation Run (O2)
has been carried out, for this dataset we have analysed
data from December 16th 2016 to May 8th 2017, more de-
tails will be given in Appendix C. The analysis pipeline
consists of several steps, schematically depicted in Fig.
1, which we summarise here. The starting point is a
collection of FFTs obtained from several interlaced data
chunks (the short FFT Database - SFDB) built from cal-
ibrated detector data chunks of duration 1024 seconds
[26]. At this stage, a first cleaning procedure is applied
to the data in order to remove large, short-duration dis-
turbances, that could reduce the search sensitivity. A

1 An exception is pulsar J0205+6449, see later.

frequency band is then extracted from the SFDBs cov-
ering typically a range larger (of the order of a factor
of 2) than the frequency region analysed in the narrow-
band search. The actual search frequency and spin-down
bands, ∆f and ∆ḟ , around the reference values, f0 and
ḟ0, have been chosen according to the following relations
[10]:

∆f = 2f0δ (7)

∆ḟ = 2ḟ0δ, (8)

δ being a factor parametrizing a possible discrepancy be-
tween the GW rotation parameters and those derived
from electromagnetic observations. Previous narrow-
band searches used values of δ of the order ∼ O(10−4),
motivated partly by astrophysical considerations[4], and
partly by computational limitations [27]. Here we exploit
the high computation efficiency of our pipeline to enlarge
the search somewhat, depending on the pulsar, to a range
between δ ∼ 10−4 − 10−3. The frequency and spin-down
ranges explored in this analysis are listed in Tab. V.

The narrow-band search is performed using a pipeline
based on the 5-vector method [27] and, in particular, its
latest implementation, fully described in [28], to which
the reader is referred for more details. The basic idea
is that of exploring a range of frequency and spin-down
values by properly applying barycentric and spin-down
corrections to the data in such a way that a signal would
become monochromatic apart from the sidereal modula-
tion. While a single barycentric correction applied in the
time domain holds for all the explored frequency band,
several spin-down corrections, one for each point in the
spin-down grid, are needed. A detection statistic (DS) is
then computed for each point of the explored parameter
space. By using the FFT algorithm for each given spin-
down value it is possible to compute the statistic simulta-
neously over the whole range of frequencies, this process
is done for each detector, and then data is combined.
The frequency/spin-down plane is then divided into fre-
quency sub-bands (10−4 Hz) and, for each of them, the
local maximum, over the spin-down grid, of the DS is
selected as a candidate. The initial outliers are identi-
fied among the candidates using a threshold nominally
corresponding to 1% (taking into account the number of
trials[27]) on the p-value of the DS’s noise-only distri-
bution2 and are subject to a follow-up stage in order to
understand their nature. The follow-up procedure con-
sists of the following steps: check if the outlier is close to
known instrumental noise lines; compute the signal am-
plitude and check if it is constant throughout the run,
compute the time evolution of the SNR (which we ex-
pect to increase as the square root of the observation
time for stationary noise) and compute the 5-vector co-
herence, which is an indicator measuring the degree of

2 The noise-only distribution is computed from the values of the
DS excluded in each frequency sub-band when selecting the local
maxima and then an extrapolation of the long tail of the done
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FIG. 2. Blue points: Value of the theoretical spin-down limit computed for the 11 known pulsars in our analysis, corresponding
to Tab. I, error bars correspond to 1σ confidence level. Black triangles: median over the analysed frequency band of the
upper-limits on the GW amplitude, corresponding to Tab. IV. Red dashed line: Estimated sensitivity at 95% confidence
level of a narrow-band search using data from LIGO H. Green dashed line: Estimated sensitivity at 95% confidence level of a
narrow-band search using data from LIGO L.

consistency between the data and the estimated wave-
form [6]. For each target, if no outlier is confirmed by
the follow-up we set an upper-limit on the GW ampli-
tude and NS ellipticity, see Appendix A for more details.

IV. SELECTED TARGETS

We have selected pulsars whose spin-down limit could
possibly be beaten, or at least approached, based on the
average sensitivity of O1 data, see Fig.2. Pulsar distances
and spin-down limits are listed in Tab. I. As distance es-
timations for the pulsars we have used the best fit value
and relative uncertainties given by each indipendet mea-
sure, see pulsars list below and Tab. I for more details.
The uncertainty on the spin-down limit in Tab. I can
be computed using the relation for the variance propaga-
tion3.For two of these pulsars (Crab and Vela) the spin-

3 If variable Y is defined from xi random variables with variance
σ2
xi

, then the variance σ2
Y can be estimated as:

σ2
Y =

∑
i

(
∂Y

∂xi

)2

σ2
xi

down limit has been already beaten in a past narrow-
band search using Virgo VSR4 data [10]. The other tar-
gets are analysed in a narrow-band search for the first
time. The timing measures for the 11 pulsars were pro-
vided by the 76-meters Lovell telescope and the 42-foot
radio telescopes at Jodrell Bank (UK), the 26-meters tele-
scope telescope at Hartebeesthoek (South Africa), the 64-
meters Parkes radio telescope (Australia) and the Fermi
Large Area Telescope (LAT) which is a space satellite.
For 7 of these pulsars (Crab, Vela, J0205+6449, J1813-
1246, J1952+3252, J2043 +2740 and J2229+6114) up-
dated ephemerides covering O1 period were available and
a targeted search was done in a recent work [8] beating
the spin-down limit for all of them, while for the remain-
ing 4 pulsars we have used older measures extrapolating
the rotational parameters to the O1 epoch. A list of the
analysed pulsars follows:
J0205+6449 : Ephemerides obtained from Jodrell

Bank. This pulsar had a glitch on November 11th 2015
which can affect the CW search [7]. For this reason we
have performed the narrow-band search only on data be-
fore the glitch as done in [8]. The distance are set ac-
cordingly to [14].
J0534+2200 (Crab): One of the high value targets

for CW searches [8] due to its large spin-down value.
For this pulsar it was possible to beat the spin-down
limit in a narrow-band search using Virgo VSR4 data
[10]. Ephemerides have been obtained from Jodrell Bank
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telescope 4. The nominal distance for the Crab pulsar
and it’s nebula is quoted in literature as 2.0 ± 0.5 kpc
[17] we therefore assume the uncertainty correspond to
1σ confidence level.

J0835-4510 (Vela): Like the Crab pulsar, Vela is
one of the traditional targets for CW searches. Although
it spins at a relatively low frequency (compared to the
others), it is very close to the Earth (d ' 0.28 kpc), thus
making it a potentially interesting source. Ephemerides
obtained from the Hartebeesthoek Radio Astronomy Ob-
servatory in South Africa5. The distance and its uncer-
tainty are taken accordingly to [13].

J1400-6326 : First discovered as an INTEGRAL
source and then identified as a pulsar by Rossi X-ray
Timing Explorer (RXTE). This NS is located in the
galactic supernova remnant G310.6-1.6 and it is supposed
to be quite young, the distance and its uncertainty cor-
respond to 1σ confidence level [21].

J1813-1246 : Ephemerides covering the O1 time span
have been provided by the Fermi-LAT Collaboration[8].
Only a lower upper-limit is present on the distance.

J1813-1749 : Located in one of the brightest and
most compact TeV sources discovered in the HESS
Galactic Plane Survey, HESS J1813-178. It is a young en-
ergetic pulsar that is responsible for the extended X-rays,
and probably the TeV radiation as well. Timing obtained
from Chandra and XMM Newton data [22], pulsar’s dis-
tance and uncertainty are taken from [18] and correspond
to 1σ confidence level.

J1833-1034 : Located in the Supernova remnant
G21.5-0.9. This source has been known for a long time as
one of the Crab-like remnants. The evidence for a pulsar
was found by analysing Chandra data, the distance and
its uncertainty is set accordingly to [23] and correspond
to 1σ confidence level.

J1952+3252 : Ephemerides have been obtained from
Jodrell Bank [8]. Distance and uncetainty taken from
kinematic measures of [12].

J2022+3842 : It is a young energetic pulsar that was
discovered in Chandra observations of the radio super-
nova remnant SNR G76.9+1.0. Distance and uncertainty
are set accordingly to [24].

J2043+2740 : Ephemerides obtained from the Fermi-
LAT Collaboration[8]. The distance is estimated using
dispersion measure by [11] and using the model from
[16]. The uncertainty on distance is set accordingly to
the model and correspond to 1σ confidence level.

J2229+6114 : Ephemerides obtained from Jodrell
Bank[8]. Distance and uncertainty are estimated by [19]
using the model [20].

4 http://www.jb.man.ac.uk/pulsar/crab.html
5 http://www.hartrao.ac.za/

TABLE I.

Distance and spin-down limit on the GW amplitude and
ellipticity for the 11 selected pulsars. Distance and

spin-down limit uncertainties refer to 1σ confidence level.

Name distance[kpc] hsd · 10−25 εsd · 10−4

J0205+6449 a 2.0± 0.3b 6.9± 1.1 14
J0534+2200 (Crab) 2.0± 0.5 c 14± 3.5 7.6
J0835-4510 (Vela) 0.28± 0.02 c 34± 2.4 18
J1400-6326 10± 3d 0.90± 0.27 2.1
J1813-1246 > 2.5e < 1.8 < 2.4
J1813-1749 4.8± 0.3f 3.0± 0.2 7.0
J1833-1034 4.8± 0.4g 3.1± 0.3 13
J1952+3252 3.0± 0.5h 1.0± 0.2 1.1
J2022+3842 10± 2i 1.0± 0.3 6.0
J2043+2740 1.5± 0.6j 6.9± 2.8 23
J2229+6114 3.0± 2c 3.4± 2.2 6.2

a This pulsar had a glitch on November 11th 2015
b Distance from neutral Hydrogen absorption of pulsar wind

nebula 3C 58 [14]
c Distance taken from independent measures reported in ATNF

catalog, see text for references
d Distance from dispersion measures [21]
e Lower limit of [15]
f Distance from Chandra and XMM-Newton from [22]
g Distance from Parkes telescope [23]
h Distance from kinematic distance of the associated supernova

remnant [12]
i Distance of the hosting supernova remnant [25]. In some papers

a distance value of ∼10 kpc is considered [24].
j Distances taken from v1.56 of the ATNF Pulsar Catalog[11]

V. RESULTS

In this section we discuss the results of the analysis.
First, in Sec. V A we briefly describe the initial outliers,
for most of which the follow-up described in III has been
enough to exclude a GW origin. Two outliers, belonging
respectively, to the Vela and J1833-1034 pulsars needed
a deeper study. The studies discussed in detail in the
next section, disfavour the signal hypothesis and seem to
suggest these outliers as marginal noise events. Never-
theless the outliers showed some promising features and
for this reason a follow-up using O2 data has been car-
ried out and described in Appendix C. The outliers were
no longer present in O2 data and therefore inconsistent
with persistent CW signals. Finally, in Sec. V B upper
limits on the strain amplitude for the eleven targets are
discussed.

A. Outliers outlook

We have found initial outliers for 9 of the 11 analysed
pulsars. More precisely, for most pulsars we have found
one or two outliers, with the exception of J1813-1749 (36
outliers) and J1952+3252 (6 outliers). For J2043+2740
and J2229+6114 no outlier has been found. A summary
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of the outliers found in the analysis is given in Tab.
VI. The follow-up has clearly shown that in the case of
J1952+3252 and J1813-1749 the outliers arise from noise
disturbances in LIGO H (for J1813-1749) and in LIGO L
(for J1952+3252), see Appendix B for more details. Most
of the remaining outliers show an inconsistent time evo-
lution of the SNR together with a low coherence between
LIGO H and LIGO L and hence have been ruled out. As
mentioned before, two outliers, one for J1833-1034 and
one for Vela, have shown promising features during the
basic follow-up steps: no known noise line is present in
their neighborhood, the amplitude estimation is compat-
ible and nearly constant among the LIGO L and LIGO
H runs and their SNR appears to increase with respect
to the integration time (see Fig. 3). Even if the trend
of the SNR does not increase monotonically with time,
as expected for real signals, we have decided to follow-up
this outliers due to the fact that they show a completely
different SNR trend with respect to all the other outliers
found in this work. Moreover each outlier’s significance
increases in the multi-IFOs search, suggesting a possible
coherent source.
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FIG. 3. Top panel: SNR computed with respect to the frac-
tion of data for J1833-1034 outlier in Hanford (red line), Liv-
ingston (green) and joint (blue) analysis respectively. Bottom
panel: SNR computed with respect to the fraction of data for
Vela outlier in Hanford (red line), Livingston (green) and joint
(blue) analysis respectively.

J1833-1034 and Vela outliers: In order to establish
if the outliers were not artefacts created by the narrow-
band search, we also looked for the two outliers using
two other analysis pipelines for targeted searches, which
used a Bayesian approach: one designed for searching for
non-tensorial modes in CW signals [31], the other devel-

oped for canonical CW target searches 6 and parameter
estimation [29]. Both pipelines produced odds, listed in
Tab II, which show a small preference for the presence of
a candidate compatible with general relativity. The odd
values are not surprising due to the fact that we are us-
ing values for the frequency and the spin-down which are
fixed to the ones found in the narrow-band search. Hence,
a trial factor should be taken into account in order to
make a robust estimation on the signal hypothesis pref-
erence. Besides the previous considerations, the values in
Tab. II clearly shows that the outliers are not artefacts
created by the narrow-band pipeline. We have also com-
pared the estimation of the outlier parameters obtained
from the 5-vector, F-statistic and Bayesian[6, 29, 30]
pipelines. The inferred parameters are listed in Tab.III
and seems to be compatible among the three indepen-
dently developed targeted pipelines, thus suggesting the
true presence of these outliers inside the data.

TABLE II.

Odds obtained for the two outliers by the Bayesian pipelines
[31, 32]. The second column shows the odds of any non-
tensorial signal hypothesis versus the canonical CW signal
hypothesis, the third column is the odds ratio of the canon-
ical signal hypothesis vs the gaussian noise hypothesis while
the last column is the odds ratio between the coherent signal
among the two detectors vs the hypothesis that the outliers
arise from an incoherent noise between LIGO H and L.

Name log10OnGR
GR log10OS

N log10OC
I

J0835-4510 (Vela) −0.55 2.30 1.07
J1833-1034 −0.73 2.73 1.34

TABLE III.

Estimation of the GW parameters, h0, cos ι and ψ, from three
targeted search pipelines [6, 29, 30]. The intervals refer to the
95% confidence level.

J0835-4510 (Vela) h0 · 10−25 cos ι ψ[rad]

5-vector 5.7+2.3
−2.1 −0.09+0.27

−0.19 0.69+0.57
−0.58

Bayesian 6.6+3.1
−3.7 −0.14+0.28

−0.48 0.57+0.31
−0.30

F-statistic 7.1 −0.13 0.55

J1833-1034 h0 · 10−25 cos ι ψ[rad]

5-vector 1.6+0.5
−0.6 0.10+0.30

−0.20 0.58+0.35
−0.51

Bayesian 1.8+0.8
−1.7 0.24+0.64

−0.31 0.58+0.56
−0.51

F-statistic 2.0 0.22 0.59

In order to establish each outlier’s nature, a complete
understanding of the noise background is needed. For
this reason the first check was to look at the DS distribu-
tion in the narrow-band search. In the presence of a true

6 frequency and spin-down value fixed to the outlier’s value found
in the narrow-band search
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signal we expect to see a single significant peak in the DS.
Figure 4 shows the distribution of the DS (maximized
over the spin-down corrections) for J1833-1034 and for
Vela over the frequency band analysed. We notice that
for J1833-1034 the outlier is the only clear peak present
in the analysis, surrounded by several lower peaks in the
detection statistic which are not above the corresponding
p-value threshold. On the other hand, for Vela, several
peaks in the DS are present, with significance below but
similar to that of the outlier, thus suggesting that the
Vela outlier can be due to non-gaussian background.
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FIG. 4. Values of the local maximum of the DS over the
spin-down corrections and the frequency sub-bands for J1833-
1034 (top panel) and Vela (bottom panel). The outliers are
highlighted with the red square.
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FIG. 5. Values of the local maximum of the DS over the spin-
down corrections and the frequency sub-bands for a close sky
position to J1833-1034 (top panel) and Vela (bottom panel).

A further test consist of checking the distribution of the
DS in a narrow-band search performed using the same
frequency/spin-down region but in a sky-position shifted

by about 0.5 degrees. Using this method we keep the con-
tribution of non-Gaussian noise in the DS while removing
a possible signal contribution. Figure 5 shows the distri-
bution of the DS obtained for J1833-1034 and Vela out-
liers. In both cases no over-threshold peak are present,
however the analysed bands seem similarly polluted by
non-Gaussian contributions which produce peaks in the
DS. We have also studied the significance of the outliers
using two of the three targeted search pipelines. As done
previously, we have built a noise-distribution of the DS,
performing the targeted searches in other sky positions
in order to compute the outliers p-value. Using the trials
factor from the narrow-band search we have found the
outliers to have a higher resulting p-value with respect
to the 1% threshold used in the initial outliers selection
process during the narrow-band search, increasing the
likelihood that these outliers were generated from noise.
Some of the previous tests disfavour the signal hypothe-
sis and seem to indicate the presence of a coherent noise
disturbance among the interferometers. Previous works
such as [8, 34] have already pointed out the presence of
some non-trivial coherent noise artefacts among the IFOs
which can produce outliers. For this reason, in the spirit
of what is done in [34], we have looked at O2 data. If
the outliers are really due to a “standard” CW signal,
they are expected to be present also in O2 data, due to
their persistent nature. We have analysed the data using
the narrow-band pipeline but no evidence for these out-
liers was found in data. In conclusion the outliers are not
true CW signals. More details on the O2 analysis can be
found in Appendix C.

B. Upper limits

Following the procedure described in Appendix A we
have set 95% C.L. upper-limits on GW strain amplitude
in every 10−4Hz sub-band. In each of these bands the
upper-limit was computed by injecting simulated GW
signals with several different amplitudes and finding the
amplitude such that 95% of the injected signals with that
amplitude produce a value of the DS corresponding to
the nominal overall p-value of 1%. Tab. IV gives an
overview of the overall sensitivity reached in our search
using the median of the upper-limits among the anal-
ysed frequency band: graphs of the upper-limits see Fig.
6. For J2043+2740, J1952+3252 and J2022+3842 our
overall sensitivity is clearly above the spin-down limit.
For J1813-1246 and J1833-1034 our overall sensitivity
is close to the spin-down limit, producing values of the
upper-limits both below and above the spin-down limit.
For J1400-6326 we have obtained a large fraction of the
upper-limits in the narrow-band search below the spin-
down while for J0205+6449 and J2229+6114 we have
beaten the spin-down limit in a narrow-band search for
the very first time. For Crab and Vela pulsars we have
obtained upper-limits respectively ∼ 7 and ∼3.5 times
lower than those computed in a past analysis [10]. This
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improvement is due to a combination of two factors: the
enhanced sensitivity of advanced detectors and the choice
to compute upper limits over 10−4 Hz sub-bands instead
of the full analysis band, thus reducing the impact of the
look-elsewhere effect in each sub-band [27]. Finally the
narrow-band search for J1813-1749 beats the spin-down
limit (if we exclude from the search the frequency re-
gion around the LIGO H artefact), constraining for the
first time their CW emission. Pulsars J1813-1749 and
J1400-6326 have not been previously analysed in targeted
searches, due to the lack of ephemeris covering O1 or
previous runs. Even if we consider the uncertainties on
the pulsars distance, propagated in Tab. IV for the spin-
down limit and upper-limit ratio, we are still able to beat
the spin-down for those 5 pulsars.

TABLE IV. Median over the analysed frequency band of the
upper-limits obtained on the GW amplitude for the 11 known
pulsars. In the fourth column we report the ratio between the
spin-down limit listed in Tab. I and the median of the upper-
limit, uncertainties correspond to 1σ confidence level and are
due to the uncertainties on pulsars distance. The last column
reports the median upper-limit on the fraction of rotational
energy lost due to GW emission.

Name hul εul hul/hsd Ėrot/ĖGW

·10−25 ·10−4

J0205+6449 3.76 7.7 0.54± 0.09 0.29
J0534+2200 (Crab) 1.08 0.58 0.07± 0.02 0.005
J0835-4510 (Vela) 9.28 5.3 0.27± 0.02 0.07
J1400-6326 1.17 2.7 1.3± 0.4 -
J1813-1246 1.80 2.5 > 1.0 -
J1813-1749 1.9 4.8 0.64± 0.04 0.41
J1833-1034 3.08 13 0.99± 0.09 -
J1952+3252 1.31 1.4 1.31± 0.22 -
J2022+3842 1.90 11 1.77± 0.35 -
J2043+2740 14.4 47 2.07± 0.83 -
J2229+6114 1.78 3.4 0.54± 0.35 0.30

VI. CONCLUSION

In this paper we have reported the result of the first
narrow-band search using Advanced LIGO O1 data for
11 known pulsars. For each pulsar, a total of about 107

points in the frequency and spin-down space have been
explored. For 9 pulsars, outliers have been found and
analysed in a follow-up stage. Most of the outliers did
not pass the follow-up step and were labeled as noise fluc-
tuations or instrumental noise artefacts. We have found
two near-threshold outliers, one for J1833-1034 and an-
other for the Vela pulsar, which needed deeper studies
but eventually were rejected. In particular, the outliers
have been searched for in the first five months of LIGO
O2 run and were not confirmed. We have computed
upper-limits on the signal strain, finding for 5 pulsars val-
ues below the spin-down limit in the entire narrow-band
search (Crab, J1813-1749, J0205+6449, 2229+6114 and
Vela). For the Crab and Vela pulsars the upper limits sig-

nificantly improve with respect to past analyses. For an
additional 3 targets (J1833-1034, J1813-1246 and J1400-
6326), the median upper limit across the search bands is
below or very close the spin-down limit. For J1813-1749,
which have never been analysed in a targeted search, we
have beaten the spin-down limit for the first time while
for J0205+6449 and J2229+6114 the spin-down limit has
been beaten for the first time in a narrow-band search.
7 of the 11 pulsars analysed in this work, were also anal-
ysed using O1 data in a target search [8]. The upper-
limits found in this work are about 2-3 times higher with
respect to targeted searches: the sensitivity loss is due
to the fact that we are exploring a large number of tem-
plates in the frequency spin-down plane. On the other
hand we have put for the first time upper-limits in a small
frequency spin-down region around the expected values.

The analysis of forthcoming Advanced LIGO and
Virgo runs [35], with improved sensitivities and longer
durations, could provide the first detection of continuous
gravitational signals from spinning neutron stars, which
would help to shed light on their structure and proper-
ties.
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TABLE V. This table reports the explored range for the rotational parameters of each pulsar. The columns are: the central
frequency of the search (f0), explored frequency band (∆f), central spin-down value of the search (ḟ0), explored spin-down

band (∆ḟ0), the number of frequency bin explored (nf ), and the number of spin-down values explored (nḟ ). All the rotational
parameters are scaled at the common reference time on September 12th 2015.

Name f0 [Hz] ∆f [Hz] ḟ0 [Hz/s] ∆ḟ [Hz/s] nf nḟ

J0205+6449 30.4095820 0.03 −8.9586 · 10−11 1.75 · 10−13 2.5 · 106 19
J0534+2200 (Crab) 59.32365204 0.10 −7.3883 · 10−10 1.48 · 10−12 18.5 · 106 161
J0835-4510 (Vela) 22.3740981 0.03 −3.1191 · 10−11 6.43 · 10−14 2.5 · 106 7
J1400-6326 64.1253722 0.07 −8.0017 · 10−11 1.75 · 10−13 6.5 · 106 19
J1813-1246 41.6010333 0.04 −1.2866 · 10−11 6.43 · 10−14 3.4 · 106 7
J1813-1749 44.7128464 0.05 −1.5000 · 10−10 3.03 · 10−13 2.5 · 106 33
J1833-1034 32.2940958 0.04 −1.0543 · 10−10 2.11 · 10−13 3.4 · 106 23
J1952+3252 50.5882336 0.05 −7.4797 · 10−12 6.43 · 10−14 4.3 · 106 7
J2022+3842 41.1600845 0.04 −7.2969 · 10−11 1.60 · 10−13 3.4 · 106 17
J2043+2740 20.8048628 0.05 −3.4390 · 10−11 6.43 · 10−14 4.3 · 106 7
J2229+6114 38.7153156 0.06 −5.8681 · 10−11 1.19 · 10−13 5.1 · 106 13

TABLE VI. The table reports the outliers found in our analysis for each analysed pulsar. The first column is the name of
pulsar, the second indicates the number of outliers found in the analysis. The third and the fourth columns show respectively
the outier frequency and spin-down. The last column reports the corresponding p-value. For the two targets J1813-1749 and
J1952+3252 the outliers did not undergo the follow-up procedure due to the fact that can easily associated with known noise
lines, see Appendix B.

Name N. of candidates Frequency [Hz] Spin-down[Hz/s] P-value
J0205+6449 1 30.4046480 −8.937 · 10−11 0.003
J0534+2200 (Crab) 1 59.3702101 −7.3920 · 10−10 0.005
J0835-4510 (Vela) 1 22.3884563 −3.12 · 10−12 0.009
J1813-1246 2 41.5779102, 41.5852264 −1.285 · 10−11,−1.284 · 10−11 0.007, 0.005
J1813-1749 36 close to 44.705 Hz - < 10−6

J1833-1034 1 32.2807633 −1.0535 · 10−10 0.0004
J1952+3252 6 close to 50.601 - < 10−5

J1400-6326 2 64.1089253, 64.1406011 −8.008 · 10−11,−8.937 · 10−11 0.002, 0.003
J2022+3842 1 41.1603319 −7.297 · 10−11 0.007
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FIG. 6. Plots of the 95% CL upper-limit on the GW ampitude for the 11 pulsars. The blue dots indicate the amplitude
upper-limits set with our analysis, the red dashed line indicate the theoretical spin-down limit in Tab. I.
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Appendix A: Upper-limit

Once we have concluded that our data is compatible with noise, upper-limits on the GW amplitude can be computed.
The upper-limits computation consists of injecting many different signals with fixed amplitude H0 and parameters
η, ψ with a uniform distribution into the real data. According to the frequentist paradigm, the 95% confidence level
upper-limit can be computed asking that the 95% of the injected signals provide a value of the DS greater than the
threshold for candidates selection used in the analysis. The signal must be injected at the beginning of the analysis,
i.e. before the Doppler corrections and all the analysis procedure must be followed in order to compute the DS.
This procedure is not suitable for narrow-band searches due to the fact that an injection is needed in every analysed
frequency sub-bands. This problem can be overcome by injecting simultaneously many different signals in many
different frequency sub-bands in just one dataset and then perform the narrow-band search. Repeating this step N
times produce N different datasets, each containing a signal in each analysed frequency sub-band. Then for each
sub-band we ask for the 95% DSs produced by the injected signal to be greater than the value used for the candidates
selection, obtaining in this way the value of the upper-limit for a given frequency sub-band. Practically this procedure
is done using several tricks in order to speed up the computation, as detailed in the following. First of all we assume
that our data is the linear superposition of noise n(t) and an injected signal hinj(t), namely s(t) = n(t) + hinj(t).
According to the linearity of the the FFT, the 5-vector of s(t) will be the summation of the the two independent
5-vector of the noise and the injected signal:

~X = ~Xnoise + ~Xinj . (A1)

The estimators of the GW polarisation, which are the building blocks of the DS, are linear due to the scalar product
with respect to the sidereal templates A+(t), A×(t). Hence using Eq. A1 we can write the analysis estimator as:

Ĥ+/× = Ĥ
+/×
noise + Ĥ

+/×
inj . (A2)

Eq. A2 indicates that before the calculation of the DS we can keep separate the estimators computed from our real
dataset and the ones arising from an injected signal. This leads to the possibility to change the GW amplitude H0

of the injected signal directly re-scaling the absolute value of the estimators Ĥ
+/×
inj without re-performing all the

corrections in time domain and thus saving computational time. As stressed before the form of the injected signal
hinj(t) should be built in such a way to contain a signal in each analysed frequency sub-band. Formally we can write
hinj(t) as the superposition of N different signals each of one located in a random-frequency bin of each frequency
sub-band.

hinj(t) = H0[H+A+(t) +H×A×(t)]eiφ0

N∑
S=1

eiφ
S
Röm(t)eiφ

S
rot(t) , (A3)

where φSRöm(t) and φSrot(t) are the usual phase evolution due to the Römer and rotational frequency evolution of the
signal S [27]. Assuming that the N different signals are injected with a constant frequency step ∆finj in the frequency
grid starting from a frequency f0, i.e. fS = f0 + S∆finj, we can manipulate the Eq. A3 to obtain:

hinj(t) = H0[H+A+(t) +H×A×(t)]eiφ
0
Röm(t)eiφ

0
rot(t)eiφ0

N∑
S=1

ei2πS∆finj(t+p(t)) , (A4)

where p(t) is the Römer correction and the superscript ”0” refers to the phase evolution of a signal injected at the
frequency f0. By defining k = 2πi∆finj(t+p(t)), we can now exploit the geometrical series present in Eq. A4 to write

hinj(t) = H0[H+A+(t) +H×A×(t)]eiφ
0
Röm(t)eiφ

0
rot(t)

1− e(N+1)k

1− ek
(A5)

Practically in our analysis, for each dataset, we select a random frequency bin in the first analysed frequency sub-band
and then we replicate it on the frequency grid using Eq. A5 and setting ∆finj equal to the width of the sub-bands.
This procedure together with the linearity of the FFT allow us to strongly reduce the computational time obtaining
the same results.
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Appendix B: Known instrumental noise lines

The data from the gravitational waves interferometer is polluted by several instrumental noise lines. Many of these
disturbances have been identified during the run. Their presence can produce in the analysis a large number of
outliers. We have found that the 36 outliers J1813-1749 are due to a noise line associated with the magnetometer
channels in Hanford at 44.7029 Hz. The presence of the noise line can also be seen in the left panel of in Fig. 7, where
left plot where we show the power spectrum around the region explored by the narrow-band search. Concerning the
6 outliers from J1952+3252, we know that they are due to an artefact that is part of a 1.9464 Hz comb in Livingston
data. This disturbance is shown in the power spectrum in Fig. 7 right plot.
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FIG. 7. Left: Power spectrum of Hanford (red line) and Linvingston (green line) data inside the frequency region explored by
the narrow-band search (blue box) around J1813-1749. right: Power spectrum of Hanford (red line) and Linvingston (green
line) data inside the frequency region explored by the narrow-band search (blue box) around J1953+3252.

Appendix C: O2 follow-up of the outliers

We have used these data in a narrow-band search in order to check if the outliers found for J1833-1034 and Vela in
O1 were still present. The parameters of the narrow-band searches have been set in such a way to cover the expected
frequency and spin-down of the outlier during the O2 epoch. The Vela pulsar glitched on Dec 12th 2016 between 11:31
and 11:46 UT 7. The glitch have been classified as a canonical Vela-glitch [33]. In order to prevent the glitch from
affecting our analysis we have started to analyse data from Jan 12th 2017 when the spin-down variation is supposed
to be recovered. Moreover we have also increased the spin-down range by a factor 3.7 with respect to the O1 analysis.
A summary of the narrow-band search parameters is given in Tab. VII.

TABLE VII. This table reports the explored range for the rotational parameters of each pulsar. The columns are: the central
frequency of the search (f0), explored frequency band (∆f), central spin-down value of the search (ḟ0), explored spin-down

band (∆ḟ0),the frequency (fO2) and spin-down (ḟO2) of the outliers at the O2 epoch reference time on November 30th 2016.

Name f0 [Hz] ∆f [Hz] ḟ0 [Hz/s] ∆ḟ [Hz/s] fO2 [Hz] ḟO2 [Hz/s]

J0835-4510 (Vela) 22.37289950 0.05 −3.1159 · 10−11 2.4024 · 10−13 22.38712428 −3.1128 · 10−11

J1833-1034 32.29004216 0.05 −1.0542 · 10−10 1.7266 · 10−13 32.27625775 −1.0534 · 10−10

7 http://www.astronomerstelegram.org/?read=9847
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FIG. 8. Left: Histrograms of the DS obtained in J1833-1034 O2 narrow-band search, the x-axis is normalised to the DS
threshold in each search. Top panel: Joint search, Middle panel: Hanford search, Bottom panel: Livingston search. Right:
Histrograms of the DS obtained in Vela O2 narrow-band search, the x-axis is normalised to the DS threshold in each search.
Top panel: Joint search, Middle panel: Hanford search, Bottom panel: Livingston search.

Our analysis has produced no significant outlier for either J1833-1034 or Vela. Fig. 8 shows the histograms of
the DS obtained in the narrow-band search with respect to the threshold for outliers selection, for J1833-1034 and
Vela respectively. In order to estimate our sensitivity in this search and compare the results with the sensitivity
reached in O1, we have also computed the upper-limit on the GW amplitude h0 for J1833-1034 and Vela over the
narrow-frequency region explored. The procedure that we have used is the same used for O2, and the values of the
upper-limits are shown in Fig. 9 for J1833-1034 and Vela respectively. The median value of the amplitude upper-limit
for J1833-1034 is 1.25 · 10−25 which is nearly a factor 2 lower than the one obtained for O1 analysis in Tab. IV, thus
indicating that if the outlier found in O1 were a true persistent CW signal,was a real it would have appeared in O2
analysis with an higher significance. Similarly, for Vela we have obtained a median value of the amplitude upper-limit
of 3.41 · 10−25 which is about 3 times better than the one obtained in O1 analysis, see Tab IV. We then conclude that
both outliers are not confirmed in O2.
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FIG. 9. Left: Upper-limits on the GW amplitude h0 over the frequency narrow-region analysed in O2 for J1833-1034. Right:
Upper-limits on the GW amplitude h0 over the frequency narrow-region analysed in O2 for Vela
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