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Growth of unsteady wave groups by shear
flows

By S.G. Sajjadi1,2, J.C.R. Hunt2,3 and F. Drullion1

1 Department of Mathematics, ERAU, Florida, USA.
2 Trinity College, University of Cambridge, UK.

3 CPOM, Department of Earth Sciences, UCL, UK.

Abstract

A weakly nonlinear theory has been proposed and developed for calculating the energy-
transfer rate to individual waves in a group. It is shown what portion of total energy-
transfer rate, over the envelope of wave group, affects individual waves in the group.
From this an expression for complex phase speed of individual waves is calculated. It is
deduced that each wave in a group does not grow at the same rate. It is shown that the
critical layer is no longer symmetrical compared with the ideal monochromatic waves.
This asymmetry causes the critical layer height to be lower over the downwind part.
Therefore the positive growth of the individual waves on the upwind part of the wave
group exceeds the negative growth on the downwind part (which would not be true if zc,
where the mean flow U is equal to the speed of the wave propagation, was the same over
the whole group). This leads to the critical layer group effect producing a net horizontal
force on the waves, in addition to the sheltering effect. Computational simulations over
a non-growing wave group is also presented, which confirms the above postulation made
by Sajjadi, Hunt and Drullion (2014) (SHD).

1. Introduction

The determination of the total energy-transfer rate, βg, from wind shear flow to a group
of waves is of great interest and importance. Since a group of waves consists of various
waves of different amplitude and steepness with its envelope. It is important to calculate
what proportion of βg affect individual waves present in the group. Only in this way can
the growth of a wave group can properly be calculated

In general the growth rate of a wave, ζ, is proportional to the energy-transfer rate
which in turn depends upon the imaginary part of the wave complex phase speed, ci.
Thus, ζ = kci, where k is the wave-number. Hence, if there are N waves which constitute
a group then each wave grows at the rate ζ` for ` = 1, 2, ..., N This means that the
energy-transfer rate to each wave is β` portion of βg.

In this paper, we present some preliminary results of an on going investigation of shear
flow of wind blowing over wave groups. We first outline our theory for determining β` and
then show results of numerical calculations of turbulent shear flow over a wave group.
For the latter, the mean flow features and turbulence statistics of cat’s-eye and sepa-
rated wake region are computed using a nonlinear fully realizable Reynolds stress closure
model which includes the effects of inhomeogenous, anistotropic distortion, diffusion, and
dissipation.
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Figure 1. Schematic diagram of wave groups for different values of κ and δ which may be
represented by equ. (2.1). Taken from Feir (1967).

2. Growth of waves within a group

When the side-band amplitudes of progressive waves, of finite amplitude on deep water
(namely, Stokes wave) become nearly equal, as they always do after sufficient ampli-
fication (Benjamin-Feir instability) profile of the forward-traveling modulation of the
primary wave train may be expressed as

ς = Re
{
aeik(x−ct) + ε(t)

[
eik2(x−c2t−θ2) + eik3(x−c3t−θ3)

]}
≡ η + ε(t)(η2 + η2) (2.1)

where

ε(t) = exp
{

1
2δ(2k

2a2 − δ2)
1
2ωt
}
, k2,3 = k(κ± 1), ω2,3 = ω(δ ± 1),

with both κ and δ � 1. As was pointed out by Benjamin and Feir (1967), the terms in
ε(t) represent a gradual modulation, at wave-number κk � k of the fundamental wave
a cos(kx − ωt). Note that, the first term, which is proportional to cos( 1

2θ2), describes
an amplitude modulation, and the second term with rapidly varying factor, describes
a phase modulation. Then the modulation envelope propagates at the group velocity
cg = δω/κk = 1

2c, where c = cr + ici.
Following Miles (1957), we shall assume an inviscid flow above the wave group (1)

whose mean velocity profile is logarithmic. Then, the surface pressure may be posed in
the form (c.f. Miles 1957, equ. (2.3))

pa = ρaU
2
1 k {(α+ iβ)η + ε(t) [(α2 + iβ2)η2 + (α3 + iβ3)η3]} (2.2)

then the complex phase speeds can be easily be shown to be

c2,3 = c2w,3w

[
1 +

1

2

k2

k22,3
(α2,3 + iβ2,3)

(
U1

c2w,3w

)2

s

]
(2.3)

where s ≡ ρa/ρw � 1, the suffices a and w refer to the air and water, respectively, and
U1 = U∗/K. Here, U∗ represents the wind friction velocity and K is the von-Kármán’s
constant.
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In equation (2.2), α` and β`, for ` = 1, 2, 3 are the real and imaginary parts of the
interfacial impedance for each wave l in a group. Also

c2w,3w = [g(1 + k2a2)/k]
1
2 − 2ik2,3νw; |k2,3νw/c2,3| � 1 (2.4)

are wave speeds in the absence of the air, and νw is the kinematic viscosity of the water.
The aim here is to determine the total energy-transfer rate, βg, over a wave group and

thence deduce the contribution that βg makes to energy-transfer rate βl for each i number
of waves in the group. Thus, for a growing wave group this requires determination of the
imaginary part of waves phase velocity in a group. We remark that the total energy-
transfer rate is related to the complex amplitude of the normal, Pg and the shear Tg,
stresses through

αg + iβg ≡
c2g − c2gw
sU∗1

=
(Pg + iTg)0

kaU2
1

(2.5)

where the suffix zero implies evaluation on the surface of a wave group.
This task requires extending the resonant interaction theory of Longuet-Higgins (1962),

for two gravity waves, to several waves, in conjunction with phase velocity effects inter-
tiary wave interaction (Longuet-Higgins and Phillips 1962). Thus, in the present case,
applying the above theories we find that

Cg = 1
2g
[
2
√
gk(1 + κ)−

√
gk(1− κ)

]−1
(2.6)

for the two side-band waves. Then, for example, the interaction of the lower side-band
wave with the primary wave yields

Cg = 1
2g
[
2
√
gk(1 + k2a2)−

√
gk3

]−1
(2.7)

Once all interactions between various waves are taken into account, it is relatively easy
(though algebraically lengthy) to show the end result of summing of all the sub-group
velocities, given by (2.5) and (2.6), yields exactly cg = 1

2c. However, it must be noted
that as c is complex then so will be cg, and the imaginary part cgi ≡ Im(cg) will be
responsible for the growth of the group envelope. We remark, however, that according to
above expressions not all waves in a group grow at the same rate.

3. Determination of cgi
As in SHD, we model the perturbations to airflow by eddy viscosity νe. The amplitude
of the vertical velocity perturbation satisfies the inhomogeneous Rayleigh equation

∂2Ŵ`

∂z2
−
(
k2 +

U ′′

U − ici

)
Ŵ` =

i

U − ici
∂2

∂z2

(
νe
∂2Ŵ`

∂z2

)
(3.1)

As was originally suggested by Belcher, Hunt and Cohen, in the middle layer where the
advection is much smaller then the curvature term, equation (3.1) reduces to

∂2Ŵ`

∂z2
− U ′′

U − ici
Ŵ` ∼ 0 (3.2)

and the solution is regular since U > 0. We note that if ci = 0, then significantly is
resolved by inertial effects.

Next, following Beji and Nadaska (2004) the amplitude of the surface pressure, for the
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present case, may be written as

[P1 + kε(P2 + P3)]a = [P1 + kε(P2 + P3)]0 − 2ρaga(2− kε) +

ρakac
2

(
k

c

){[
1

Ŵ0

∫ ∞
z0

(U − ici)Ŵ dz

]
+ 2kε

[
3∑
`=2

1

(Ŵ`)0

∫ ∞
z0

(U − ici)Ŵ` dz

]}
(3.3)

where now the suffix zero indicates evaluation at the surface roughness z = z0 and the
first term on the right-hand side of (3.3) is the total atmospheric pressure at the surface.
Equation (9) represents the air pressure on the surface of the wave group due to the
wind.

The continuity of pressure across the air-sea interface yields to the following expressions

[P1 + kε(P2 + P3)]0 − 1
2ρwga(2 + kε) + ρwkac

2(1− 2kε) =

[P1 + kε(P2 + P3)]0 − 1
2ρaga(2 + kε) + ρakac

2[T1 + 2(T2 + T3)]

where T1 =
k/c

Ŵ0

∫ ∞
z

(U − ici)Ŵ dz with similar expressions for T2 and T3. Eliminating

[P1 + kε(P2 + P3)]0, dividing by ρwa, and solving for c2 we obtain

c2 = cr{(1 + ε) + 1
2sIc −

1
8ε(2 + s− sIc)}+O(ε2, s2)

where Ic = T1 + 2(T2 + T3) and cr =
√
g(1 + k2a2)/k.

Once Ŵ` is determined (as in SHD) then the complex integrals Ic and hence the
complex phase speeds (in conjunction with expressions (2.2)) can be evaluated.

The total energy-transfer rate βg can be calculated from the following expression:

βg = (cr/U1)2Im{Ic} (3.4)

Finally, upon expansion of βg to β`, for ` = 1, 2, 3, etc. the energy-transfer rate to each
wave in a group may be determined.

4. Computations of turbulent flow over a wave group

Typically in the ocean waves move in groups, which affects how the wind flows over
the waves, how the waves break and thence how droplets form. This weakly nonlinear
interaction of mechanisms significantly influence the average momentum, heat and mass
transfer associated with waves.

By considering the dynamics of typical wave groups, it becomes possible to estimate
rationally how air flow affects the nonlinear interactions between waves, and compare how
this relates to the wave-wave hydrodynamic interactions, that are assumed to dominate
the distribution of ocean waves. Thus variations of wave shapes within a group could
also affect the net wave growth, while violent erratic winds can prevent the formation of
wave groups, so that wave growth may be reduced (but spray from waves is increased)
as is observed near the center of hurricanes. At higher wave speeds, another mechanism
is also significant, namely the displacement of the critical layer outside the surface shear
layer (i.e. cr > U∗).

The main objective of the present computations is to develop a computational model
for turbulent shear flow of air over steadily moving wave groups in which individual
waves are unsteady. Firstly this shows, by linear theory, for the individual waves in the
group the combined effects of the unsteady critical layer flow, and the viscous/turbulent
sheltering on the lee sides of the wave. Secondly, by using weakly nonlinear theory to
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Figure 2. Turbulent flow over a group of wave for cgr/U∗ = 3.9 (the top); 7.8 (the middle);
and 11.5 (the bottom).

analyze the disturbed air flow over the waves in groups, it is shown how the air speed over
the downwind part of the group is lower over the upwind part. This asymmetry causes
the critical layer height to be lower over the downwind part, which leads to critical layer
effect producing a net horizontal force on the waves, in addition to the sheltering effect.

The concepts based on this analysis will indicate how the effects of wave dynamics
will also affect the wave growth. On the other hand we shall investigate whether violent
erratic winds prevent the formation of wave groups, thereby reducing the wave growth.
A number of mechanisms have been proposed for how air-flow over a horizontal body
of liquid produces waves on its surface. Most of those proposed have been linear and
therefore can be applied to any spectrum of waves. However, the mechanisms and models
based on them are regularly applied when the surface disturbances induce gas and liquid
flows that are nonlinear, and where the waves are not monochromatic.

When the waves begin to grow at a rate kci, comparable with U∗k, the critical layer
is outside the shear layer near the surface, and the dynamics across the critical layer
are determined by inertial forces as the flow accelerates and decelerates over the wave.
We remark only if the wave is growing (or decaying), i.e. ci 6= 0, is there a net force on
the wave caused by critical layer dynamics (SHD). Their conclusion from a triple deck
analysis agrees with the result of Miles’ (1957) different method of analysis, but not his,
nor many subsequent authors (e.g. Lighthill 1962), conclusion that there is a net inviscid
force on monochromatic non growing waves, (i.e. ci = 0).

The way we propose to resolve this controversy is to consider weakly nonlinear in-
teractions of different mechanisms, such varying wave shape, wave surface, turbulence
stresses, etc. As wave groups are the best way of looking at the nonlinear mechanisms,
SHD analyzed the perturbed flow in the inertial layers at the critical heights and showed
how it contributes to the growth and decay of waves over the upwind and downwind
parts of a wave group. They concluded (against Miles 1957, Lighthill 1962) that there
would be no net growth, as a result of the critical layer mechanism, if the airflow was
linearly related to the surface. But a weakly nonlinear air flow analysis can show how
the airflow over the wave group becomes asymmetric and affects to a small extent the
heights of the critical layers over the group.

To demonstrate some of the arguments just made, we present some preliminary compu-
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tations of turbulent flow above a group of waves whose profile is calculated from equation
(2.1). We have adopted a fully realizable Reynolds-stress turbulence model

Du′iu
′
j

Dt
= Pij + Πij − εij + dij (4.1)

for computing u′iu
′
j which appear in the Reynolds-averaged Navier-Stokes equations. The

details of the closure model for various term in equation (4.1) can be found in Sajjadi et
al. (2001).

In figure 2 we have shown preliminary results of our computations for three different
values of cgr/U∗, where cgr is the real part of the group velocity cg. The values cgr/U∗
used for computations depicted in figure 2 are 3.9 (the top); 7.8 (the middle); and 11.5
(the bottom). The results shown in figure 2 seems to confirm the points made in this
section.

5. Conclusions

A conceptual theoretical and computational model has been developed for the quasi-
inviscid and turbulent shear flow over steadily moving wave groups, whose significance
was first pointed out by M.E. McIntyre. A weakly nonlinear theory is proposed to calcu-
late the energy-transfer rate to individual waves in a group. A computational model is
used to analyze the disturbed turbulent air flow over the waves in groups, which shows
how the air flow over the downwind part of the group is lower than over the upwind
part. This asymmetry causes the critical layer height to be lower over the downwind
part. Therefore the positive growth of the individual waves on the upwind part of the
wave group exceeds the negative growth on the downwind part (which would not be true
if zc was the same over the whole group). This leads to the critical layer group effect
producing a net horizontal force on the waves, in addition to the sheltering effect.
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