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Abstract

On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was
discovered through gravitational-wave (GW170817), gamma-ray (GRB170817A), and optical (SSS17a/AT
2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of
just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a
projected distance of ∼2 kpc away from the galaxy’s center. We use this minimal set of facts and the mass
posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of
the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional
kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic
motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and
SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic
BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary
bound after the second SN and having the merger occur relatively close to the center of the galaxy. These
constraints are insensitive to the galaxy’s star formation history, provided the stellar populations are older
than 1 Gyr.
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1. Introduction

The era of observational gravitational-wave (GW) astronomy
was firmly marked by the detection of the first binary black
hole coalescence GW150914 (Abbott et al. 2016) by the
Advanced LIGO detectors(Aasi et al. 2015). Discovery of a
GW source accompanied by coincident electromagnetic (EM)
emission, however, remained elusive until now.

On 2017 August 17 the Advanced LIGO (Aasi et al. 2015)
and Advanced Virgo (Acernese et al. 2015) interferometer
network recorded a transient GW signal consistent with the
coalescence of a binary neutron star (BNS) GW170817 (Abbott
et al. 2017b). Independently, a gamma-ray signal, classified as
a short gamma-ray burst (sGRB), GRB170817A, coincident in
time and sky location with GW170817 was detected by the
Fermi-GBM instrument (Abbott et al. 2017a, 2017b). The
three-detector GW data analysis led to the smallest sky-
localization area ever achieved for a GW source: ;31 deg2

when initially shared with the astronomy LIGO–Virgo partners
(LIGO Scientific Collaboration & Virgo Collaboration 2017)
and later improved to ;28 deg2 with a fully coherent data
analysis (Abbott et al. 2017b).

Aided by the tight localization constraints of the three-
detector network and the proximity of the GW source, multiple
independent surveys across the EM spectrum were launched in
search of a counterpart beyond the sGRB (Abbott et al. 2017c).
Such a counterpart, SSS17a (later IAU-designated
AT 2017gfo), was first discovered in the optical less than 11
hours after merger, associated with the galaxy NGC 4993
(Coulter et al. 2017a, 2017b), a nearby early-type E/S0 galaxy
(Lauberts 1982). Five other teams made independent detections

of the same optical transient and host galaxy all within about
one hour and reported their results within about five hours of
one another (Allam et al. 2017; Arcavi et al. 2017a, 2017b;
Lipunov 2017b; Tanvir & Levan 2017; Yang et al. 2017;
Soares-Santos et al. 2017; Lipunov et al. 2017a). The same
source was followed up and consistently localized at other
wavelengths (e.g., Corsi et al. 2017; Deller et al. 2017a,
2017b, 2017c; Goldstein et al. 2017; Haggard et al. 2017a,
2017b; Mooley et al. 2017; Savchenko et al. 2017; Alexander
et al. 2017; Haggard et al. 2017c; Goldstein et al. 2017;
Savchenko et al. 2017). The source was reported to be offset
from the center of the galaxy by a projected distance of about
10″ (e.g., Coulter et al. 2017a, 2017b; Haggard et al. 2017a,
2017b; Kasliwal et al. 2017; Yang et al. 2017; Yu et al. 2017).
NGC 4993 has a Tully–Fisher distance of ∼40Mpc (Freedman
et al. 2001; NASA/IPAC Extragalactic Database164), which is
consistent with the luminosity distance measurement from
gravitational waves (40 14

8
-
+ Mpc). Using the Tully–Fisher

distance, the ∼10″ offset corresponds to a physical offset of
;2.0 kpc. This value is consistent with offset measurements of
sGRBs in other galaxies, though below the median value
of ∼3–4 kpc (Fong et al. 2010; Fong & Berger 2013; Berger
2014).
BNS systems were first revealed with the discovery of PSR

B1913+16, the first binary radio pulsar ever detected (Hulse &
Taylor 1975). This immediately triggered new ideas for how
such close pairs of neutron stars can form in nature (De Loore
et al. 1975; Flannery & van den Heuvel 1975; Massevitch
et al. 1976; Clark et al. 1979), based on models for the
formation of high-mass X-ray binaries (van den Heuvel &
Heise 1972; Tutukov & Yungelson 1973) and Wolf–Rayet
X-ray binaries, for which strong orbital shrinkage is needed
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(van den Heuvel & De Loore 1973). With years of pulsar-
timing observations PSR B1913+16 provided the first firm
evidence that GWs existed (Einstein 1916, 1918) and were
emitted by close binary compact objects (Taylor & Weisberg
1982). This discovery greatly motivated the efforts to directly
detect GWs with laser-interferometric detectors and made BNS
coalescence events key targets in GW searches (see Abadie
et al. 2010 for an overview).

The formation of close binaries with two neutron stars that
will merge within a Hubble time is now understood to require
complex evolutionary sequences of massive binaries that
involve stable and unstable mass-transfer phases and two
core-collapse supernova (SN) explosions through which the
binary system survives (for reviews, see, e.g., Kalogera
et al. 2007; Postnov & Yungelson 2014; Tauris et al. 2017).
In particular, the SN explosions that lead to the formation of
neutron stars are expected to develop asymmetries during the
collapse, either due to neutrino emission or an anisotropic
explosion (e.g., Kusenko and Segrè 1996; Janka et al. 2007;
Janka 2013). This anisotropy imparts linear momentum on the
stellar remnant, known as an SN kick or natal kick.

Strong evidence for this process comes from observations of
Galactic pulsar proper motions, which indicate some neutron
stars are moving substantially faster than the inferred speed of
their progenitors and must receive a large SN kick of
∼400–500 km s−1 at birth (Lyne & Lorimer 1994; Kaspi
et al. 1996; Arzoumanian et al. 2002; Chatterjee et al. 2005;
Hobbs et al. 2005; Verbunt et al. 2017). However, compre-
hensive studies of the known BNS systems in the Milky Way
have shown that some neutron stars, particularly those in binary
systems, might receive smaller kicks than their isolated
counterparts (Podsiadlowski et al. 2004; van den Heuvel 2007).

About a decade after the Hulse-Taylor discovery, mergers of
two neutron stars were proposed as a potential source of GRBs
(Goodman 1986; Paczynski 1986; Eichler et al. 1989; Narayan
et al. 1992), especially those of short duration(Kouveliotou
et al. 1993). Since the discovery of host galaxies for short
GRBs in 2005(Berger et al. 2005; Fox et al. 2005; Gehrels
et al. 2005; Hjorth et al. 2005; Villasenor et al. 2005),
substantial evidence had accumulated in support of this
hypothesis. For example, many sGRBs have a significant
offset relative to the center of their host galaxy (see, e.g., Troja
et al. 2008; Fong et al. 2010; Church et al. 2011; Behroozi
et al. 2014): this suggests that the progenitors of these sources
have migrated from their birth sites to their eventual explosion
sites. Specifically, the offset distribution, together with the
locations of sGRBs relative to the stellar light of their hosts, are
indicative of systemic kicks (see, e.g., Berger 2014). To date,
GW170817 is the strongest observational evidence for an
extragalactic BNS system and the first GW signal confidently
coincident with an sGRB (Abbott et al. 2017a).

In this study, we focus on constraining the immediate
progenitor of GW170817 right before the second SN (SN2)
that formed the BNS system. We use (i) SN-kick dynamics and
kinematic modeling within the host galaxy from SN2 to
merger, and (ii) the GW-measured neutron star masses, the
identification of the source host galaxy, and its projected
distance offset from the galactic center based on the early
optical detections (Section 2). We emphasize that we develop
this analysis using the very limited knowledge about the galaxy
properties available in the literature prior to the announcement

of the GW170817 discovery, as at this time we do not have
access to the new analysis of galaxy characteristics and star
formation history. We present our main results for constraints
on the SN kicks, progenitor masses, pre-SN semimajor axes,
and galactic radii of SN2 in Section 3, and we explore the
sensitivity of our results to all our input assumptions. We find
that the constraints are (i) primarily dictated by the requirement
that the progenitor remains bound after SN2 and (ii) insensitive
to the star formation history of the host galaxy, provided stellar
ages are longer than ;1 Gyr. In Section 4, we use the GW BNS
merger rate to estimate a BNS formation efficiency for
NGC 4993, comment on the role of NGC 4993ʼs globular
cluster content in BNS formation, and conclude our analysis.

2. Analysis Methodology

To investigate the constraints that can be placed on the
progenitor of GW170817, we develop a modeling approach
comprised of the following elements: (i) assume a gravita-
tional-potential model for the host galaxy, described by a stellar
and dark-matter (DM) density profile; (ii) place binary systems
in the galaxy according to the stellar profile, and give them a
pre-SN orbit in the galaxy; (iii) sample the pre-SN binary
properties (pre-SN semimajor axis, progenitor mass of the
second neutron star, location of SN2 within the galaxy) and the
SN-kick velocity imparted on the binary following from SN2,
using multiple assumptions about the underlying distribution of
these parameters; (iv) sample the post-SN masses from GW
parameter-estimation posterior samples of GW170817; (v)
determine if the binary remains bound after SN2 and calculate
the post-SN orbital properties, systemic velocity, and inspiral
time, assuming two-body orbital mechanics and an instanta-
neous SN explosion; (vi) evolve the system forward in time,
following the trajectory of the binary through the static galactic
potential until it merges; (vii) select the systems with a
projected offset at merger consistent with the GW170817
measurements, and label them as GW170817-like; (viii) impose
constraints based on the age at which the binary formed (thus,
its delay time between SN2 and merger) and the true
(unprojected) distance from the galactic center, and investigate
how such constraints affect our inference on progenitor
properties; (ix) repeat the above steps for different input
assumptions of the progenitor properties to assess the
robustness of our results.
For each set of input assumptions, we evolve 50 million

binaries according to the above procedures, which is sufficient
to properly sample the distributions of GW170817-like
systems. This section provides the model details that are
adopted in our analysis.

2.1. Source Properties

The orbital-dynamics and kinematic analyses presented here
require both GW and EM information. The post-SN orbital
characteristics of a binary, such as the semimajor axis,
eccentricity, and systemic velocity, depend on the component
masses of the binary, which are measured in the GW inspiral.
The projected offset of the binary relative to NGC 4993ʼs
center, measured by EM observations, allows us to select
GW170817-like systems in the model populations.
The best-measured property of a GW inspiral is a

combination of the component masses known as the chirp
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mass, as it determines the leading-order frequency evolution of
a GW signal (Cutler & Flanagan 1994; Blanchet et al. 1995).
As the binary orbit shrinks and the orbital period decreases, the
GW phase becomes progressively influenced by relativistic
effects that are related to the mass ratio. Due to its higher-order
contribution, the mass ratio is constrained to a lesser degree
than the chirp mass. The measurement of these two parameters
are used to extract the component masses of the binary.
GW170817 had a measured primary mass of 1.36–1.60Me and
a secondary mass of 1.17–1.36Me, using low-spin priors
isotropic in orientation and with a<0.05, where a is the
dimensionless spin parameter (see Abbott et al. 2017b for more
details). Such low-spin priors are consistent with measured
spins in Galactic BNS systems (Brown et al. 2012). We sample
posterior distributions of these component mass measurements
for each binary realization and assume that the secondary
neutron star is the result of SN2.

The location of the source is measured with optical and
X-ray observations to an accuracy of 0 5 (Coulter
et al. 2017a, 2017b; Haggard et al. 2017a, 2017b; Kasliwal
et al. 2017; Yang et al. 2017; Yu et al. 2017). We combine the
information in these references with the range of distances
reported in NED and adopt a projected offset distance of
;2.0±0.2 kpc for our analysis.

2.2. Galactic Model for NGC 4993

To approximate the galactic potential of NGC 4993, we
employ the Hernquist density profile (Hernquist 1990) for the
stellar component and the Navarro–Frenk–White (NFW)
density profile (Navarro et al. 1996) for the DM halo. We
use the stellar profile for sampling the location of binaries
within the galaxy, and both the stellar and DM profile for
calculating the pre-SN circular galactic velocity and evolving
the post-SN binaries in the combined static potential.

The Hernquist profile has a density distribution given by

r
M a

r r a2
, 1

bulge

bulge
3

r
p

=
+

( )
( )

( )

where Må is the total stellar mass and abulge is a scale length
(Hernquist 1990). This profile satisfies de Vaucouleurs R1 4

law, an empirical law for the luminosity as a function of radius
for early-type galaxies (de Vaucouleurs 1948). Solving
Poisson’s equation for the gravitational potential yields

r
GM

r a
. 2

bulge


F = -
+

( ) ( )

The value for the scale length can be computed numerically in
terms of the half-light radius (Reff) as a R0.55bulge eff»
(Hernquist 1990).

The NFW profile is one of the most commonly used profiles
for representing the density distribution of DM halos:
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where 0r and the scale radius Rs vary from halo to halo
(Navarro et al. 1996). Solving Poisson’s equation leads to the

gravitational potential:
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Given a measurement of the DM halo mass, MDM, we assume
that M MDM 200» , where M200 is the mass of the halo enclosed
within radius R200 at which the density of the enclosed volume is
200 times the critical density of the universe. To determine the
value of the constants, we first find the concentration parameter
for this volume, c, using the empirical expression from Duffy
et al. (2008). The two constants are then calculable: Rs is defined
as R R cs 200= and the density parameter 0r is calculated by
integrating the mass distribution up to R200. Though the
gravitational potential energy is dominated by the stellar
component at small radii (see Figure 1), we use the combined
potential when determining the pre-SN galactic velocity and
evolving the binary post-SN: r rtot F = F +( ) ( ) rDMF ( ).
NGC 4993 has a stellar mass of h M1010.454 2

( ) (Lim
et al. 2017). This stellar mass is derived using K-band luminosity
of the galaxy from the 2MASS Redshift Survey (Huchra
et al. 2012), and the relationship between stellar mass and K-band
luminosity from the EAGLE simulation (Schaye et al. 2015). For
our analysis, we use the median value for the Hubble parameter
from Planck Collaboration et al. (2016): h=0.679. The DM halo
mass for NGC 4993 is h M1012.2

( ) (Lim et al. 2017). In
addition to stellar and halo masses, we use measurements of the
half-light radius of NGC 4993, Reff , which is used in the
Hernquist profile. The measured value of Reff for NGC 4993 is
provided in galaxy surveys (e.g., Lauberts & Valentijn 1989) and
was recently reported as 2.8 kpc(Yu et al. 2017), indicating that
the merger occurred at a projected distance of R0.71 eff~ from
the NGC 4993 center. With the above information, we construct a
simple model for the galactic potential of NGC 4993 to be used in
our kinematic modeling.

2.3. Orbital Dynamics with SN Kicks

We consider the effects of the SN explosion on the orbital
dynamics, assuming it is an instantaneous event which imparts
a SN kick to the newly formed neutron star and a mass-loss

Figure 1. Enclosed mass density (left axis, blue/green/gray) and circular
velocity (right axis, orange) profiles for our model galaxy. Stellar mass follows
a Hernquist profile (Equation (1)) and dark matter an NFW profile
(Equation (3)); note that here we plot the average enclosed mass density for
a sphere of radius r rather than the mass density at radius r. The vertical line
marks the projected offset of GW170817, which is a lower limit on the true
distance of GW170817 from the center of NGC 4993.
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kick (often referred to as a Blaauw kick; Blaauw 1961) on the
companion neutron star in the binary. We ignore the effects of
the first SN (SN1) on the trajectory and orbital properties of the
system. The primary reason for this is that previous studies
have shown that post-SN1 systemic velocities are small
(50–100 km s−1) compared to the galactic-motion velocities
(see Figure 6 in Belczynski et al. 2002). This is due to the wide
pre-SN orbits and hence low pre-SN binary orbital velocities,
which regulate the post-SN systemic velocities and limit them
to low values (see limits derived in Kalogera 1996). Also, any
eccentricity or high orbital separation imparted by SN1 would
likely be mitigated by circularization and inspiral during the
common-envelope phase of the companion prior to SN2.

The post-SN orbital properties, assuming the binary has
circularized prior to SN2, are derived as in Kalogera (1996):

A G m m
G m m

A
V

V V V

2

2 , 5y

post 1 2
1 2

pre
kick
2
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2
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1
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+

-
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-
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⎣⎢

⎤
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( )

e
V V V V V A
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1

2
, 6

z y
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2 k

2
k
2
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2

ky rel pre
2

1 2 post
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+ + +

+

( )
( )

( )

where Apre and Apost are the pre-SN and post-SN semimajor
axes, epost is the post-SN eccentricity, m2 is the mass of the
neutron born in SN2, m1 is the mass of the companion neutron
star, Vrel is the relative velocity between the binary components
pre-SN, and V ik are the components of the SN-kick velocity
Vkick in the frame of the binary, which is centered on the
exploding star with the pre-SN objects lying along the x-axis
and orbiting in the x–y plane.

The system is initially set on a circular orbit in a random
direction about the center of the model galaxy. As we show in
Figure 2, pre-SN orbits are essential to include when
calculating the trajectory of the binary and constraining kick
velocities, as kicks tangential to the galactic orbital velocity
cause a slingshot effect, which is much more efficient at
propelling the binary to outer regions of the galaxy than a
purely radial kick. In addition, the post-SN systemic velocity of
the binary depends heavily on the mass-loss kick as well as the
SN kick. Therefore, placing true constraints on the SN kick
based on the offset of the merger requires knowledge of the
magnitude of this mass-loss kick, which is dependent on the
progenitor helium-star mass165 (MHe) and pre-SN semimajor
axis as well as the final neutron star mass. In Figure 2, we
assume an optimally oriented mass-loss kick that is parallel to
the galactic velocity to show the true lower limits on the SN
kick as a function of SN2 location, for multiple choices of MHe
and Apre. By comparing the solid lines, we see that the lower
limit of SN kicks is strongly dependent the progenitor
properties we assume. Adopting a fiducial value consistent
with our constraints (M M3He =  and A R2pre = ) we find
that 99.95% of BNS systems born within 2 kpc of the galactic
center satisfy this lower limit. Furthermore, as all systems
above this limit reach the offset of 2 kpc in 10Myr, which is

about two orders of magnitude smaller than the typical delay
time, it is necessary to continue the evolution of the binary as it
explores the galaxy and possibly crosses the projected offset
many times, as discussed in Section 2.5.
Following the computation of the post-SN orbital properties,

the effect of the kick is added to the pre-SN systemic velocity.
Due to the SN kick and mass loss, the velocity of the exploding
star changes by

V V V
m
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V V, , , 7x y z2 k k

1

He 1
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+

⎛
⎝⎜

⎞
⎠⎟ ( )

where, again, MHe is assumed to leave behind the secondary
neutron star component m2. Thus, the contribution of the kicks
to the post-SN systemic velocity in the center-of-mass frame of
the system becomes

V
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Figure 2. Minimum SN-kick velocity required to reach a galactic radius of 2.0
kpc as a function of galactic location at the time of SN2. Mass-loss kicks are
accounted for, such that limits can be put solely on the SN kick for a given
combination of Apre and MHe. The thick black line with gray banded region
shows the minimum SN kick required to reach 2.0±0.2 kpc when the binary
is kicked tangential to the pre-SN galactic velocity, compared to the dashed
black line where the binary is kicked radially outward with no contribution
from galactic velocity. The assumed fiducial values for this binary progenitor
are A R2pre =  and M M3He = . Black points plotted in the background
show all sampled systems for various progenitor properties and kick angles as
described in Section 2.4; less than 0.05% fall below this limit. The time for
systems to reach this offset for various SN-kick velocities is shown by the
vertical colored lines. The solid lines to the left and right of the labeled solid
line show the tangential SN-kick velocities needed in a more conservative
(A R2pre = , M M1.5He = ) and less conservative (A R2pre = , MHe =

M4.5 ) mass-loss scenario, respectively. These cases all represent a lower limit
in the true physical distance that systems must travel to reach a projected
distance of 2.0 kpc, as the projected distance from the galactic center is always
less than the true distance.

165 Just before SN2 the companion to the first neutron star is expected to be the
He-rich core of a massive star, stripped of its H-rich envelope because of a prior
unstable mass-transfer episode and common-envelope phase. Without such a
phase, the binary orbits remain too wide for a BNS system that will merge
within a Hubble time to form.
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Given the pre-SN properties of the systems involved, the post-
SN systemic velocities are comparable to the galactic-motion
velocities (see Figure 1).

Before the systemic velocity is added to the pre-SN galactic
velocity at a random angle, we check constraints on the post-
SN orbital properties to ensure the system remains bound. First,
we require that the post-SN orbit passes through the pre-SN
positions of the masses (Flannery & van den Heuvel 1975):

e
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e1 1 . 9pre

pre

post
post - +( ) ( ) ( )

The mass loss and SN-kick magnitude give upper and lower
bounds on the amount of orbital expansion or contraction,
imposed as in Kalogera & Lorimer (2000):
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Finally, the kick velocity is constrained from above by the
requirement that the system remains bound, and from below by
the minimum kick velocity needed to keep the system intact if
more than half the mass of the progenitor is lost in SN2
(Kalogera & Lorimer 2000):
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2.4. Distributions for Pre-SN Progenitor
Properties and SN Kicks

The full 13-dimensional input space from which we sample is
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gal kick sys sys
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where m1 and m2 are sampled from the posterior parameters of
GW170817 (Abbott et al. 2017b); MHe is the progenitor
helium-star mass; Rgal, galq , and galf are the spherical
coordinates of SN2 in the galactic frame of reference drawn
from the Hernquist stellar profile; galW indicates the direction of
motion of the system about the center of the galaxy just prior to
SN2; Vkick is the magnitude of the SN-kick velocity imparted
on the newly formed neutron star; kq and kf are the angular
direction of the kick relative to the plane of the binary; and sysq
and sysf are the orientation of the plane of the binary with
respect to the galactic coordinates. All angles are sampled
isotropically in the sphere. This leaves MHe, Apre, and Vkick, for
which we consider various sampling procedures based on either
broad assumptions or observationally motivated distributions.
The majority of constraints on SN kicks come from proper

motion measurements of pulsars within our galaxy (Gott
et al. 1970; Lyne & Lorimer 1994; Kaspi et al. 1996;
Arzoumanian et al. 2002; Chatterjee et al. 2005; Hobbs et al.
2005; Verbunt et al. 2017). We adopt the distribution from
Hobbs et al. 2005 (Hobbs) as one of our input distributions for
Vkick: a Maxwellian distribution with a 1D rms σ of 265 km s−1.
However, the mechanisms that impart SN kicks to isolated
neutron stars may differ from those imparted to neutron stars
that remain bound in BNS systems. There are fewer than 20
known BNS systems in the Milky Way, making inference on
SN-kick properties a challenging endeavor. Nonetheless, many
studies have been performed to better understand the formation
process of these systems, combining the observational data
with theoretical modeling (e.g., Willems & Kalogera 2004;
Piran & Shaviv 2005; Stairs et al. 2006; Willems et al. 2006;
Wong et al. 2010; Osłowski et al. 2011; Beniamini &
Piran 2016; Tauris et al. 2017). Comprehensive analyses of
observed Galactic BNS systems demonstrate that 3–4 systems

Figure 3. Input SN-kick distributions used in this study, as described in
Section 2.4. The dashed line indicates a typical galactic orbital velocity in our
model of NGC 4993 for comparison; see Figure 1. Note that the distributions
are normalized over their full range ([0, 2500 km s−1]); we limit the interval
that is plotted to better see the morphological differences across distributions.

Table 1
Table of Pertinent Parameters in Our Simulations

Parameter Description Type Method

m1 Primary NS Mass Sampled GW Parameter
Estimation

m2 Secondary NS Mass Sampled GW Parameter
Estimation

MHe Helium-star Mass Sampled Uniform, Power
Law, BP16

Apre Pre-SN Semi-
major Axis

Sampled Uniform, Log Uniform

RSN Galactic Radius
of SN2

Sampled Hernquist

Vkick SN Kick Velocity Sampled Uniform, Hobbs, BP16
Apost Post-SN semi-

major Axis
Calculated Equation (5)

epost Post-SN Eccentricity Calculated Equation (6)
Vsys Systemic Velocity Calculated Equation (8)
Tdelay Delay Time Calculated Equation (14)
Rmerger Galactic Radius of

Merger
Simulated N/A

Note. Each parameter is designated as either “Sampled,” “Calculated,” or
“Simulated.” Hernquist (Hernquist 1990) is a stellar profile used for elliptical
galaxies (Section 2.2). Hobbs (Hobbs et al. 2005) is a Maxwellian distribution
with a scale of 265 km s−1 (Section 2.4). BP16 (Beniamini & Piran 2016) fits
log-normal models, with different best-fit parameters for low-eccentricity and
high-eccentricity binaries, for distributions in MHe and Vkick (Section 2.4).
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require small SN kicks (100 km s−1), while another 3–4
clearly require high SN kicks(100–200 km s−1; Wong
et al. 2010; Tauris et al. 2017). For the rest, SN-kick
constraints are too broad. In addition, theoretical considerations
indicate that SN kicks might be smaller for SN2 when
progenitors are stripped of their envelopes(Podsiadlowski
et al. 2004; van den Heuvel 2007; Janka 2013; Beniamini &
Piran 2016). This may suggest bimodality in the SN-kick
distribution for neuron stars in binary systems, likely based on
the stage of binary evolution the system is in at the time of the
SN kick (van den Heuvel 2007).

Beniamini & Piran (2016) present a two-population model
for this apparent bimodality, differentiating low-kick and high-
kick Galactic BNSs into two groups based on their observed
eccentricity and the rotation period of the pulsar in the system.
We use the best-fit parameters from this two-population model
(BP16) as another kick prescription from which we sample.
Beniamini & Piran (2016) also fit a mass-loss model to their
two populations, which is tied to the kick model since systems
with lower mass loss are expected to have a smaller shell at the
time of SN2 and therefore lower SN kicks. We use this two-
population model for mass loss as an input distribution for MHe,
which accompanies the bimodal SN-kick model. Physically,
the high-kick model corresponds to SN kicks from a Fe core-
collapse SN, whereas the low-kick model is meant to emulate
the population of binaries that receive electron-capture SN
kicks or SN kicks as an ultra-stripped helium star. For the
branching ratio between these two populations, we draw 60%
of samples from the low-kick model and 40% from the high-
kick model, as this is the proportion of Galactic systems that
fall into each of these categories (Beniamini & Piran 2016).
Finally, we consider an input distribution in SN-kick velocities
that is not informed by observations: uniform over the range [0,

2500 km s−1] (uniform). Figure 3 shows the input distributions
of the three SN-kick models described above.
In addition to the various SN-kick velocity input distribu-

tions, we consider multiple different sampling procedures for
MHe and Apre. For MHe, we use a uniform sampling and a power
law with an index of −2.35 (Salpeter 1955), ranging from m2

(i.e., no mass loss) to the nominal black hole limit of 8Me,
along with the two-population maximum-likelihood model for
mass loss from Beniamini & Piran (2016). We sample Apre
uniform and log uniform from 0.1 Re to 10.0 Re. The ranges
for both progenitor masses and semimajor axes are motivated
by the studies of Galactic BNS systems (e.g., Wong et al. 2010;
Tauris et al. 2017).
We summarize the various parameters in our model and

sampling procedures in Table 1. To gauge the impact our input
distribution on progenitor constraints, we perform runs in
which we alter the input distributions of MHe, Apre, and Vkick in
various ways. We use our least constraining input distribution
as our reference: uniform in Vkick, uniform in MHe, and uniform
in Apre. This reference sampling is used for our figures, unless
otherwise specified.

2.5. Kinematic Modeling

With the above we have all necessary quantities to evolve
the binary until merger. We calculate the delay time of the
binary as a function of post-SN semimajor axis and eccentricity
as in Peters (1964):
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Figure 4. Orbital trajectories of representative simulated systems that led to a successful GW170817-like merger. The trajectories show the 2D projection of the orbits
that are used to apply the offset constraint from GW170817. The white lines mark the initial (projected) circular orbit of the binary pre-SN, and the red arrows indicate
the projected direction of the SN kick. The trajectory of each binary post-SN until merger is displayed on the colored lines, where colors denote the passage of time.
Shading follows the projected stellar density of our model galaxy.
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where a0 and e0 are the initial (post-SN) semimajor axis, and k0
is determined from the initial semimajor axis and eccentricity
of the system.

After the binary has evolved for time Tdelay, we determine the
offset of the binary from the center of the galaxy by projecting
the system onto the x–y plane in galactic coordinates (i.e., we
assume the observer is looking at NGC 4993 down the galactic
z-axis). If the binary ends at an offset between 1.8 and 2.2 kpc
and merges in less than a Hubble time, it is considered a
GW170817-like system.

We initially take a simplistic approach and assume that all
binaries with delay times less than a Hubble time are valid
GW170817 analogs. We then consider a full range of possible
stellar-population ages for NGC 4993, from as old as the age of
the universe to as young as the present. Further discussion on
the star formation history of NGC 4993 is found in Section 4.
We also vary the projected offset of GW170817, as if it were
not known, to investigate how constraints on progenitor
properties change as systems are discovered further from their
host galaxies.

3. Results

Our main results comprise constraints on pre- and post-SN
binary properties and SN-kick velocities, which also determine
how long each binary lives between SN2 and its GW-driven
inspiral and merger. In Figure 4, we show a variety of galactic
orbits that potential GW170817 progenitors follow in their host
galaxy, depending on post-SN properties and associated delay
times. Delay times much longer than the dynamical timescale
of the galaxy (;20Myr at 2 kpc) typically lead to progenitors
exploring most of the galaxy kinematically despite the merger
happening relatively close to the galactic center. Shorter delay

times typically lead to simple orbits of minimal structure,
facilitating nearby BNS birth and merger locations, although
not always (see, for example, the bottom middle panel of
Figure 4).
The Tdelay times are effectively coupled to the star formation

history of NGC 4993, which prior to GW170817 was not well
studied. These values are indicative of how long ago SNe
typically occurred, and therefore mark the ages of the most
dominant stellar populations in this galaxy. In the analysis of
our results, we consider a range of different Tdelay constraints
and assess the sensitivity/robustness of derived constraints on
progenitor properties to assumptions about the stellar age of
NGC 4993, i.e., Tdelay of GW170817-like progenitors. Though
the projected offset of the optical counterpart to GW170817
was well constrained, we also consider our results’ robustness
against this location constraint. Last, we explore different
assumed distributions for the initial progenitor properties and
SN kick, and we assess the robustness of our results against
such changes.
The main results are presented in Figure 5, for our fiducial

simulation where we assume uniform distributions for all input
parameters (see Section 2.4). For the progenitor populations in
the top row, we examine probability density functions (PDFs)
on GW170817 progenitor properties when we impose the
projected distance offset constraint of 2.0±0.2 kpc, and
different lower limits on the Tdelay. It is remarkable that,
provided the stellar population in NGC 4993 is older than
1 Gyr, the progenitor constraints are highly robust. We also find
this insensitivity to the fine details of stellar ages to be true for
our other input distributions and when we constrain Tdelay to
specific ranges rather than imposing lower limits. Only if Tdelay
values shorter than 1 Gyr are allowed (i.e., recent star formation
has persisted in the host galaxy) are the constraints on the SN

Figure 5. Constraints on progenitor properties, SN-kick velocities, and the location of SN2 for various assumed delay times and projected offsets. All plotted lines are
kernel density estimates (KDEs) of the recovered distributions, and distributions are normalized over the full range of sampling for a given parameter; vertical axes
labels are omitted for readability. In the top row, we set lower limits to the delay times of systems and identify those that match the projected offset of GW170817. As
Tdelay is coupled to the star formation history of NGC 4993, this has the effect of constraining the simulated stellar population of NGC 4993 to older ages. Sampled
distributions are shaded in gray for reference. The middle row shows normalized distributions of binaries that survive SN2 (red) and merge at a projected offset of
2.0±0.2 kpc (green; light green shows the histogram of samples to compare with the KDEs). In the bottom row, we investigate how the projected offset of a
hypothetical merger similar to GW170817 affects inference on progenitor properties and SN kicks. In the middle and bottom rows, we assume that GW170817 arose
from a stellar population older than 1 Gyr.
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kick and the pre-SN semimajor axis strongly affected: shorter
time delays imply tighter post-SN BNS systems which allow
for tighter pre-SN binaries that can remain bound even with
higher SN-kick magnitudes. Delay times shorter than 1 Gyr
also produce a very sharp peak in the galactic radius of SN2
(RSN) around the merger distance, as the progenitor population
becomes dominated by binaries that are born as BNSs
relatively close to their merger site with short Tdelay. To
summarize, for delay times greater than 1 Gyr, the median
values and 90% ranges for our reference sampling are:

M3.0 1.5
3.5

-
+  for the progenitor mass of the second neutron

star at explosion, R3.5 1.5
5.0

-
+  for the pre-SN semimajor axis,

300 200
250

-
+ km s−1 for the second SN-kick magnitude, and

2.0 1.5
4.0

-
+ kpc for the birth radius away from the galaxy center.

More detailed results examining additional parameters and
parameter correlations can be found in Figure 8 in the
Appendix.

In addition to SN-kick velocities, we examine constraints on
the post-SN systemic velocities (Vsys). We find somewhat
tighter constraints on Vsys for GW170817-like binaries, peaking
at ;250 km s−1 and with 90% of systems below ;400 km s−1

when we constrain the population to T 1 Gyrdelay  . Tighter
constraints are to be expected as the systemic velocities are
limited by the requirement that the post-SN binary remains
bound; as a result, the systemic velocities saturate at values of
about 1.5–2 times the pre-SN relative orbital velocities (see

Kalogera 1996 for the analytical derivation of upper limits). We
again find that Vsys is robust to age constraints; the PDFs on Vsys
are practically identical provided the stellar population
is 1 Gyr.
In the middle and bottom rows of Figure 5, we examine how

significant of a constraint is the knowledge of the merger’s
offset from the galaxy’s center. Results in the middle row
demonstrate that the primary origin of our constraints on SN
kicks and progenitor properties stems from the requirement that
systems remain bound after the explosion. Higher kicks, more
massive helium-rich progenitors, and wider pre-SN orbits tend
to disrupt a larger fraction of systems. We also find that any
offset constraint at all differentiates the RSN distributions
between SN survivors and GW170817-like systems the most:
remaining bound post-SN is not affected by galactic location
and without the offset, of course, progenitors follow the galaxy
mass distribution. Imposing an offset constraint limits the birth
radius to within a factor of typically ∼2–3 from the offset. The
relatively small offset from the galaxy center shifts the SN
kicks and helium-star masses to smaller values, effectively
reducing the BNS post-SN systemic velocities, while it leaves
the constraints on Apre unaffected.
We further explore the robustness of our results on the

assumed input distributions for Vkick, MHe, and Apre, again
adopting the merger projected offset constraint of 2.0±0.2 kpc.
Specifically in Figure 6, we show our results for the three
different SN-kick distributions (see Section 2.4). We choose

Figure 6. Comparison of recovered PDFs from various input distributions on the SN kick. Vertical axes are normalized PDFs for a given parameter and PDFs are
normalized over the full range of the parameter; vertical labels are omitted for readability. Blue are the resultant PDFs from kicks drawn uniformly, orange PDFs are
kicks drawn from the Hobbs et al. (2005) prescription, and green PDFs are drawn from the two-population Beniamini & Piran (2016) prescription. The top row
considers all systems that merge within a Hubble time, and the bottom row systems with delay times bounded by T1 Gyr 14delay< < Gyr. Dashed lines show the
input distributions for each kick prescription, as well as the input distributions for MHe, Apre, and RSN. Note that the input distribution on MHe differs for BP16, and the
input distributions for Apre and RSN are identical across all three models.
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only two cases of Tdelay constraints given the robustness of our
results demonstrated in Figure 5: (i) no constraint (top row), i.e.,
star formation has continued in this galaxy up until the present,
and (ii) Tdelay > 1 Gyr (bottom row), i.e., the stellar population in
NGC 4993 is older than 1 Gyr. It is evident that the constraints
on MHe, Apre, and RSN are robust against these different SN-kick
assumptions. However, the robustness against different kick
assumptions comes with the corollary that the data from this one
observation is not extremely informative on the true underlying
SN-kick distribution. In general, we see that GW170817
constraints exhibit mild sensitivity to the input SN-kick
distributions. The uniform and Hobbs sampling procedures tend
to shift to smaller SN-kick magnitudes but by relatively small
amounts. The behavior with the BP16 assumption is different,
but not surprising: the BP16 input distributions are extremely
narrow and prescriptive, strongly dictating the allowed SN kicks
and progenitor masses. The constraints for Apre and RSN are
slightly stronger than those for Vkick and MHe; Apre is strongly
influenced by the limits placed on delay times, and RSN by the
offset of GW170817 with respect to the galactic center.

Lastly, we have performed additional simulations with
varying assumptions about the neutron star mass posteriors
(Section 2.1) and the galaxy parameters (Section 2.2). To test
the sensitivity of our results to neutron star mass measurements,
we sampled the high-spin prior (a 0.89< ) component mass
posteriors, which have a much broader range of 1.36–2.26Me
and 0.86–1.36Me for the primary and secondary components
masses, respectively (Abbott et al. 2017b). We find quantita-
tively insignificant differences in our progenitor constraints.
We also assess the robustness of our results against variations
in the measured properties of the galaxy (i.e., stellar and DM
halo masses, effective radius) and find insignificant changes for
variations up to ∼30%.

We quantitatively test the robustness of our results against all
assumption variations by calculating the Kullback–Leibler
(KL) divergence (Kullback & Leibler 1951), described in more
detail in the Appendix. The KL results, as well as the median
and 90% credible intervals on all progenitor parameters and all
input distributions are reported in Table 2 in the Appendix,
and quantitatively justify our statements on insensitivity and
robustness. The median values for the progenitor masses and
semimajor axes are mostly consistent with favored values
found with forward population synthesis of binary evolution
(K. Breivik 2017, private communication).

Prior to SN2, the helium star may have been overflowing its
Roche lobe and transferring mass to its neutron star companion.
If so, the helium star could have lost significant amounts of mass
( M1 ) prior to its explosion(Pols & Dewi 2002; Ivanova et al.
2003). To investigate the possibility of Roche-lobe overflow
(RLO) at the time of the SN2, we examine whether the
properties of GW170817 progenitors satisfy the conditions for
RLO, adopting the analytical fit for the helium-star radius from
Kalogera & Webbink (1998). Figure 7 plots successful binaries
on progenitor A Mpre He space, indicating those that would have
been in an RLO phase at SN2 in green. We see that a significant
fraction (;46%, assuming uniform input distributions as
described in Section 2.4) of the GW170817 progenitor systems
may have been undergoing RLO at the time of the BNS
formation. This is not a major surprise, as it is well established
by several independent studies that the double pulsar (and other
known BNS systems) was also in an RLO phase at the time of
SN2(Willems & Kalogera 2004; Piran & Shaviv 2005; Stairs

et al. 2006; Willems et al. 2006; Wong et al. 2010; Beniamini &
Piran 2016; Tauris et al. 2017).

4. Discussion and Conclusions

In the modeling analysis presented here, we focus on
constraining the immediate progenitor of GW170817, from its
actual formation at the time of the second SN to the final
merger. We use (i) SN-kick dynamics and kinematic modeling
within the host galaxy and (ii) the GW-measured neutron star
masses, the identification of the source host galaxy, and its
projected distance offset from the galactic center based on the
early optical discoveries. We make the most minimal/agnostic
assumptions possible and avoid full, high-fidelity population
synthesis models, which can account for the complex binary
evolution before SN2. We explore the robustness of our results
for different input assumptions.
In our analysis, we assume that the GW170817 progenitor

evolved as an isolated binary in the galaxy’s field population.
There are no reported results regarding observations of globular
clusters (GCs) in NGC 4993, so the number of GCs in the
galaxy is not known. Given that NGC 4993 could have a
sizable population of GCs, a dynamical formation channel for
the coalescing BNSs cannot be ruled out a priori. Typically, the
number of observed GCs in a galaxy correlates with the
luminosity of the galaxy (Barr et al. 2007; Harris 2016). This
observed correlation can be used to estimate the number of
GCs in NGC 4993. With an apparent V-band magnitude of
12.4 mag (Bellini et al. 2017) and a distance of 40Mpc, we find
an absolute V-band magnitude of −20.6 mag, which for an
E/S0-type galaxy would correspond to 250 150

750
-
+ GCs. However,

since in general GCs comprise only a small fraction of the total
mass of the galaxy(∼0.01%–0.1%; Harris et al. 2015) and
estimated observational merger rates for BNSs originating from

Figure 7. Presence of RLO in progenitor systems prior to SN2. Only systems
that produced successful analogs of GW170817 are plotted. Green indicates
that the system was in RLO prior to SN2, and blue indicates that the system
was at a large enough pre-SN semimajor axis to not be experiencing RLO prior
to SN2.
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GCs are low (Grindlay et al. 2006; Ivanova et al. 2008), the
isolated formation scenario is preferred. Bae et al. (2014), for
example, estimated detection rates for LIGO–Virgo of 0.024 to
0.1 events per year for M M1.4 1.4 – BNSs coming from GCs
(assuming a design-sensitivity BNS range of 200Mpc for the
LIGO detectors), which gives ∼10−4

–10−2 events per year
given the sensitivity at the time of detection (∼50, 100, and
25Mpc for Hanford, Livingston, and Virgo, respectively).
Such a low rate estimate is in contrast with the rate implied by
the current GW discovery, and therefore we consider it unlikely
that GW170817 was formed in a GC.

We can use the current knowledge from just this one BNS
detection in GWs to extract a first estimate of the BNS
formation efficiency: the fraction of massive binaries that
become merging BNS systems. Our GW data analysis has
yielded a measurement of the BNS rate density of
320–4740 Gpc−3 yr−1 (Abbott et al. 2017b), consistent with
the measurements from radio-pulsar observations (e.g., Abadie
et al. 2010). Given the volume density of Milky Way–like
galaxies in the local universe (i.e., galaxies of comparable mass
to the Milky Way) this rate measurement translates to
32–474Myr−1 per Milky Way equivalent galaxy (Abadie
et al. 2010). NGC 4993 is of a transitional galaxy type rather
than a spiral galaxy. We therefore use the galaxy’s stellar mass
(instead of their blue luminosities as traditionally done for star-
forming galaxies) to scale the BNS rate volume density to a rate
for this specific galaxy. For the Milky Way and NGC 4993
the masses are very comparable: both have approximately
60 billion solar masses in stars (Licquia & Newman 2015; Lim
et al. 2017), and therefore the BNS rate estimates based on
stellar mass are roughly comparable. Assuming a Salpeter-like
initial mass function (Salpeter 1955) we find that NGC 4993
has formed 4 108~ ´ binaries with stars whose initial masses
are greater than 5Me. For a typical merger delay time (which
dominates the lifetime of a BNS system) of 4 Gyr (see
Table 2 in the Appendix) we calculate that NGC 4993ʼs
efficiency in forming BNS merger systems per number of
massive binaries is in the range of ∼(1–50)× 10−4.

We model NGC 4993 with a spherically symmetric stellar
and dark-matter halo profile. We note that the galaxy type is
E/S0, an intermediate morphology between spiral and elliptical
galaxies, and it can possibly retain a disk structure component
instead of a pure spherical, radial profile(Lambas et al. 1992).
Most recently, however, Im et al. (2017) show that NGC 4993
is dominated by its bulge, further supporting our assumption of
a spherical gravitational potential. In addition, NGC 4993 has
an axis ratio of ;0.9 (Crook et al. 2007), which is consistent
with a nearly spherical elliptical galaxy (though it does not
exclude a face-on disk). In our analysis, we also adopt circular
orbits for the galactic motion of the progenitors prior to SN2,
even though there are more complex orbits allowed in realistic
potentials expected for galaxies like NGC 4993 (e.g., box
orbits). The key effect of including the galactic orbits is simple:
the pre-SN progenitor was already in motion with orbital
velocities of hundreds of km s−1, which is comparable to the
systemic post-SN velocities of the source. The specific shape of
the galactic orbits or of the gravitational potential does not
appear to be of particular importance, as our constraints are
primarily dictated from the necessity that the system remain
bound prior to SN2. This assertion is further supported by the
fact that our quantitative constraints for progenitor properties
are comparable to those found for BNS systems in the Milky

Way where the galactic potential of a spiral galaxy is used
instead.
In conclusion, we use a minimal set of observational

information to constrain GW170817ʼs immediate progenitor,
the SN kick imparted to the second neutron star, and its birth
location in NGC 4993 with an appropriate galaxy model and
the merger offset both informed by photometry. We obtain
relatively robust constraints on the progenitor properties, albeit
not always tight, strongly influenced by the requirement of
keeping the binary bound after the SN and having the merger
occur relatively close to the center of NGC 4993. The
GW170817 progenitor constraints derived in this study are in
good agreement with the progenitor constraints derived for the
Galactic BNS systems as well (e.g., Wong et al. 2010; Tauris
et al. 2017).
It is important to note that these constraints are essentially

unchanged provided the stellar populations in NGC 4993 are
older than 1 Gyr. The current literature on NGC 4993 does not
provide quantitative information on the galaxy’s star formation
history. Recent observations(e.g., Foley et al. 2017) might
indicate some star formation activity, but as an E/S0 galaxy, it
is unlikely that GW170817 was the result of very recent star
formation (DeGraaff et al. 2007). Additionally, observations
from Im et al. (2017) conclude that the stellar population in
NGC 4993 is older than 3 Gyr. Our results strongly indicate
that, for a small projected offset like that of GW170817,
knowledge of the precise star formation history of the host
galaxy is not vital in further constraining SN kicks and
progenitor properties.
As more EM counterparts to BNS mergers are identified, we

will add to the current sample of BNS systems from the Milky
Way and inferred from extragalactic sGRB offset measure-
ments to advance our constraints on progenitor properties. We
note that larger projected offsets from the host-galaxy center
may provide stronger constraints on the SN-kick magnitudes.
In such cases, information on the age of the host-galaxy stellar
population, and therefore on the BNS inspiral time, may
become more useful.
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Appendix
Detailed Constraints and Statistics

for Progenitor Properties

We provide more detailed PDFs on progenitor properties
inferred from GW170817-like systems with different delay
time constraints (Figure 8) and summary statistics for output
PDFs (Table 2). In Table 2, we include quantities that measure
the degree to which the PDFs change when we constrain the
delay times and require that the binaries match the observed
offset of GW170817. This PDF comparison is done using
the KL divergence (Kullback & Leibler 1951): P QKL =( ∣∣ )

p x p x q x dxlogò ( ) [ ( ) ( )] , where we take Q to be the samples
prior to applying a constraint (i.e., delay time or correct offset)
and P to be the samples post-application of the constraint.

Figure 8. Marginalized and joint PDFs on progenitor system properties Vkick, MHe, Apre, RSN, and Rmerger. We restrict GW170817-like systems to various lower limits
for Tdelay. The black points show the full population of binaries that correspond to the measured offset of GW170817 (i.e., they have no constraint on Tdelay). As delay
times become 1 Gyr, the constraints on GW170817-like samples are significantly tightened, in particular, removing systems with low Apre and thus short inspiral
times, systems with extremely high SN-kick velocities, and systems that are born as BNSs and quickly merge right at the offset of GW170817. The diagonal line in the
joint R Rmerger SN– PDF, for example, is an artifact of extremely short inspiral times leading to BNS systems merging at the same location as the second supernova.
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Specifically, the KL divergence measures the information
gained by updating a prior Q to a posterior P. The values are
computed by histogramming the samples from Q to approx-
imate q(x) and using the same bin locations to make a
histogram of p(x). The integral for KL divergence then
becomes analytic.
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Table 2
Summary Statistics for Various Input Distributions and Minimum Delay Time Constraints

Input T Gyrdelay ( ) Progenitor Properties KL Divergences

Vkick MHe Apre min max V km skick
1-( ) M MHe ( ) A Rpre ( ) R kpcSN ( ) T Gyrdelay ( ) offset V M,kick He M A,He pre V R,kick SN

H U U 0 14 373 218
289

-
+ 2.83 1.44

3.71
-
+ 2.64 2.40

6.00
-
+ 2.08 1.57

3.74
-
+ 0.14 0.14

9.39
-
+ 0.19 ref ref ref

H U U 1 14 315 184
240

-
+ 3.16 1.74

3.78
-
+ 4.03 2.48

5.04
-
+ 1.95 1.47

3.90
-
+ 4.01 2.84

8.38
-
+ 0.25 0.18 0.32 0.16

H U U 1.8 2.2 320 181
240

-
+ 3.06 1.65

3.74
-
+ 3.65 2.23

5.36
-
+ 1.94 1.46

4.04
-
+ 1.99 0.17

0.19
-
+ 0.49 0.69 0.83 0.59

H U L 0 14 390 240
328

-
+ 2.66 1.27

2.79
-
+ 0.40 0.29

3.99
-
+ 2.20 1.57

3.56
-
+ 0.00 0.00

3.44
-
+ 0.14 ref ref ref

H U L 1 14 305 184
249

-
+ 3.10 1.68

3.64
-
+ 2.75 1.53

5.02
-
+ 1.94 1.48

3.93
-
+ 3.42 2.29

8.61
-
+ 0.27 0.43 1.4 0.38

H U L 1.8 2.2 313 186
240

-
+ 2.96 1.54

3.61
-
+ 2.40 1.27

4.95
-
+ 1.94 1.50

3.55
-
+ 1.99 0.17

0.19
-
+ 0.48 1.2 2.3 0.95

H PL U 0 14 346 208
294

-
+ 1.75 0.47

2.00
-
+ 2.26 2.02

5.95
-
+ 2.20 1.43

3.79
-
+ 0.08 0.08

8.63
-
+ 0.16 ref ref ref

H PL U 1 14 285 173
254

-
+ 1.79 0.51

2.26
-
+ 3.93 2.37

4.96
-
+ 2.14 1.39

3.91
-
+ 3.79 2.64

8.50
-
+ 0.22 0.16 0.41 0.17

H PL U 1.8 2.2 296 175
249

-
+ 1.80 0.52

2.21
-
+ 3.53 2.12

5.33
-
+ 2.12 1.41

3.91
-
+ 1.99 0.17

0.19
-
+ 0.39 0.68 0.90 0.62

H PL L 0 14 375 231
321

-
+ 1.77 0.49

1.87
-
+ 0.42 0.30

3.46
-
+ 2.26 1.33

3.51
-
+ 0.00 0.00

2.42
-
+ 0.10 ref ref ref

H PL L 1 14 285 177
265

-
+ 1.81 0.53

2.23
-
+ 2.73 1.52

4.87
-
+ 2.14 1.42

3.93
-
+ 3.25 2.13

8.63
-
+ 0.22 0.32 1.5 0.41

H PL L 1.8 2.2 289 173
268

-
+ 1.82 0.54

2.14
-
+ 2.38 1.27

4.90
-
+ 2.14 1.44

3.97
-
+ 1.98 0.16

0.20
-
+ 0.37 1.1 2.4 1.1

U U U 0 14 470 420
1390

-
+ 2.99 1.59

4.01
-
+ 1.43 1.27

6.12
-
+ 2.17 1.60

3.68
-
+ 0.01 0.01

8.68
-
+ 0.16 ref ref ref

U U U 1 14 239 212
374

-
+ 2.79 1.41

3.71
-
+ 3.40 1.91

5.35
-
+ 2.05 1.52

3.88
-
+ 4.22 3.05

8.27
-
+ 0.26 0.47 0.66 0.47

U U U 1.8 2.2 260 222
384

-
+ 2.79 1.40

3.75
-
+ 2.93 1.58

5.62
-
+ 2.00 1.53

3.92
-
+ 1.99 0.17

0.19
-
+ 0.43 0.68 1.2 0.72

U U L 0 14 840 770
1390

-
+ 3.09 1.67

3.92
-
+ 0.30 0.19

2.23
-
+ 2.25 1.45

3.46
-
+ 0.00 0.00

1.12
-
+ 0.073 ref ref ref

U U L 1 14 211 190
409

-
+ 2.81 1.41

3.44
-
+ 2.51 1.30

4.38
-
+ 2.06 1.53

3.81
-
+ 3.55 2.42

8.55
-
+ 0.30 1.0 2.1 1.1

U U L 1.8 2.2 227 208
378

-
+ 2.84 1.44

3.21
-
+ 2.16 1.06

4.49
-
+ 2.02 1.52

3.75
-
+ 1.99 0.17

0.19
-
+ 0.45 1.5 3.3 1.5

U PL U 0 14 350 320
1230

-
+ 1.75 0.48

2.07
-
+ 1.57 1.40

5.81
-
+ 2.23 1.43

3.63
-
+ 0.03 0.03

8.84
-
+ 0.15 ref ref ref

U PL U 1 14 183 163
390

-
+ 1.76 0.48

1.94
-
+ 3.45 1.86

5.06
-
+ 2.22 1.39

3.74
-
+ 4.03 2.86

8.42
-
+ 0.20 0.33 0.64 0.35

U PL U 1.8 2.2 199 181
384

-
+ 1.75 0.47

2.00
-
+ 2.88 1.43

5.58
-
+ 2.23 1.42

3.46
-
+ 1.99 0.17

0.19
-
+ 0.35 0.58 1.1 0.60

U PL L 0 14 630 570
1490

-
+ 1.79 0.52

2.15
-
+ 0.31 0.20

2.42
-
+ 2.28 1.21

3.44
-
+ 0.00 0.00

1.41
-
+ 0.075 ref ref ref

U PL L 1 14 175 159
424

-
+ 1.80 0.53

1.96
-
+ 2.71 1.42

4.12
-
+ 2.22 1.42

3.78
-
+ 3.41 2.28

8.68
-
+ 0.20 0.76 2.1 0.85

U PL L 1.8 2.2 189 171
416

-
+ 1.81 0.54

1.99
-
+ 2.36 1.15

3.90
-
+ 2.20 1.46

3.74
-
+ 1.98 0.17

0.19
-
+ 0.34 1.2 3.0 1.2

BP BP U 0 14 7 4
241

-
+ 1.42 0.17

1.25
-
+ 2.24 1.94

2.92
-
+ 2.31 0.87

3.44
-
+ 0.9 0.9

10.4
-
+ 0.098 ref ref ref

BP BP U 1 14 7 4
212

-
+ 1.42 0.17

1.27
-
+ 3.39 1.35

2.79
-
+ 2.32 0.81

3.42
-
+ 4.52 3.33

8.13
-
+ 0.12 0.028 0.59 0.031

BP BP U 1.8 2.2 7 4
218

-
+ 1.42 0.18

1.25
-
+ 2.76 1.06

2.46
-
+ 2.31 0.86

3.41
-
+ 1.99 0.17

0.19
-
+ 0.21 0.28 1.9 0.26

BP BP L 0 14 7 5
245

-
+ 1.43 0.18

1.35
-
+ 0.59 0.47

3.11
-
+ 2.31 0.72

3.39
-
+ 0.01 0.01

6.24
-
+ 0.073 ref ref ref

BP BP L 1 14 7 4
209

-
+ 1.42 0.18

1.35
-
+ 3.07 1.41

1.59
-
+ 2.32 0.83

3.45
-
+ 3.66 2.53

8.55
-
+ 0.11 0.064 1.6 0.079

BP BP L 1.8 2.2 7 5
216

-
+ 1.43 0.18

1.38
-
+ 2.73 1.21

1.09
-
+ 2.32 0.86

3.45
-
+ 1.99 0.17

0.19
-
+ 0.20 0.39 2.9 0.41

Note. Reported values are the median and 90% confidence interval. The letters in the first three columns indicate the input sampling used: uniform (U), Hobbs (H), log
uniform (L), power law (PL), and BP16 (BP); see Section 2.4 for more details. KL divergence scores (in units of Nats) are reported in the four right-most columns,
quantifying information gained by imposing constraints (and by proxy, how much the PDFs change). “Offset” quantifies the amount of information learned by taking
all binaries that survive the second supernova and imposing the constraint that they merge at the correct projected offset, using the (Vkick, MHe) joint PDF. The
remaining three KL values take all post-SN binaries with the correct offset and sampling method indicated by the first three columns of a given row and restrict to
those with a Tdelay range specified by that row. These compare the 2D PDFs indicated by the column headers. The rows with T 0, 14 Gyrdelay Î [ ] have no age
constraints, and thus their age-restricted KL divergence will always be zero (they are being compared to themselves). We have labeled these as “ref” instead of zero, to
make this clear. As a rough rule of thumb, KL values 0.1 correspond to small differences in the distributions, ∼0.4–0.6 to modest differences, and 1.0 to quite large
differences. In general, we find that we learn slightly more by imposing the offset constraint if the age constraint is tighter. We also consistently get higher KL values
when Apre is included in the analysis, which is due to its strong correlation with Tdelay. Input distributions are described in detail in Section 2.4.
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