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This dissertation presents numerical methods for solving two classes of or-

dinary diferential equations (ODE) based on single-step integration meth-

ods. The first class of equations addressed describes the mechanical dynamics

of constrained multibody systems. These equations are ordinary differential

equations (ODE) subject to algebraic constraints. Accordinly they are called

differential-algebraic equations (DAE).

Specific contributions made in this area include an explicit transforma-

tion between the Hessenberg index-3 form for constrained mechanical systems

to a canonical state-space form used in the nonlinear control communities. A

hybrid solution method was developed that incorporates both sliding-mode

control (SMC) from the controls literature and post-stabilization from the

DAE related literature. The process of developing the hybrid method pro-
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duced insights into both areas in a way that allowed both areas to benefit

from the other’s strengths. First, the hybrid method produced an accurate

and efficient method for simulating sliding-mode control systems. A technique

called post-stabilization provides a more efficient method for simulating SMC

systems than conventional methods using the discontinuous control term. Sec-

ond, use of SMC mathematical framework allows the hybrid method to handle

arbitrary, or inconsistent initial conditions.

The second class of equations addressed here are discontinuous ODE.

Specific contributions made in solving DODE include further classification of

discontinnuities into parametric or structural discontinuities as well as unilat-

eral or bilateral events. Consistent event location and discontinuity sticking

from Park and Barton[56] originally addressed bilateral events only and were

implemented in a single-step environment and then extended to address uni-

lateral events as well. An effective detection scheme was developed using

low-order interpolants for detecting most events in the correct order. For rare

cases when the detection scheme fails, a try-catch model was implemented to

deal with two possible failure scenarios. The detection and location methods

successfully handled all events in the correct order for the benchmark problems

solved. Lastly, a region of concurrency was developed that can provide large

efficiency gains for some systems containing multiple closely spaced events.
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Chapter 1

Introduction

Simulation has grown to become an indispensible tool in the sciences,

engineering, and operations research. As defined by Bennett[28], simulation

is a technique or set of techniques used to examine the dynamical behavior

of abstract models. This can include anything from predicting where a rover

will touch down on the surface of Mars, to estimating micron-scale thicknesses

using obscure sensor information, to performing virtual surgery on a patient

prior to the actual procedure. Although simulation was brought to the public’s

awareness by the space race in the late 1960’s, widespread use of simulation

is still limited by factors such as availability, low awareness of it’s capabili-

ties and high cost-to-benefit ratios. Even within technical communities where

simulation awareness and availabilty are high, the costs are still significant,

requiring some combination of modeling, numerical methods, problem solving

and troubleshooting expertise.

This dissertation research is aimed at reducing the total cost in the simu-
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lation process by addressing one facet of the overall simulation process, namely

solution methods for solving two classes of ordinary differential equations

(ODE). The first solution method addresses differential-algebraic equations

(DAE)[3, 8] that model constrained multibody dynamic systems. The second

focuses on the general problem of solving discontinuous ODE (DODE)[28, 30].

Examples of both DAE and DODE are found in models of mechanical, elec-

trical, hydraulic, thermal, and magnetic systems. The focus in solving DAE

is clearly on constrained mechanical systems however, the solution method is

intended to address a wider class of engineering systems. Besides constrained

mechanical systems, it is useful for lumped-parameter models of constrained

electrical, hydraulic, and chemical systems that can be cast into the stan-

dard 2nd-order form found in both [3] and (2.1)-(2.4). In addition to lumped-

parameter modeling, to the extent that certain classes of PDE can be reduced

to ODE, the equations describing distributed-parameter systems are also can-

didates for solution with either of these methods. So long as the equations

are in the correct form, the usefulness of these solution methods is limited

neither by the formulation used to generate the equations nor the system(s)

they describe.

1.1 Solution methods overview

The solution methods developed are based on single-step numerical in-

tegration techniques, namely Runge-Kutta [7, 8] methods. Runge-Kutta inte-

grators can take relatively large steps compared to multi-step integrators and

2



produce fully high-order state estimates. They can also accommodate arbi-

trary stepsize changes from step to step whereas multistep integrators initially

require a special startup procedure to achieve full order and cannot accept

arbitrary stepsize changes without cost.

The first class of equations addressed result from some multibody dy-

namics formulations used to model constrained mechanical systems. Within

the total simulation process (Fig. 1.1), equation formulation deals primar-

Solution

Interpretation

Conceptual &

modeling

mathematical

1 2 3 4 5 No

Yes

solution?
Acceptable Successful

simulation

Return to
1, 2, 3, 4, or 5?

Solution
Methodsmethods

formulation

Equation
Solution

Postprocessing

Figure 1.1: The general equation-based simulation process.

ily with how to generate equations. This is a completely separate task from

finding solution(s) to, or solving those equations. Some formulations favor effi-

ciency over generality and go to great lengths to produce a minimal set of ODE.

Other formulations favor generality and scope of systems able to be addressed.

These typically result in a combined set of unconstrained ODE along with al-

gebraic constraints, or differential-algebraic (DAE) equations. The ODE often

represent unconstrained dynamics and the algebraic equations represent phys-

ical constraints such as pin, prismatic, rolling, or bracket-type joints. These

differential-algebraic (DAE) equations are significantly more challenging to

solve than ODE and require specicial consideration to ensure the algebraic

constraints are satisfied at each timestep. Imposing constraints on an un-

3



constrained system will change the permitted motion and theoretically the

equations of motion can typically be reduced to a single set of ODE. However,

because of a system’s topology or the desire to maintain a generalized mod-

eling environment, analytic reduction of all dynamics and constraints into a

single set of ODE is often impractical and sometimes impossible. As a result,

there are several techniques for both generating and solving constrained dy-

namics equations that implement some combination of analytic and numerical

techniques to solve the total set of DAE. The DAE solution method presented

here relies on analytic techniques borrowed from the computational mathe-

matics based literature combined with the framework and additional features

borrowed from the sligind-mode control literature. An explicit transforma-

tion is presented between constrained multibody dynamics equations in the

mathematics-based form and the canonical control-theoretic form. Both areas

of specialization are shown to benefit from the connection between the DAE

literature and the sliding mode control literature.

The second class of equations addressed here are discontinuous ODE.

In modeling physical systems, discontinuities typically arise from simplified

or macroscopic models of otherwise complicated interactions. Discontinuous

events produce sharp, nonsmooth changes in state trajectories. The underly-

ing theory on which most modern ODE (or DAE) solvers are based assumes

continuity and smoothness. As a result, when discontinuous changes occur the

methods perform poorly and the results can be less accurate or less efficient

than intended. Often in physical system models, discontinuous events are pre-

dictable functions of state or time. In this situation, or others where some

4



function is available to help locate events, this information can be used to im-

prove solver performance. The second half of this dissertation incorporates this

information into an ODE solver so that discontinuous events may be traversed

in a way that is more efficient and accurate than a standard smooth solver.

To improve efficiency, this method considers each right-hand-side (RHS) func-

tion evaluation as computationally expensive and attempts to economize on

the total number of RHS evaluations. Currently, other DODE solvers also at-

tempt to solve discontinuous ODE with the smallest possible number of RHS

evaluations. To improve accuracy, this method is equipped with event location

capabilities that can locate events down to machine tolerance. This tolerance

is independent of the integration tolerance so high-accuracy event location is

available although not required. Both the event location and integration tol-

erances can be adjusted as necessary to provide a tradeoff between cost and

efficiency. In comparison, some multi-step DODE solvers exploit the internally

generated interpolants from the underlying ODE (or DAE) solver. This not

only means the method is dependent upon a particular integrator, but also

that integration could be adversely affected by the event location tolerance.

1.2 Motivation

A generalized multibody dynamics software environment is used here

as a motivational example for improvements in the equation-based simula-

tion process. Modern multibody dynamics codes are capable of formulating

equations for large-scale systems (e.g. hundreds of rigid bodies) and, in the-

5



ory, are limited only by computational resources. However, in practice, they

are frequently limited by solution times of hours or days rather than com-

puter resources. In these cases it is apparent that the dominant simulation

bottleneck lies in the computer solution of ODE or DAE. Generally, some sig-

nificant factors that influence this bottleneck include programming language

and associated memory management, the underlying hardware, and the so-

lution method(s). Several identifiable areas of improvement specifically for

multibody dynamics codes include equation formulation, topology exploita-

tion, utilization of multiple processors, linear equation solver and sparse ma-

trix techniques, and inefficiencies in solution methods for stiff discontinuous

differential equations. This research presents algorithms designed to improve

efficiency and accuracy associated with solving systems of DAE and (sepa-

rately) discontinuous ODE. The equations addressed and solution methods

developed are intended for use within the framework of a large-scale multi-

body dynamics environment.

1.3 Contributions

As previously stated, the high cost-to-benefit ratio is still the limiting

factor in simulation’s use and the aim of this dissertation is to reduce some

of the costs. Before addressing the numerical methods in detail, some back-

ground is presented to identify the costs of simulation to provide a framework

in which to pinpoint the contributions made by this research. Some bene-

fits of simulation are first presented as motivation for continued research in

6



the area of simulation methods. Next, the particular subclass of models ad-

dressed by this research is presented along with the general simulation process

for equation-based simulation. Lastly, the general simulation process is fur-

ther expanded into some well-known techniques that more clearly locate the

research contributions of this dissertation in the scope of related simulation

practice.

1.3.1 Benefits of simulation

Bennet[28] argues that one of the great strengths of simulation is it’s

use for examining systems that do not necessarily exist - a kind of “virtual

prototyping.” Although simulation is primarily a means for analysis, its ability

to analyze virtual systems makes is an ideal tool for the design process. Some

examples of how simulation is beneficial to the design process are:

• In product design, simulation allows the designer to test options or eval-

uate “what if” scenarios.

• In control system design, simulation allows the control engineer to eval-

uate system performance with various controllers, plant variations, or

external disturbances.

• In safety system design, simulation allows the designer to test safety

systems virtually without requiring the real emergency (e.g. a nuclear

power plant safety system.)

Other examples that illustrate how simulation is beneficial for systems analysis:

7



• Simulation aids analysis for predicting or recreating failures.

• Simulation can be used to estimate or reconstruct quantities not directly

or easily measureable (e.g. heat flux or internal stress.)

• Simulation can be used to predict a system’s future behavior (e.g. the

weather in meterology.)

• Simulation can help evaluate the impact of system performance from an

upgrade or retrofit.

1.3.2 The general simulation process

The subclass of models addressed by this research are equation-based,

deterministic, continuous-variable, dynamic models. This is in contrast to

block oriented (i.e. those designed for analog computers), stochastic, discrete-

variable, or static models. The general equation-based simulation process is

shown in Fig. 1.1.

This research aims to reduce the costs associated with the “solution

methods” box in Fig. 1.1 by improving both accuracy and efficiency when

solving DAE and DODE. It also addresses the “solution interpretation”

box in Fig. 1.1 by presenting an energy-based metric for assessing solution qual-

ity. This has proven to be an invaluable aid in identifying and troubleshooting

problems during both equation and solution method development. An energy

metric can help answer the question “Is this an acceptable solution?” After

arriving at a solution, asking the questions, “Is this solution reasonable?”, or

“Is there a way to tell how close this solution is to the right answer?” is good

8



simulation practice but is often difficult to answer. Although somewhat arbi-

trary, an energy metric can help answer these questions by providing a means

by which to assess a solution’s quality. Again, this arbitrary “quality” may be

in reference to an expected theoretical result or an anticipated energy varia-

tion based on integration tolerance. Certainly, easy-to-see or “large” variations

such as unexpected spikes in an energy function is useful for troubleshooting

during a simulation’s development.

As mentioned above, the focus of this research is on these two solution

methods and is somewhat independent of how, or from what system, the equa-

tions were developed. For example, if a finite-element package generates DAE

or DODE in the form presented in chapters 2 or 5, then these solution methods

are just as applicable as if the equations were developed from a Bond-Graph

model of an electro-mechanical-hydraulic system or a rigid multi-body dynam-

ics system. Fig. 1.1 helps clarify the functional components of equation-based

simulation and highlights the distinction between equation formulation and

equation soltuion methods. Fig. 1.2 shows the boxes from Fig. 1.1 expanded

with an incomplete list of techniques in multibody dynamics simulation to

further delineate the areas in which this dissertation makes contributions.

1.4 Dissertation organization

Chapter 2 introduces the multibody dynamics DAE problem along with

a literature review, including a review of some control theoretic approaches to

solving these DAE. Chapter 3 reviews some introductory concepts in sliding
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Figure 1.2: Some well known techniques in the multibody simulation process.

mode control theory and then presents the multibody dynamics DAE prob-

lem as a control problem. It also presents the hybrid solution method using

techniques from computational mathematics and sliding mode control theory.

Benchmark problems from the literature are used to demonstrate the new

method’s effectiveness as well as demonstrate the potential shortcomings of

post-stabilization which is a DAE-based solution technique. Chapter 4 intro-

duces the discontinuous ODE problem along with a review of the literature

in that area. Chapter 5 presents some new characterizations of DODE, some

extensions of previous work, and a new method based on single-step integra-

tion methods. Benchmark problems are presented with enough information to

compare efficiency and accuracy against results from the literature. Chapter

6 presents conclusions from both solution methods, and Chapter 7 draws the

10



two somewhat unrelated solution methods together to form a vision for future

work on a discontinuous high-index DAE solver.
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Chapter 2

Background on Control Theory

for Multibody Dynamics

Simulation

2.1 Introduction

Many large scale multibody dynamics software packages have equation

formulations that lead to higher index DAE. Since DAE are composed of some

differential equations and some algebraic equations, a natural approach to

solving them might be to differentiate the algebraic constraints until an ex-

plicit set of ODE were reached. Assuming the DAE in question are solvable

with this approach (see [3] and [8] for restrictions) the index is the number

of differentiations required to convert the DAE into an explicit set of ODE.

Higher-index DAE are those with index ≥ 2 and contain some “hidden”, or

12



implied constraints. Solution methods for these equations have recently re-

ceived much attention in the literature. Several well established methods for

solving DAE are constraint stabilization methods, variational methods, and

state-space methods. For a complete review, see [1, 2, 3, 4, 5] and the refer-

ences therein.

There are two basic approaches to equation formulation of multibody

dynamic systems (MBS) with both holonomic and nonholonomic constraints.

The first approach analytically eliminates the constraint forces and generates

a minimal set of ODE. However, this contributes to the numerical instability

of direct integration [2, 3, 6].

The second approach explicitly leaves all constraint forces in the equa-

tions and attempts to find forces such that the constraints are satisfied. This

approach results in semi-explicit, higher index differential algebraic equations

(DAE) [2, 8, 9]. Yun and Sarkar [10] present a thorough literature review on

solving these types of systems and develop a unified state-space treatment for

systems with both holonomic and nonholonomic constraints. Their solution

approach explicitly solves for the forces that drive the constraints to satisfac-

tion. This is analogous to the control problem where inputs to a system are

found that regulate the output (i.e. the constraints) to zero.

Using a control theory framework to solve DAE systems has been re-

ported in the literature for some time. Baumgarte’s constraint stabilization

method [4] can be viewed as application of a classical PD controller to the

constraint dynamics. Besides the difficulty in choosing his PD controller co-

efficients (α,β) a common negative aspect of all stabilization methods whose

13



action relies on constraint violation is the presence of constraint dynamics.

By allowing constraint dynamics, the original problem is changed into a new

problem with more degrees of freedom and may yield a significantly different

solution. In particular, use of linear control theory ensures the presence and

perpetuation of constraint dynamics. Admittedly, the effects of these dynamics

may be reduced by forcing them to have time-constants much smaller than the

original DAE, however this may, in turn, add unwanted numerical stiffness to

the problem. More recently, McClamroch developed a theoretical framework

for feedback control of smooth systems described by nonlinear DAE and proves

that a smooth solution exists [11, 12]. However, he is careful to point out that

showing the equivalence of DAE to controlled ODE is not the same as actu-

ally developing the control inputs required to maintain the constraints at zero.

Chiou and Wu [13] use input-output feedback linearization to transform the

nonlinear DAE into a set of linear equations. However, their constraint viola-

tion stabilization technique introduces fictitious constraint dynamics. Assum-

ing a consistent set of initial conditions, or ICs, the introduction of constraint

violation dynamics can be avoided through sliding-mode control (SMC). In

addition, SMC’s accommodation for reaching-phase dynamics eliminates the

requirement for consistent ICs (Fig. 3.2). Gordon, Liu, and Asada present a

similar development using SMC to produce a state-space realization of high-

index DAE [14]. They make connections between control theory and DAE

solution methods and solve the underlying ODE with singular-perturbation

methods along with both classical discontinuous SMC inputs and SMC with

a boundary layer. The singular-perturbation approach converges to the exact
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solution with a residual error. However, the amount of error can be significant

and a lower bound on the possible error achievable through this method is un-

clear. The method presented here combines similar theoretical development

using SMC as a formalism for defining invariant manifolds composed of linear

combinations of the constraints and their derivatives. However, the difference

lies in the numerical solution of the underlying ODE. While one of their so-

lution methods carefully considers the computational costs involved and aims

to lower that cost through use of a switching input, as long as a SMC input is

used to drive s to zero, the lower bound on constraint violation is limited to

that of the integrator, O(hp). The solution method presented here can provide

constraint satisfaction to O(h2(p+1)) using post-stabilization which, for even a

modest integrator order of p = 4 and h = 0.01, can easily solve the constraints

to machine tolerance (i.e. as good or better than O(10−16.)

Zhao and Utkin present a paper that develops a step-by-step algorithm

for simulating SMC systems [15] using a Newton-Raphson technique. Their

method performs well for single-input systems and eliminates the chattering

caused by discretization of continuous SMC theory (i.e. numerical integra-

tion.) However for systems with m inputs and constraints, it requires m inte-

gration steps to create a rank-m ds
du

gradient matrix. For systems with many

constraints this method quickly becomes prohibitively costly.

This chapter presents a combination of SMC and other stabilization

methods to solve smooth constrained mechanical system dynamics. The un-

derlying problem to be solved in simulating mechanical dynamic systems is

to find the numerical solution to an initial value problem (IVP)[3, 7, 8]. For
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the class of equations addressed in these twp chapters, the challenge is to find

some inputs to a dynamic system such that the constraints will be satisfied.

The system motion is discretized along the independent (time) axis and the

goal of computational dynamics is to find a discretization that is both suffi-

ciently accurate and reasonably efficient. The use of linear control theory for

solving DAE systems can potentially provide the accuracy but at the sacrifice

of efficiency. For example, stiff springs and dampers may be used to satisfy

constraints, however this introduces numerical stiffness[8] which causes other

problems. Relaxing the stiffness and damping produces constraints that are

not guaranteed to be fully satisfied. In fact, the linear control theory itself en-

sures the presence of constraint dynamics with it’s own rise-time, overshoot,

etc. The presence of constraint dynamics and the inability to guarantee non-

linear constraint satisfaction with linear control theory presents a need for a

more sophistocated approach. SMC is applied because of its ability to address

holonomic and nonholonomic systems simultaneously, as well as being able

to address multiple-input/multiple-output (MIMO) nonlinear systems without

resorting to approximations or other simplifying assumptions [16]. A switching

surface is chosen as a function of the constraints and a smooth control input,

ueq, is presented that defines the surface as an invariant manifold [17, 18]. A

hybrid stabilization method is depicted in Fig. 2.1 that eliminates chattering

commonly found in simulation of discontinuous SMC systems [15, 19].

For consistent ICs, u = ueq and post-stabilization is used throughout the

interval [tinitial tfinal]. However, for inconsistent ICs, ui = ueq,i+urobust,i where

urobust,i = −ηi · sgn(si) until si reaches zero (i.e. |si| ≤ O(hp)). Afterward,
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Figure 2.1: Time intervals of stabilization methods

ui = ueq,i and post-stabilization is used for that surface over [treach,i tfinal].

Each surface’s reaching time is located accurately with Hermite-Birkhoff in-

terpolants [20] signaling the transition between stabilization methods. The

theory behind post-stabilization suggests a new way of using SMC boundary

layer dynamics. This idea is developed into an effective acceleration-level sta-

bilization method that used over the same time intervals as post-stabilization.

2.2 Multibody dynamics DAE

We seek the solution of semi-explicit, index-3, DAE given by,

q̇ = v (2.1)

M(q)v̇ = D + JTλ (2.2)
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0 = Φn(q, v) (2.3)

0 = Φh(q), (2.4)

The system is described by N position coordinates, q = [q1, q2, ..., qN ]T ,

andN velocity coordinates, v = [v1, v2, ..., vN ]T . M(q) is an invertible, position-

dependent mass matrix ∈ <N . D contains position and velocity dependent

terms along with any system inputs, τ , and is given by,

D = E(q)τ − V (q, v)−G(q). (2.5)

The functions V (q, v) and G(q) are both ∈ <N , and represent velocity

and position, or gravity dependent terms, respectively. The external input τ is

∈ <p representing actuator torques (or forces), with E(q) ∈ <p×N mapping the

actuator space into the (q,v) coordinate space. Φn represents mn independent,

first-order, non-integrable, nonholonomic constraints,

Φn ≡ [φn,1(q, v), φn,2(q, v), ..., φn,mn(q, v)]T = 0, (2.6)

and Φh represents mh independent holonomic constraints,

Φh ≡ [φh,1(q), φh,2(q), ..., φh,mh(q)]T = 0. (2.7)

For simplicity, (2.6) and (2.7) are both scleronomic, or time-independent.

This assumption is only for notational convenience and not a restriction of the

theory developed in the remainder of this chapter [18].

In equation (2.2), J is the combined velocity and position gradients of
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the velocity- and position-level constraints, namely,

JT =

[
JTv JTq

]
. (2.8)

In this expression, Jv is the nonholonomic constraint Jacobian, Jv = ∂Φn(q,v)
∂v

∈ <mn×N and Jq is the holonomic constraint Jacobian, Jq = ∂Φh(q)
∂q
∈ <mh×N .

All constraints are assumed independent, so J is rank-m where m = mn +mh.

Finally, λT = [ λTn | λTh ] are the Lagrange multipliers associated with the

nonholonomic and holonomic constraints, respectively.

The number of ICs of this system is n = 2N which is the number

required by the underlying ODE. In addition, the requirement for consistent

initialization of the original DAE is not necessary, in contrast to other DAE

methods [1, 21, 22].

This chapter opened by presenting two standard methods for formulat-

ing constrained multibody dynamics equations. The first results in a minimal

set of ODE while the second results in a larger set of DAE. Narrowing the

discussion to DAE solution methods, some previous work in solving DAE us-

ing techniques from control theory were presented along with their respective

strengths and weaknesses. Sliding mode control was presented as a viable

candidate from control theory and, again, previous related work was critically

reviewed. A hybrid solution method was introduced that combined the math-

ematical framework and guarantees of SMC with some techniques from the

computational mathematics community. Finally, the standard computational

mathematics form for constrained multibody dynamics DAE was presented in

19



preparation for an explicit transformation to a standard equation form from

the controls community.
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Chapter 3

An MBS DAE Solver Using

MIMO SMC

This chapter starts by presenting one standard equation form from non-

linear control theory. An explicit transformation is then developed between

this form and the standard mathematics based form presented in the last chap-

ter. A typical sliding mode control design procedure is presented along with

further explanation of SMC’s benefits. Portions of the SMC design procedure

are combined with some techniques borrowed from (and inspiried by) the DAE

related literature to create the hybrid solution method. Details of the hybrid

method are then presented including the SMC switching surfaces and equiva-

lent control, post-stabilization, and an acceleration-level stabilization. Finally,

the hybrid method is applied to two example problems with numerical reults.
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3.1 Formulation of MBS DAE as a control prob-

lem

An affine MIMO nonlinear control system is given by [18],

ẋ = f(x) +B(x)u(x) (3.1)

y = h(x) (3.2)

yd ≡ some desired function. (3.3)

The vectors ẋ and f(x) are both ∈ <n×1, B(x) is ∈ <n×m, and u(x) and h(x)

are ∈ <m×1. Equations (3.1)-(3.3) are in companion form or control canonical

form [23]. To take advantage of the knowledge base and well developed theory

found in the controls field, this section will show how equations (2.1)-(2.4) can

be rewritten into an equivalent problem in the form of (3.1)-(3.3).

Assuming n states, each (xi,xi+1) corresponds to each of the N Carte-

sian coordinate pairs, (qj, vj). It is clear that n = 2N and the n×1 simulation

state vector is,

x = [q1, v1, q2, v2, . . . , qN , vN ]T . (3.4)

Introduce two constant rank(N) matrices, e and k, that are both n×N with

structures,
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e ≡



0 0 0 0 . . . 0 0

1 0 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 1 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 1 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 0

0 0 0 0 . . . 1 0

0 0 0 0 . . . 0 0

0 0 0 0 . . . 0 1



, k ≡



1 0 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 1 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 1 0 . . . 0 0

0 0 0 0 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 1 0

0 0 0 0 . . . 0 0

0 0 0 0 . . . 0 1

0 0 0 0 . . . 0 0



. (3.5)

The relation between the N × 1 position and velocity vectors,

q = [q1, q2, . . . , qN ]T , (3.6)

v = [v1, v2, . . . , vN ]T , (3.7)

and the n× 1 state vector, x, is,

x = ev + kq. (3.8)

Similarly,

ẋ = ev̇ + kq̇. (3.9)
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Both matrices e and k have the property that their transpose multiplied

by themselves is equal to an N ×N identity matrix, eT e = kTk ≡ IN×N , and

the first transposed and multiplied by the other yields an N ×N zero matrix,

eTk = kT e ≡ ON×N . Given the above relations, premultiplying equation (3.9)

first by eT then by kT gives,

v̇ = eT ẋ, and q̇ = kT ẋ. (3.10)

To express equations (2.1) and (2.2) in control canonical form, ẋ =

f + Bu, both are written in terms of ẋ then added together to produce 2N

first-order ODE. First, noting from (3.10) and (2.1) that kT ẋ and v are equal,

this relation is premultiplied by k yielding:

kkT ẋ = kv. (3.11)

Next, equating v̇ from (3.10) and (2.2) and premultiplying by e yeilds:

eeT ẋ = eM−1D + eM−1JTλ. (3.12)

Adding (3.11) and (3.12) produces

(eeT + kkT )ẋ = (eM−1D + kv) + eM−1JTλ (3.13)

By observing (eeT + kkT ) = In×n, (3.13) reduces to

ẋ = f +Bu (3.14)
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where

f = (eM−1D + kv) B = eM−1JT u = λ

Note that the leading matrix B causes the inputs to enter the plant only

at the acceleration level. Because accelerations are proportional to external

forces, use of acceleration-level inputs only is viewed as a physically realistic

approach to constraint satisfaction.

Now, expressing the constraints (2.3)-(2.4) as control system outputs,

y = h(x), or,

yT ≡ [ φTn | φTh ], (3.15)

with the desired trajectories all zero,

yTd ≡ [ 0, . . . , 0 | 0, . . . , 0 ]. (3.16)

This section has shown how constrained MBS DAE (2.1)-(2.4) can be

expressed in the standard control canonical form (3.14)-(3.16).

Although the connection between control system equations and con-

strained MBS DAE has been identified [11, 12, 14], this explicit transformation

between the two has not been previously presented in the literature.
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3.2 Introduce sliding mode control

Sliding mode control (SMC) has it’s origins in the Russian literature

from the late 1950’s and early 1960’s. SMC is an attractive control strat-

egy for physical systems that exhibit nonlinear, time-varying, and uncertain

characteristics. Not only does it provide performance guarantees for this class

of systems, but it is especially attractive here because of the mathematical

framework in which it is set. Sliding mode controller design is a two stage

process of defining surfaces that represent the desired system behavior and

then computing some input that will bring about, and maintain the desired

behavior despite uncertainty and disturbances.

3.2.1 Order reduction

The first stage in the design process transforms the general nth-order

tracking problem into a 1st-order stabilization problem. This transformation

results from the assertion that it is easier to control 1st-order differential equa-

tions, whether they be nonlinear or uncertain, than it is to control general

nth-order differential equations. Transforming the high-order tracking prob-

lem into a 1st-order stabilization problem essentially extracts the relevant error

dynamics from the overall system motion and, for MIMO systems, decouples

them into individual partial components. At this point conventional control

methods may be applied component-wise to maintain each individual surface

at zero. For example a PID or optimal control law may be applied to drive all

si to zero. The reduced-order system to control may be expressed as the total
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system motion projected onto subspace s,

ṡ = Gf +GBu (3.17)

where G = ∂s/∂x.

The sliding mode is a system motion designed by the control engineer

and achieved through the control input. Once reached, however, the sliding

mode is independent of the input and described by the surfaces themselves.

The sliding mode occurs in the state-space at the intersection of m surfaces,

si = 0, and once there, the order of the motion equations is m less than the

order of the original system. This is precisely the motion, or solution, sought

when solving constrained MBS DAE. Although all m surfaces are at si=0, the

other (n−m) coordinates are free to move as the dynamics dictate. Since m

constraints are successfully imposed on the original n-dimensional system, the

constrained system motion is (n−m)-dimensional. So, the sliding surfaces not

only represent a place but also a dynamics [23].

3.2.2 Design the surfaces

Designing sliding surfaces for the general nonlinear control system in

(3.1)-(3.3) may be chosen with intuition and knowledge of the physical system

being controlled. More generally, surface design is aided with a definition

similar to that given in Slotine,

si(x, t) =

(
d

dt
+ σi

)ri−1

· erri i = 1 . . .m. (3.18)
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The tracking errors are represented by erri = yd,i − yi and ri is the relative

order of the ith output. The output’s relative order is essentially the number of

time-derivatives required of the output for the input to show up. For example,

r = 2 for a displacement-level output in a typical 2nd-order robotic system

since d[2](y)/dt[2] = f(q̈) and q̈ = f(q, q̇, u). Note that the exponent in (3.18) is

(ri−1) which defines the surfaces one derivative away from revealing the control

input. This is essential for providing convergence and invariance guarantees

since it allows the control input to directly influence ṡ. If ṡ can be specified

arbitrarily, then s can also be controlled arbitrarily. As in Fig. 3.1, if s 6= 0, u

can be used to control ṡ such that s is driven to zero.

�
���

Figure 3.1: The desired dynamics occur at the surface s = 0.

3.2.3 Design the control

The second stage in the design process is to choose some discontinuous

control input that guarantees the system will achieve and remain in the sliding

28



mode. One way to do this is to solve for ueq and η in the total control input,

u = ueq +η ·sgn(s). Neglecting any uncertainties, the equivalent control term,

ueq will maintain ṡ = 0 and hold s constant. The final step in identifying u is

to compute η such that the surfaces are both attractive and invariant. Surface

attractiveness assures the sliding mode is achieved within finite time (Fig. 3.2).

Finite-time reaching phase is a distinguishing feature of SMC whereas other

control strategies might provide asymptotic convergence. Surface invariance

ensures all si remain at zero once in the sliding mode despite disturbances

and/or uncertainty. Invariance is achieved by choosing the “robustness” term

η that satisfies the sliding equation:

1

2

d

dt
s2
i ≤ −ηi|si| (3.19)

The sliding equation can be interpreted as a way to ensure s2
i remains a

Lyupanov-like function of the closed loop system and that the squared dis-

tance from si = 0 decreases until the sliding mode is reached and maintained.

Fig. 3.2 shows the two motion phases achieved by proper choice of η.

3.2.4 Assemble the hybrid method

The hybrid method presented here fully utilizes SMC’s first design stage

of creating the sliding surfaces, but only partially utilizes the second. In the

second design stage, typically an input is derived that ensures the desired

behavior is achieved, then the same input is also used to maintain the de-

sired behavior once the sliding mode has been reached. In the hybrid method,
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Figure 3.2: Finite-time reaching-phase dynamics for a typical second-order
system’s displacement output, y = f(x), r = 2.

the desired dynamics are achieved in the standard way but afterward, the

discontinuous portion of the control input is dropped in favor of a numerical

procedure from the DAE-based literature. The discontinuous term is the mech-

anism that provides SMC’s exceptional disturbance rejection and insensitivity

to uncertainty. However, in a simulation environment the discontinuous term

causes difficulty in numerical integration. It is well known that discontinuities

in ODE or DAE cause both inefficiency and inacuracy when solved with most

(smooth) integrators. SMC’s discontinuous term is perhaps the most disrup-

tive type of discontinuity possible because η · sign(s) can change sign at every

function evaluation computed by the integrator. The result is often excessive

simulation run times once the system achieves the sliding mode.

The hybrid method utilizes η to ensure surface attractiveness, but once

each surface is reached (i.e. once each si = 0), ηi is set to zero and post-

stabilization is used to guarantee surface invariance. In DAE terminology, the

discontinuous control input η · sgn(s) is the SMC equivalent of a stabilization
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method. For simulation however, post-stabilization from the DAE literature

is a much higher accuracy method for enforcing surface invariance than SMC’s

native stabilization term, η · sgn(s).

Lastly, choosing η to guarantee surface attractiveness is similar to DAE

some solution methods for finding a consistent set of initial conditions, al-

though it is not a direct analogy. The hybrid method can begin numerical

integration with inconsistent initial conditions (i.e. si 6= 0) and proper choice

of ηi will drive the constraints to satisfaction (i.e. si(treach) = 0). As previ-

ously mentioned, this is guaranteed to occur within a finite time, namely each

si will reach zero at

treach ≤
|si(t = 0)|

ηi
. (3.20)

Typical DAE solution methods require a pre-processing step to find consistent

initial conditions to then pass on to the DAE solver.

3.3 Switching surfaces and equivalent control

Nonholonomic systems have output relative degree r = 1, and holo-

nomic constraints have output relative degree r = 2 [11]. Therefore,

S ≡

 sn

sh

 =

 Φn

Jq · v + σΦh

 , (3.21)

where σ is a measure of the “speed” of the holonomic surfaces sh and is an

mh ×mh diagonal matrix,
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σ ≡



σ1 0 . . . 0

0 σ2 . . . 0

...
...

. . .
...

0 0 . . . σmh


. (3.22)

For control affine systems like ẋ = f +Bu, Utkin, et al. [18] show,

Ṡ = Gẋ, (3.23)

where G = ∂S
∂x

and,

ueq = −(GB)−1Gf. (3.24)

This is the control input that defines S as an invariant manifold and is equiv-

alent to an unstabilized index reduction as discussed in [3, 8]. For the surfaces

in (3.21),

G = AkT + JeT , (3.25)

where J is from (2.8),

A ≡

 Jqn

(Jqqv) + σJq

 , and Jqn ≡
[
∂Φn(q, v)

∂q

]
. (3.26)

32



3.4 Constraint stabilization

3.4.1 Post-Stabilization

To guarantee the constraint surfaces are attractive, we now consider a

stabilization method called post-stabilization [1, 24]. Essentially, this method

subtracts the constraint component orthogonal to the constraint manifold from

the state vector. The methods presented by Ascher and Petzold [3] and Chin

[24] perform a two step post-stabilization shown to provide constraint satis-

faction accuracy of O(h2(p+1)). A slight variation on this method is to post-

stabilize on positions first using the constraints, then to post-stabilize at the

velocity level using the surfaces, S. Notice in equation (3.21), with Φh ≈ 0, sh

is approximately equal to the implied velocity-level constraint, Jqv.

The procedure now proposed is outlined as follows. Assuming each

integration step provides x̄ at tk+1, first post-stabilize on positions using Φ

then post-stabilize on velocities using S, i.e.,

x̄q = x̄− kF (x̄)Φ(x̄), (3.27)

x̂ = x̄q − eF (x̄)S(x̄q). (3.28)

Then perform the second post-stabilization step consecutively on position and

velocity,

x̂q = x̂− kF (x̂)Φ(x̂), (3.29)
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x = x̂q − eF (x̂)S(x̂q). (3.30)

In the steps above, F = JT (JJT )−1, where J is the constraint Jacobian in

equation (2.8) and ΦT = [ ΦT
n | ΦT

h ].

This post-stabilization procedure performs exceptionally well in satis-

fying the constraints and surfaces. Indeed, it satisfies the constraints and

surfaces so well that extra care must be taken to ensure physically realistic

corrections are made from x̄ to x. Fig. 3.3, shows an example integration step

when Ṡ 6= 0 during intermediate stage values on [tk tk+1]. This results in a

state vector whose corresponding surface lies outside the integrator uncertainty

band of width O(hp−1).

n̂

Xk+1
_

Xk+1

Xk+1
_

Xk+1

n̂

p−1O(h     ) p−1O(h     )

Unacceptable post−stabilization adjustment Acceptable post−stabilization adjustment
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Xk

s(x)=0

x

x
n

x

x
n

2

1

3

x

2

3

1

x

x

t̂

Xk

s(x)=0

Figure 3.3: Example of how DAE post-stabilization can exceed physically
realistic adjustment in x.
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Post-stabilization directly adjusts the state vector from x̄ to x. From a

physics-based standpoint, this is an instantaneous change in the total system

energy, from E(x̄) to some new E(x). If this energy change, ∆E = E(x̄) −

E(x), is large, the result is a physically incorrect adjustment. This paper

presents an upper bound on post-stabilization adjustment as anything less

than the uncertainty in the numerical integration. Specifically, it should be

smaller than the local truncation error which is O(hp), so ‖x̄−x‖∞ ≤ O(hp−1).

In the results presented in section 3.5, p was 3, 5, or 8 corresponding to the

truncation error of the Runge-Kutta method used. The definition of O(hp−1)

involves a multiplicative constant[3], C, which is assumed equal to one when

determining if an adjustment is acceptable or not.

3.4.2 Acceleration-level stabilization

There are at least two options to prevent incorrect post-stabilization

adjustments. First, u = ueq may be recomputed at each integrator stage.

Second, by studying boundary layer dynamics as in Utkin [17] or Utkin, et

al. [18], an acceleration-level adjustment may be made that is very similar

to post-stabilization. The motion in a boundary layer about S = 0 is given

by ẋ = f + Bueq + B(GB)−1Ṡ. Upon evaluation of ˙̄x = f + Bueq, the term

˙̄S = G ˙̄x will be non-zero. Substituting this into,

ẋ = ˙̄x−B(GB)−1 ˙̄S,

results in ẋ that causes Ṡ = 0. The term −B(GB)−1 ˙̄S subtracts the com-
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ponent of ˙̄S orthogonal to the switching surface similar to post-stabilization.

Noticing that dṠ
du

= GB, this adjustment is equivalent to one Newton-Raphson

iteration on u similar to [15]. No limitations are placed on the magnitude of

this correction term because instantaneous acceleration-level changes are con-

sidered adjustments toward the correct dynamics. Without this adjustment,

the trajectories would be incorrect as clearly indicated in Fig. 3.8 by the ex-

periment performed in section 3.5.3. From a practical standpoint, B = B(x)

and G = G(x) must be updated at each integrator stage in order to generate

Ṡ = 0 close to machine tolerance.

In the same way that post-stabilization can be interpreted as removing

the component of x normal to the constraint surface (Fig. 3.3) acceleration-

level stabilization removes the componenent of ẋ normal to the switching sur-

face. This is simply another way of forcing ẋ to be tangential to the surface

S = 0 as described in [18]. Since ueq is defined as the input that causes Ṡ = 0,

when performed at each integration stage, acceleration-level stabilization is

identical to recomputing ueq during each RHS-function evaluation. Comput-

ing ueq and performing acceleration-level stabilization both require (GB)−1

and thus require roughly the same computational cost.

3.5 Example 1: two equivalent pendulum for-

mulations

Consider a baseline example for a single degree-of-freedom compound

pendulum with a rod of mass, m = 36(kg), and length, l = 1(m) (Fig. 3.4).
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The system is first described and solved with a single ODE, then by a set of

index-3 DAE.

θ

g

Figure 3.4: Compound pendulum described by an ODE

3.5.1 ODE method

The ODE describing the pendulum motion is θ̈ = −3g sin(θ)/(2l). This

ODE was solved with 3rd, 5th, and 8th order explicit, Runge-Kutta solvers

with fixed step size. Initial conditions were θ(t = 0) = 20π/180 (rad) and

θ̇(t = 0) = 1.0(rad/s). The three solutions provided nearly identical results to

that shown in Fig. 3.5.

An energy-based measure of how different integrator orders affect the

ODE solution is shown below. Table (3.1) shows results with several inte-

gration orders and stepsizes. There is no energy dissipation in the system,

thus any ∆Energy is a result of truncation and roundoff error. ∆Energy

is given as ∆E = max(E) − min(E). The total energy in this system is
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Figure 3.5: This trace is representative of all three solutions. Note, ωn =√
3g/2l for small angle motion.

Stepsize ∆Ea for RK-3 ∆E for RK-5 ∆E for RK-8

h=0.05 1.8× 10−1 1.4× 10−4 5.3× 10−11

h=0.01 1.4× 10−3 4.5× 10−8 5.7× 10−14

h=0.005 1.8× 10−4 1.4× 10−9 5.7× 10−14

h=0.001 1.4× 10−6 5.1× 10−13 1.4× 10−13

a∆E = max(E)−min(E) and represents the maximum variation in system energy.

Table 3.1: Variation in energy as functions of stepsize and integrator order
for the ODE pendulum problem formulation.

E(t = 0) = 159.93(J).

3.5.2 DAE method

To demonstrate the effectiveness of the proposed solution method, the

single-link pendulum is now modeled as a set of DAEs similar to the example

by Yun and Sarkar [10]. First assume the link is unconstrained and able to

move freely in a plane.
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O2

X

Y

θ

mg

g

Figure 3.6: Planar rod

Next, assume no external input torques, τ = 0, and a state vector of

z = [xg vxg yg vyg θ ω]T , the unconstrained equations of motion are,

∑
~Fx = mv̇xg = mg,

∑
~Fy = mv̇yg = 0,

∑
~Mg = Igω̇ = 0.

where Ig = 1
12
ml2 (Fig. 3.6). These are rearranged to define,

D =


mg

0

0

 M =


m 0 0

0 m 0

0 0 Ig

 (3.31)

Now, add the constraints by specifying that position O1 and O2 must coincide.

The two holonomic constraints are,
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Φh =

 xg − l
2
cos(θ)

yg − l
2
sin(θ)

 . (3.32)

The proposed reformulation was made using (3.14) - (3.16), then the re-

sulting equations solved using S from (3.21), ueq from (3.24), post-stabilization,

and acceleration-level stabilization. This simulation used the same three inte-

gration methods and step-sizes as the ODE solution, along with σ = 10 s−1,

and g = 9.81 m/s2. Similar to the ODE scenario, the three solutions were

nearly identical to each other and can be seen in Fig. 3.7. Both S and Φ are

maintained near machine tolerance (i.e. O(10−16)).
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Figure 3.7: This trace is representative of all three solutions.

The change in energy for the DAE solution method is shown in Ta-

ble (3.2) for several integration orders and stepsizes. Simulations used to

create the table were solved to tfinal = 5(s). With no energy losses in system,

solution quality can be asessed by how well the solution preserves the total

40



system energy.

Stepsize ∆E for RK-3 ∆E for RK-5 ∆E for RK-8

h=0.05 2.0× 10−1 2.8× 10−4 4.4× 10−8

h=0.01 1.8× 10−3 8.9× 10−8 1.7× 10−13

h=0.005 2.3× 10−4 2.8× 10−9 8.5× 10−14

h=0.001 1.8× 10−6 9.7× 10−13 1.4× 10−13

Table 3.2: Variation in energy as functions of stepsize and integrator order
for the DAE pendulum problem formulation.

Again, ∆Energy is a result of truncation and roundoff error.

3.5.3 Comparisons and results

By comparing Figs. 3.5 and 3.7, the ODE and DAE solution trajectories

are indistinguishable. For example, the RK8 solutions were within O(10−12)

of each other. With such close agreement in state trajectories, it naturally

follows that the ∆Energy for both solution methods are nearly the same. Ta-

bles 3.1 and 3.2 indicate nearly identical ∆E orders of magnitude with the

exception of the larger stepsizes for RK-8. Based on these two findings, it is

clear that the DAE solution method generates correct forces and moments to

the unconstrained system such that the constraints, or control system outputs,

are maintained at zero. In addition to the states satisfying S and Φ to ma-

chine tolerance, they also satisfy an energy invariant possessed by the physical

system, yet unknown to the numerical method.

To highlight the significance of this finding, another DAE system solu-

tion trajectory is shown in Fig. 3.8. The system was integrated using the

same RK8 method, step size, ueq, and post-stabilization techniques. The
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acceleration-level stabilization was not used, however, and so Ṡ was kept small,

but not at machine tolerance. The post-stabilization method was still effective

enough to maintain the constraints near machine tolerance despite significant

surface drift of O(10−9). Extremely small Φ and small S might lead one to

think this is a correct solution, however, comparing Fig. (3.8) with Figs. (3.7)

and (3.5) reveals that it is an incorrect solution. This is also verified by noticing

∆Energy for Fig. 3.8 is 13.8(J), compared to 4.8E-13(J) for Fig. 3.7. Fig. (3.8)

is an example of how application of post-stabilization can cause a physically

incorrect change in x while still satisfying the constraints. It seems that post-

stabilization does an exceptional job of satisfying the algebraic equations in

DAE. If applied incorrectly however, it can actually produce incorrect results

by “steering” the differential equation trajectories through overadjustment of

the state vector.
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Figure 3.8: The states satisfy the constraints and switching surfaces very
well but have physically incorrect trajectories.
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3.6 Example 2: two rolling spheres

3.6.1 Description and features

A second example is taken from Yun and Sarkar [10] and demonstrates:

1. the method’s ability to accommodate both holonomic and nonholonomic

constraints, and

2. SMC’s reaching-phase dynamics which drive the constraints to satisfac-

tion given inconsistent initial conditions.

The system consists of a small sphere of radius r constrained to roll without

slipping along the outer surface of a larger sphere of radius R. The larger

sphere’s center is fixed to the inertial reference frame origin as shown in

Fig. 3.9.

α

Z

X

Y
β

Figure 3.9: Two rolling spheres

The center of the small sphere is located in the inertial frame, XYZ, with

spherical coordinates (α,β,ρ) and its orientation is represented with body-fixed

Z-X-Z Euler angles, (φ,θ,ψ).
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3.6.2 Equations of motion

Both the dynamics and constraint equations are developed more fully

in [10] but are presented in final form here. In the absence of gravity,

M(q)q̈ + V (q, v) = 0 (3.33)

where

M =



m 0 0 0 0 0

0 mρ2 0 0 0 0

0 0 mρ2 cos2 a 0 0 0

0 0 0 I 0 I cos θ

0 0 0 0 I 0

0 0 0 I cos θ 0 I



V =



−mρ(α̇2 + β̇2 cos2 α)

mρ(2ρ̇α̇ + ρβ̇2 cosα sinα)

2mρ(ρ̇β̇ cos2 α− ρβ̇α̇ cosα sinα)

−Iθ̇ψ̇ sin θ

Iφ̇ψ̇ sin θ

−Iφ̇θ̇ sin θ


The single holonomic constraint indicates the distance between the center of

the two spheres remains constant:

Φh = ρ− (R + r)
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The two nonholonomic constraints are equalities between tangential velocities

at the interface that prevent slipping during rolling,

Φn =

 (R + r)α̇− r(φ̇ sin θ cosψ − θ̇ sinψ)

(R + r)β̇ − r(φ̇ sin θ sinψ + θ̇ cosψ)

 .
The resulting Jacobians required to compute ueq from (3.24) are

Jq =

[
1 0 0 0 0 0

]
Jqqv =

[
0 0 0 0 0 0

]
(3.34)

Jv =

 0 (R + r) 0 −r sin θ cosψ r sinψ 0

0 0 (R + r) −r sin θ sinψ −r cosψ 0



Jqn =

 0 0 0 0 −rφ̇ cos θ cosψ (rφ̇ sin θ sinψ + rθ̇ cosψ)

0 0 0 0 −rφ̇ cos θ sinψ (−rφ̇ sin θ cosψ + rθ̇ sinψ)


Similar to example 1, total system energy is used as a metric with which

to verify a physically realistic numerical solution. There is no potential energy

storage in this system so the kinetic energy function represents the total system

energy. Again, in final form from [10],

45



T =
1

2
m(ρ̇2 + ρ2α̇2 + ρ2β̇2cos2α) +

1

5
mr2(φ̇2 + θ̇2 + ψ̇2 + 2φ̇ψ̇cosθ). (3.35)

3.6.3 Results

Results for the two-sphere problem were generated using the same fixed-

step 3rd-, 5th-, and 8th-order Runge-Kutta solver. Parameters required for the

simulations were R = 0.55(m), r = 0.05(m) and, although the equations

contain the sphere mass, the solution is independent of m, however it was

taken as 1(kg) to compute the total energy. Consistent initial conditions on

displacements were αo = 0(rad), βo = π
2
(rad),ρo = 0.6(m), and φo = 0(rad),

θo = π
2
(rad),ψo = π

2
(rad). Consistent ICs on velocities were α̇o = −45

8
π

180
(rad),

β̇o = 45
8

π
180

(rad), ρ̇o = 0(m), and φ̇o = (R+r)
r
β̇o(rad), θ̇o = − (R+r)

r
α̇o(rad),

ψ̇o = 0(rad).

Simulation results are shown for consistent ICs in Fig. 3.10 and incon-

sistent ICs in Fig. 3.11. The lower-right plot shows the total system energy

remained constant throughout [tinitial tfinal].

Like the previous example, this system posesses an energy invariant

useful for asessing solution quality. Table (3.3) shows variations in energy

using several integration orders and stepsizes. The results shown are variations

from the nominal system energy, E(t = 0) = 4.858×10−3(J). This means that

the result for RK-3 at h = 0.01(s) preserves the energy invariant to within

≈0.0001%.

Inconsistent ICs were created by specifying ρo = 0.7(m) and augment-
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Figure 3.10: Given consistent ICs, post-stabilization is used over
[tinitial tfinal]

ing the consistent IC’s with φ̇o = 1.2φ̇o and θ̇o = 1.5θ̇o. All solutions computed

with inconsistent IC’s were generated using a fixed-step 5th-order RK integra-

tor using h = 0.01(s).

To more clearly reveal the reaching phase surface dynamics, Fig. 3.12

shows all three si(t) when using:

1. SMC’s stabilization method until |si| ≤ O(hp) at treach,i, then

2. acceleration-level and post-stabilization for t > treach,i.

The lower-right plot in Fig. 3.11 shows the total system energy remained

constant after treach,3. It is worth noting that, although inconsistent ICs can

be accommodated with this methd, the larger the inconsistency, the larger the

47



Stepsize ∆E for RK-3 ∆E for RK-5 ∆E for RK-8

h=0.05 6.0× 10−7 3.3× 10−10 2.3× 10−14

h=0.01 4.6× 10−9 9.2× 10−14 2.4× 10−17

h=0.005 5.7× 10−10 2.8× 10−15 2.3× 10−17

h=0.001 4.6× 10−12 6.2× 10−17 6.6× 10−17

Table 3.3: Variation in energy as functions of stepsize and integrator order
for the rolling-spheres problem.

energy change is after driving them to satisfaction. One factor that affects

how much energy is added by the controller during the reaching phase is the

magnitude of ηi in urobust,i.

3.7 Conclusions

The index-3 DAE resulting from constrained mechanical systems have

been reformulated as an equivalent control problem. An explicit transforma-

tion from DAE literature notation to control canonical state space form was

presented. The sliding-mode control framework was chosen primarily because

of it’s ability to address both nonholonomic and holonomic systems in a unified

framework. Additionally, SMC theory can address nonlinear time-varying sys-

tems without approximations or simplifying assumptions [16]. Since control

theory is designed with large output errors in mind, application of a vari-

able structure control (VSC) to the constrained MBS problem eliminates the

requirement for consistent ICs. The flexibility of SMC as a VSC method-

ology easily accommodates the decision to apply a traditional SMC control

law (i.e. discontinuous) during the reaching phase, then switch to the smooth

acceleration-level and post-stabilization methods once the surface has been
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Figure 3.11: Given inconsistent ICs, SMC’s urobust,i drives the constraints to
satisfaction

reached. With this hybrid approach, constraint violations at t = tstart are

guaranteed to be eliminated within finite time [23] and then remain zero for

the duration of the simulation.

After reformulating the MBS index-2 or index-3 DAE problem into ẋ =

f+Bu, SMC theory is used to define switching surfaces for both nonholonomic

and holonomic constraints. Additionally it is used to find the smooth input,

ueq, that defines the switching surfaces as invariant sets. This is the control-

theoretic equivalent to an unstabilized index reduction found in DAE solution

literature [3]. For consistent ICs, or after a surface has reached zero, instead

of using urobust = −η · sgn(S) in u as is typical for the SMC design procedure,

a post-stabilization method found in the DAE solution literature was used to
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Figure 3.12: SMC Forces Constraints to Satisfaction Given Inconsistent ICs

guarantee the switching surfaces remained attractive [1, 3, 24].

DAE stabilization methods are chosen over SMC’s stabilization method

because urobust works through the integration process which has an uncertainty

of O(hp). For this reason it is unreasonable to expect SMC to provide con-

straint satisfaction better than O(hp) while still maintaining reasonably large

step sizes. This uncertainty is the primary source of chatter in simulation of

SMC systems. The DAE stabilization methods operate after each time step

which elimintates discretization chatter. The uncertainty with these methods

have been estimated at O(h2(p+1))[1] which is a level of accuracy frequently

better than machine tolerance.

An acceleration-level stabilization method is presented and used in con-
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junction with post-stabilization. The acceleration-level stabilization was de-

veloped from the study of SMC boundary layer dynamics along with insights

from post-stabilization [17, 18].

The combination of SMC’s switching surfaces and equivalent control,

DAE post-stabilization methods, and an acceleration-level stabilization was

used to generate trajectories of two example systems by numerical integration.

For example one, comparison of the DAE solution with the equivalent ODE

solution for a simple pendulum provides initial verification that the proposed

method produces correct state trajectories. As a second metric used for verifi-

cation, the total system energy was shown to have similar error accumulations

in both the ODE and DAE formulations.

The energy metric was also used to explain how post-stabilization can

be incorrectly used to successfully satisfy the constraints but still fail to gen-

erate correct state trajectories. An upper bound on the magnitude of post-

stabilization adjustment at any given time step was presented as the integra-

tion truncation error, O(hp−1).

Finally, example two was chosen because of its increased complexity

in dynamics as well as constraints. The hybrid numerical method performed

well on this example, driving both holonomic and nonholonomic constraints

to satisfaction, then keeping them satisfied to machine tolerance.
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Chapter 4

Background on Solving

Discontinuous ODE

4.1 Introduction

The next two chapters present a discontinuity handling procedure for

solving discontinuous ordinary differential equations (DODE) using single-step

methods. The algorithm uses a detect-locate-restart approach to traverse dis-

continuous events while avoiding the drawbacks typically found when solving

DODE with a smooth ODE solver. It combines efficiency and accuracy in both

the detection and location phases with the simplicity of a single-step integra-

tor in the restarting phase. The advantages single-step integrators have over

multi-step methods are that each step is fully high-order and each stepsize

can be easily adjusted to closely match the local error criterion. In addition

it provides guarantees on locating events either slightly before or after the
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actual event by a user-specified amount. This feature helps overall integrator

efficiency and ensures a uniform environment in which to make discontinuous

changes. Lastly, this algorithm makes use of a region of concurrency to further

improve efficiency for some problems by allowing multiple events to occur at

the same time.

In physical system modeling, DODE result from simplified models that

approximate abrupt or intermittent effects. This encompasses a wide vari-

ety of events such as Coulomb friction, mechanical system contact, electrical

or hydraulic gate changes, or other power-path topological changes such as

transmission gear shifting, step changes in amplifier gains, or other locking

effects that model “hard stops.” The common challenge to solving equations

with these effects are the discontinuous nature of their solutions. Inefficien-

cies and inaccuracies at discontinuous events are the two primary drawbacks

when solving DODE with most variable step (smooth) ODE solvers. One way

to reduce these effects is to reduce the integration tolerance(s). For small

sets of DODE, the accompanying inefficiency may go unnoticed, even for very

small tolerances. For larger systems of equations, this method for improv-

ing accuracy can make solution times prohibitively lengthy. Another way to

reduce these drawbacks is to explicitly make use of the extra information of-

ten available with DODE, namely the time and/or state conditions describing

circumstances of a discontinuous event. There is an increased level of effort

associated with organizing and using the extra information but, as will be

shown, the performance improvement for some systems justifies the cost.

Traversing discontinuities cause smooth integrators to attempt and re-
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ject many steps and yield a final average stepsize smaller than necessary for

the requested tolerance. Explicitly handling discontinuities is rewarded most

when solving systems with many events and when each RHS function evalu-

ation is computationally expensive. Accordingly, the method presented here

is designed for such systems and attempts to economize on the total num-

ber of RHS evaluations. It achieves this by partitioning the independent axis

into intervals of smooth equations that can be effectively solved by a smooth

integrator. Some features this numerical method incorporates are:

1. the ability to efficiently handle many concurrent discontinuous events.

2. the ability to use any general purpose single-step ODE solver.

3. the ability to locate discontinuous events to within machine tolerance if

necessary, but still be able to operate with relaxed tolerances for low-

accuracy requirements.

4. to eliminate discontinuity sticking for both bi- and unilateral events, a

phenomenon identified by Park and Barton [56] as a significant source

of inefficiency.

The first feature is intended to eliminate some drawbacks found in prob-

lems containing many closely spaced events. Typically a discontinuty handling

procedure aims to detect and locate all events in sequence. In situations with

many events very closely spaced together, locating each individual event can

inadvertantly result in a performance penalty rather than gain. For these

cases, a region of concurrency (ROC) is presented as a way of retaining the
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benefits while at the same time reducing the penalties.

The second feature is intended to leverage advancements made in smooth

ODE solution methods. Other DODE/DDAE solvers designed around a spe-

cific smooth solver (e.g. [30, 41, 56]) gain the benefits of fully exploiting that

solver but have the drawback of being tied to one specific method. By remain-

ing general and modular, this algorithm can be improved with future advance-

ments in the detection, location, or smooth integration areas. In addition, a

modular single-step environment lends itself to development of a stiff discon-

tinuous ODE solver through use of a stiff ODE integrator. The same applies

to development of a stiff discontinuous high-index DAE solver [34, 52, 53].

The third and fourth features are included to provide comparable fea-

tures to those found in Park and Barton’s BDF-based discontinuous DAE

solver [56]. Their paper made significant advancements in solving discontinu-

ous differential equations. This work further characterizes discontinuous events

into unilateral and bilateral types and extends one of their features, namely

consistent event location, to both discontinuity types.

The next two chapters are organized into six sections. Section 4.2 is

a literature review outlining the contributions of some seminal papers along

with several associated difficulties related to the DODE problem. Sections

5.1 and 5.2 present the formal problem definition and the new proposed algo-

rithm. Section 5.3 presents several benchmark problems solved with the new

algorithm and finally, section 5.4 presents conclusions based on the benchmark

problem results.
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4.2 Literature review

A review of the literature between 1978 and 1996 reveals similarities in

solving discontinuous ODE and DDAE with common difficulties, approaches,

and performance measures. The common difficulty is finding accurate solu-

tions efficiently using integration methods originally designed to solve smooth

equations, whether they be stiff or nonstiff [3, 8, 52]. Assuming modern smooth

solvers are the most effective means for obtaining solutions along smooth in-

tervals, the common approach is to partition the independent axis into subin-

tervals between discontinuous events. If the event times are explicitly known

beforehand, efficient use of this information is demonstrated in [39, 27, 58].

However, if event times are unknown beforehand, other methods attempt to

detect then locate events with varying degrees of success and accuracy.

Although some papers take an approach designed to minimize user-

input by using information local to the integrator exclusively [32, 44, 41], most

methods address the detection and location phases with the use of discontinu-

ity functions, g(t, x). These are auxiliary functions whose zeros indicate the

presence of a discontinuous change in the equations. By detecting and locating

roots of g(t, x) during integration, the benefits of modern smooth ODE solvers

can be leveraged to generate discontinuous solutions while at the same time

avoiding their accuracy and efficiency penalties [31, 41, 39]. With discontinu-

ity functions available, a variety of methods for root detection and location

have been presented and implemented. A good review of these efforts can be

found in [56].
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In the most recent paper surveyed, Park and Barton[56] identified and

defined the problem of discontinuity sticking and also presented a solution,

consistent event location. Discontinuity sticking occurs when the same event

is incorrectly detected and located more than once. They mentioned that this

is not an uncommon occurrence and can happen when solving either discon-

tinuous DAE or ODE. Figure (4.1) illustrates this phenomenon across two

integration steps. The first step from tk to tk+1 detects the discontinuity, then
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Figure 4.1: For bilateral events, discontinuity sticking occurs when the lo-
cated time, td, is not past the actual event time, ta.

successfully locates it such that |g(xk+1, tk+1)| ≤ εd. Although a time is found

that satisfies the root finding procedure, the event is not yet triggered because

the located time is prior to the actual event time. Since this event is a bilateral

discontinuity (discussed further in section 5.1.3) it requires g(t, x) to cross the

zero axis to occur. The step from tk+1 to tk+2 will re-detect and re-locate the

same event which, for the same reasons, may or may not trigger the event.

Park and Barton’s strategy for eliminating discontinuity sticking is
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called consistent event location, referred to here as CEL
+

. CEL
+

guarantees

the located times are actually past (i.e. to the right of) the actual event

times. This not only increases integrator efficiency by eliminating disconti-

nuity sticking, but it also provides a uniform environment in which to make

discontinuous model changes. Birta et.al. [29] recognized and implemented a

technique similar to CEL
+

for ODE by adding an offset to the discontinuity

function during root finding, however they neither located events to machine

tolerance nor attempted to provide guarantees on event location.

Efficiency gains using CEL
+

may be measured in two ways. First with

respect to smooth solvers and second with respect to other discontinuous

solvers that do not implement CEL
+

. By explicitly handling discontinuous

events with CEL
+

, a DODE solver can traverse an event in a single step in

contrast to the multiple failed steps smooth solvers require, and even though

a DODE solver may explicitly handle discontinuities, if it does not use CEL
+

,

it still allows for the possibility of discontinuity sticking. Explicitly detecting

and locating discontinuous events with CEL
+

eliminates all failed or repeated

attempts to traverse a bilateral discontinuity.

Park and Barton’s discontinuous DAE solver is based on the BDF

method, a multistep ODE solver. They exploited the BDF method’s inter-

nally generated polynomial interpolants for event detection and location by

appending the discontinuity functions onto the state vector. Like Carver[30],

Park and Barton use the integrators’s stepsize control to ensure root detection

and location accuracy. Using these interpolants, they were able to eliminate

discontinuity sticking and achieve event location to within machine tolerance.
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Although most modern single-step ODE solvers contain an interpolant for

dense output, the interpolant itself contains errors on the order of the states

or greater. Thus, the dense output interpolants are not suitable for use in

the same way as the BDF interpolants. Attempting to use interpolants that

are less accurate than the states in event detection allows for the possibility

that root crossings exist but are missed due to the discrepancy between in-

terpolant and discontinuity function, g(t, x) (Fig. 4.2(a)). Likewise, the same
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(a) The interpolant, p(t), fails to indicate the
presence of roots in g(t, x).
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(b) The interpolant, p(t), falsely indicates the
presence of roots in g(t, x).

Figure 4.2: Two difficult event detection scenarios.

discrepancy can cause lower order interpolants to falsely indicate the presence

of roots when g(t, x) contains none (Fig. 4.2(b)). Eliminating both of these

problems while using lower-order interpolants proved to be the primary diffi-

culty in developing a single-step DODE solver with guaranteed event detection
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and location.

One way to increase interpolant accuracy while maintaining the single

step nature of the algorithm would be to use the information generated in

the interior of a step. Although Horn [48] and others [59, 40] have shown

the popular Fehlberg RK-4(5) pair contains a 4th-order estimate of the states

along [tk tk+1], at O(h4) this is still significantly less accurate than the state

estimates at O(h5). Others have gone to great lengths to construct and/or use

higher-order interpolants with Runge-Kutta methods [55, 61, 64, 47, 59, 60],

but in general there is no RK method that provides polynomial interpolants

of equal or higher order than the state estimates with no cost in the number

of function evaluations.

Ideally, one would use an interpolant of higher order than the methods

underlying ODE state estimate [40, 59]. This would ensure the dominant er-

ror associated with an interpolant was due to the states error of O(hp) and

not the interpolant’s error of O(hp+1) or smaller. Enright et.al. [40] develop

such an interpolant and show that one extra function evaluation produces an

interpolant of O(hp) and two extra function evaluations can produce an in-

terpolant of O(hp+1). In [41], they develop a method that only constructs

the high-order interpolant for steps with a suspected discontinuity. This saves

the cost of computing high-order interpolants at each step, however they ac-

knowledge that their method for detecting events is the major limitation of

their approach. The difficulty they faced was choosing when to create the

high-order interpolant. The extra information would improve event detection

and location, however the extra function evaluations are expensive and under-
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utilized when many integration steps are taken with g(t, x) far from the zero

axis. Their integrator coupled with some of the detection ideas presented here

hold potential as another effective and efficient DODE solver.

Use of interpolants introduces their own set of challenges. High or-

der polynomial interpolants in power-form are notoriously ill-conditioned [57]

and, especially for orders higher than 5 or 6, are dominated by roundoff errors.

Nonweiler [54] outlines a recursive method for creating interpolating polynomi-

als in Newton’s reverse-form that, upon construction, seem to be less prone to

roundoff error than inverting an ill-condifioned matrix for creating power-form

interpolants. These interpolants could be useful in the root location phase,

however the efficient detection phase in Park and Barton uses an interval

method requiring polynomials in power form. Converting the reverse-Newton

form interpolants into a power form suitable for use with the root exclusion

test in [51] introduces significant roundoff error. A workable solution might be

found in some combination of (reverse) Newton form and power form inter-

polants for the detection and location phases, however a more straightforward

and less expensive approach was sought for the final algorithm.

Aside from roundoff error, even though an O(hp+1) interpolant for x

could theoretically provide an unlimited number of points from which to con-

struct an arbitrarily high order interpolant for g(t, x), an overall error estimate

of the final interpolant is complicated by the fact that each g(t, x) propagates

some generally unknown error as a result of the O(hp) errors in x. To sum-

marize, roundoff error in high-order interpolant construction, uncertainty in

x due to integration and interpolation errors, along with the unknown way in
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which a general function g(t, x) is affected by roundoff errors all contribute

to the uncertainty involved in using RK-based interpolants for high-accuracy

root detection and location. Shampine et.al. [60] and Enright et.al.[41] address

many of these issues and both present well thought out algorithms although

neither presents a complete set of numerical problmes and results to use for a

thorough comparison. The solution presented here uses 3rd- and 5th-order Her-

mite interpolants to detect root crossings and estimate their locations, however

Newton’s method and numerical integration is used in the final root location

procedure.

The following is an incomplete list of currently available solvers that

have root location features. The FORTRAN codes sdasrt.f, ddasrt.f,

sderoot.f, or lsodar.f from netlib.org[52] include a “g-stop” capability,

Matlab1 [50] has “event handling”, ACSL2 [25] implements a “schedule” func-

tion, and Easy53 [37, 62] uses “switched states.” The solvers at netlib.org

are freely available in source form and the rest are proprietary commercial

codes. These solvers are widely available and are general enough to solve a

wide range of systems. A full comparison of these softwares is beyond the scope

of this work. However, based on the root detection algorithms, the primary

way in which [52], [50] and [25] can be improved is in guaranteed detection

and location of all discontinuous events.

They detect events through sign changes in the discontinuity functions

at tk and tk+1 only. This means events can be missed entirely if the trajectory

1MATLAB is a trademark of The MathWorks, Inc.
2ACSL is a trademarks of The AEgis Technologies Group, Inc.
3EASY5 is a registered trademark of The Boeing Company.
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crosses zero in the middle of a time step and crosses again before tk+1 as

shown in Fig. 4.3. This is likely in ratchet-like mechanisms, gear-pairs, or
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Figure 4.3: Some detection algorithms fail when g(tk, xk) and g(tk+1, xk+1)
both have the same sign.

other systems that have sinusoidal or notched discontinuity function profiles.

There were numerous interpolants similar to Fig. 4.3 in the marble jar problem

presented in Section 5.

The “switched-states” implementation in EASY5x seems to be quite ef-

fective in solving multi-domain systems with discontinuities [37, 62]. EASY5x

is a comprehensive engineering enalysis software that models, formulates, solves,

and post-processes multidomain dynamic systems. They use a detect-locate-

restart approach and discontinuity functions to locate state-based events. Their

binary search routine apprantly does not integrate during event location and

likely uses some type of interpolant. They claim improvements in simulation

speeds of up to three orders of magnitude.

The software environment DAEPACK[36] is a comprehensive equation

solving environment that, among other things, implements much of what is

presented in Park and Barton’s paper [56]. The work developed here is, in

some part, an implementation of a subset of DAEPACK’s functionality within
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a single-step, Runge-Kutta based environement. The discontinuity handling

procedures in DAEPACK are, presumably, based on DASSL, a multi-step BDF

integrator.

Finally, two common performance measures used throughout the lit-

erature are the total number of integration steps taken and the number of

right-hand-side function evalutions. It is worth mentioning that direct com-

parison between single- and multi-step methods using the total number of

steps is flawed because single-step integrators appear to take much fewer steps

but their cost-per-step is greater. Single-step integrators are able to take com-

paratively large steps and produce fully high-order state estimates. They can

also accommodate arbitrary stepsize changes from step to step. In contrast,

multi-step integrators generally require fewer RHS function evaluations per

step but take more steps. Multi-step methods also require a boot-strapping

procedure at startup or a backstepping procedure after stepsize changes.

In an attempt to find a common performance metric for comparing

single- and multi-step integrators both [32] and [59] suggest using a stepsize-

per-cost measure. This quantity is difficult to achieve because some integrators

can take variable-order steps and different DODE solution methods may eval-

uate ẋ for various reasons. So, the performance metric of choice for comparing

DODE solvers is the total number of RHS function evaluations because it

is integrator independent. Other possible performance metrics are the total

number of FLOPS (floating-point operations) or the total CPU-time required

to solve a benchmark problem. These two metrics have the advantage that

they include all overhead associated with integration, discontinuity function
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evaluations, and other computations, however their drawback is being specific

to underlying libraries, CPU’s, and software implementation environments.
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Chapter 5

A Discontinuous ODE Solver

Using Single-Step Methods

5.1 Preliminaries

This section presents the general discontinuous ODE problem and the

detect-locate-restart solution method. It also introduces terminology and ideas

used in the DODE solution method presented in section 5.2.

5.1.1 Define the problem

We seek the solution of nonsmooth, generally nonlinear ordinary differ-

ential equations,

ẋ = f(t, x, L), x(to) = xo (5.1)
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assuming availability of discontinuity functions and their rates,

g = g(t, x)
dg

dt
= ġ(t, x, ẋ) (5.2)

The states and derivatives x and ẋ are ∈ <Nstates , t is the scalar independent

variable, and g(t, x) is Ng × 1. The discontinuity functions are designed such

that their zeros coincide with discontinuous events in (5.1). L = L(t, x) is an

Ng × 1 array representing the locked or unlocked status of each discontinuous

element in ẋ. Each element in L is a function of it’s corresponding element in

g(t, x),

Li =

 0, gi(tk, xk) < 0

1, gi(tk, xk) ≥ 0.
(5.3)

The L-array, borrowed from [56] and [40], is the mechanism used to implement

discontinuity locking. Discontinuity locking is discussed in the next section

and, essentially, is a technique for avoiding the inefficiencies that arise when

smooth ODE solvers step across discontinuous events.

In physical system modeling, many events are functions of state only

which means, in the absence of an analytical solution, the event times are

unknown explicitly. Thus, the problem of efficiently and accurately solving

DODE becomes that of detecting and locating all events, making appropri-

ate discontinuous changes, then restarting integration after the event. This

is referred to as the detect-locate-restart procedure. In essence, this proce-

dure aims to partition the independent axis into subintervals of smooth ODE

which can then be solved by modern smooth solvers. This approach leverages
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smooth ODE solver technology while avoiding the inaccuracies and inefficien-

cies smooth solvers exhibit at discontinuities.

5.1.2 Discontinuity locking

Lacking information about impending discontinuous events, a standard

variable-step solver steps forward assuming the built-in smoothness assump-

tions are valid. If a discontinuity occurrs within a step, the net result is a loss

of accuracy and efficiency because the solver “hunts” before and after the event

attemping to satisfy the integration error criterion [31, 39, 60]. The hunting

phenomenon happens because the discontinuity destroys the smooth relation-

ship between the local error estimate and the next stepsize. To avoid losses in

accuracy and efficiency, discontinuity locking is used to facilitate detection of

impending discontinuous events without actually triggering the events.

This requires a special differential equation form which allows the al-

gorithm to “lock” the system configuration over an entire time-step [40]. If

a discontinuous event is triggered during the integration step, the step is re-

jected and the the discontinuity time is accurately located. Fig. 5.1 shows how

locking the system configuration provides a smooth trajectory over which to

locate a root in g(t, x) before making discontinuous changes. Upon location,

appropriate changes are made and integration is resumed from the located

time. This is the mechanism that allows smooth ODE solvers to be used for

solving nonsmooth differential equations.

The way equations in (5.1) are written depends not only on the solution

method algorithm [41], but also what types of discontinuities they describe.
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Figure 5.1: Discontinuity locking prevents discontinuous changes during
event location.

Systems that undergo equation structure discontinuities can be written with

the discontinuous terms as a function of L. This ensures discontinuity lock-

ing is implemented because the algorithm holds L constant over each interval

[tk tk+1]. Examples of this category of discontinuous phenomenon include me-

chanical contact, backlash, dry or Coulombic friction, stiction, saturation, or

various system configurations containing valves, gates, transistors, or diodes.

Systems that experience parametric discontinuities and whose equation struc-

ture remains the same do not necessarily need to use L to implement discon-

tinuity locking. For these systems, discontinuity locking is ensured by way of

consistent event location through box 6e, Fig. 5.6. Examples of parametric

discontinuous phenomenon include any capacitive, inductive, or resistive ele-

ments whose coefficients change discontinuously. For example, step changes in

spring stiffnesses, material properties, or valve orifice coefficients all can fall

within this category. When a discontinuity is located, the parameter changes

can be made and integration resumed without explicit dependence upon L.

Neither of the commercially available ODE/DAE solvers from Mat-

lab R12 [50] or ACSL v11.1 [25] explicitly implement discontinuity locking,
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although both solving environments could allow a creative programmer to

implement a custom version of discontinuity locking. ACSL’s solver does im-

plement CEL
+

which is discussed further in section 5.1.4. The freely available

solver(s) from www.netlib.org [52] do not explicitly implement discontinuity

locking however, they are available in source format and may be modified as

necessary.

5.1.3 Unilateral and bilateral events

A further distinction can be drawn between unilateral and bilateral

events. Unilateral discontinuities are those whose discontinuity function tra-

jectories are guaranteed to stay on one side of the zero-axis (Fig. 5.2(a)). Some

systems containing unilateral discontinuities include coefficient of restitution

contact models or electrical systems with idealized gate, transistor or diode

models. Specific examples include the bouncing ball problem in section 5,

hydraulic valve models in [45, 58], and example 3 in both Carver [29] and [30].

Bilateral discontinuities are those whose trajectories fully cross the zero

axis (Fig. 5.2(b)). Examples of bilateral discontinuities are Coulombic friction

models [49], spring-damper contact models (e.g. Hertzian or otherwise) [46],

or variable structure control systems [34].

5.1.4 Consistent event location with CEL
+

The details of guaranteeing consistent event location, referred to here

as CEL
+

, are presented in Park and Barton [56] but are restated here as an
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(b) Bilateral

Figure 5.2: Two types of discontinuous events.

introduction to its variant, CEL
−

. CEL
+

guarantees the located event time, td,

will be after the actual event, ta, to within machine tolerance. This ensures

bilateral events are triggered during root location which, in turn, eliminates

discontinuity sticking (Fig. 4.1). CEL
+

is implemented by finding the root of

an auxiliary function slightly offset from gi,

ĝi = gi − εg · sgn(ġi). (5.4)
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As long as the offset between ĝi and gi is larger than the root finding procedure

uncertainty then for bilateral events, gi is guaranteed to lie “on the other side”

of zero 1. Fig. 5.3 shows that gi is certain to cross zero when td is located past

the actual event time, ta. Ensuring εg > εd allows the root finding procedure
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Figure 5.3: Locating roots of ĝi from (5.4) implements CEL
+

which, in turn,
guarantees gi crosses the zero axis and eliminates discontinuity
sticking for bilateral events.

can locate td anywhere within the interval of uncertainty, Td, and still provide

CEL
+

. This is useful not only in solving discontinuous DAE, as in [56], but also

solving discontinuous ODE because, in the absence of the guarantee, the same

event may cause inefficiency or inaccuracy by getting detected and relocated

during the following integration step.

5.1.5 Consistent event location with CEL
−

The previous section showed how CEL
+

eliminates discontinuity stick-

ing for bilateral events. However CEL
+

cannot be used for unilateral events

1All solutions were found using |εg| = εd + εm
2 where εm is the machine tolerance. For

the 32-bit machine used εm ≈ 2.22× 10−16.
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because their definitions are mutually exclusive. CEL
+

guarantees gi crosses

the zero axis while the definition of a unilateral event is one whose final tra-

jectory does not cross the zero axis. This motivates development of CEL
−

, a

slight variation of consistent event location that guarantees gi will approach

but not cross the zero axis. An example of discontinuity sticking for unilateral

events is shown in Fig. 5.4. Similar to Fig. 4.1, although the root location
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Figure 5.4: For unilateral events, discontinuity sticking occurs when the lo-
cated time, td, is past the actual event time, ta.

tolerance is satisfied, the step from tk+1 to tk+2 will incorrectly re-detect and

re-locate the same event.

CEL
−

is realized by changing the offset direction in (5.4),

ĝi = gi + εg · sgn(ġi). (5.5)

This guarantees the event time, td, is located before the actual zero crossing

time, ta, preventing g from crossing the zero axis. By using (5.5), the same root

finding procedure that guaranteed CEL
+

will now guarantee CEL
−

(Fig. 5.5).

The ability for a DODE solver to generate a unilateral discontinuity function
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Figure 5.5: Locating roots of ĝi from (5.5) implements CEL
−

which, in turn,
guarantees gi does not cross the zero axis and eliminates discon-
tinuity sticking for unilateral events.

trajectory has been recognized and implemented by Birta, et. al.[29] in their

example problem 3. Other systems that benefit from (or require) CEL
−

are

mechanical systems that use coefficient of restitution contact models, electrical

systems containing transistors or diodes, systems with singularities, or any

other system where gi needs to approach some value but not cross it.

5.2 The single-step DODE algorithm

This section outlines the new proposed method for detecting and locat-

ing events using information along [tk tk+1] only. Special attention is given

to both the detection and location phases for overcoming the discrepancies

between g(t, x) and it’s interpolants (Fig. 4.2).
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5.2.1 The event detection phase

The flowchart presented in Fig. 5.6 represents a general single-step inte-

gration algorithm with the added capability of detecting and locating all dis-

continuous events, making discontinuous changes, and restarting integration.

The detection and location phases are represented in Fig. 5.6 with blocks 5

and 6a, respectively. All discontinuous changes are made in blocks 6c and 6e,

then integration is continued with blocks 7, 8, 2, 3, and 4. After each suc-
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Figure 5.6: The overall DODE algorithm

cessful integration step, the detection phase checks for the presence of roots

in 3rd-order Hermite interpolants. Interpolants are constructed using the dis-

75



continuity function values at both endpoints, g(tk) and g(tk+1), and the rates,

ġ(tk) and ġ(tk+1). Similar to [56], a root exclusion test using interval arithmetic

[51] is used to eliminate all interpolants guaranteed to contain no roots within

[tk tk+1]. Because of the nature of the exclusion test, this leaves a subset of in-

terpolants that may or may not contain a zero. If this subset is not empty, the

roots of all those interpolants are located. Interpolants containing one or more

real roots within [tk tk+1] are placed in the Nr-set. In addition, error-prone

discontinuity functions are included in the Nr-set regardless of whether they

contain a root or not. Error-prone interpolants are those whose slopes have

different signs at tk and tk+1 and whose curvature points toward the zero-axis.

This handles the discrepancy shown in Fig. 4.2(a) by ensuring all gi are in-

cluded in the Nr-set that potentially contain a root but whose interpolants do

not indicate a root. Discontinuity functions that exhibit higher-order trajec-

tories (i.e. more than one inflection point) may go undetected, however they

are unlikely to occur during a single integration step.

Next the solution is advanced to the first estimated event time with

numerical integration using a stepsize computed by,

hd,est = td,est − tk. (5.6)

Any single-step integrator that can provide x and ẋ at t+h can be used for

integration. It is worth noting that several Runge-Kutta pairs were success-

fully used with the algorithm 2. A complete analysis of solution accuracy and

2The different RK methods include a 2(3) pair[33], Fehlberg’s and Dormand-Prince’s 45
pairs[3], Fehlberg’s 7(8) pair[42], and Hairer and Wanner’s implicit 4th-order stiff solver,
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efficiency among the different integrators is beyond the scope of this chap-

ter, however the success and functionality implemented during development is

evidence that the algorithm is indeed modular and integrator independent.

The stepsize determined by eq.(5.6) is the distance between the current

integration time, tk, and the smallest estimated root from the Nr-set as de-

termined by 3rd-order Hermite interpolants. The smallest root, td,est, is found

from a sorted array of 3rd-order roots. If an interpolant like Fig. 4.2(a) contains

no roots, the array entry is the the inflection point of ġi.

The step to td,est is likely to result in an x(td,est) that does not locate the

first event to within the requested discontinuity tolerance, εd. This is the root

location tolerance and, for Newton-Raphson, may be almost as small as the

machine tolerance. Fig. 5.7 shows a possible scenario after integration to td,est.

At this point the first event can be determined with increased certainty with
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Figure 5.7: An example closeup showing the scenario at td,est.

the extra information available at td,est. All discontinuity functions in the Nr-

SDIRK4[8].
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set are re-evalulated for root existence and location with either two 3rd-order

or one 5th-order Hermite interpolant. Use of two 3rd-order interpolants avoids

the Runge effect found in some higher-order interpolants. Nonweiler[54] states

that the Runge effect is the unusual deviation from the dataset commonly

found when creating high-order interpolant polynomials, especially those with

precariously spaced data points.

5.2.2 The root location phase and try-catch model

Since all event detection thus far has used interpolants containing errors

as large, or larger than, the state estimates there are no guarantees that any

of the indicated roots actually exist in g(t, x). This is the scenario depicted

in Fig. 4.2(b). In addition, the interpolant roots have significant uncertainty

which makes choosing the first, or leftmost event only an estimate. In sum-

mary, there are no guarantees on the existence or location of the “first” event

in the Nr-set. However, for the large majority of events, the interpolants pro-

vide a good basis for detection and location of roots in g(t, x) and only a small

number of exceptions remain to be handled.

Borrowing terminology from programming languages, the following pseudo-

code in table 5.1 outlines the try-catch model for exception handling. In this

case, anything other than locating the first root of the first gi that crosses zero

along [tk tk+1] is considered an exception, or manageable error.

The detection phase uses interpolants to estimate zero crossings as well

as event order. Then Newton-Raphson, which requires integration for each

function evaluation, is used to locate the first estimated event. After the
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set i to the discontinuity function estimated to cross first
while the Nr-set is not empty,

- locate the root of gi using Newton-Raphson and numerical integration
if a root was successfully located,

- determine if this was the first event or if all prior events lie within
the ROC

if this root was the first event, (case I)
- exit while-loop gracefully (this is the most common case)

else, (case II, some other event(s) occured prior to the root
just found)

- estimate which gi crossed first
- prepare to locate this new first estimated event

end
else, (case III, Niterations > Nitmax → no root found)

- remove this gi from the Nr-set (interpolant discrepancy;
nonexistent root)

- prepare for root location on the next gi in the Nr-set
end

end

Table 5.1: Try-catch pseudo-code

Newton-Raphson procedure exits, a post-analysis determines whether or not

a root was found and if this was indeed the “first event”. It is this post-

analysis, or “catch” phase of the try-catch model that provides a guarantee on

locating all events in the correct order. Also the rarity of the exceptions allow

the method to remain efficient even though some Newton-Raphson attempts

are seemingly wasted. The try-catch model allows less stringent (i.e. more

efficient) detection methods to construct the Nr-set at each timestep. This

entire procedure is contained in functional block (6a) of Fig. 5.6.

The try-catch procedure outlines a way to handle three possible cases.

The first and most common case occurs when the detection phase successfully

estimates the first zero crossing in [tk tk+1]. The second case occurs when
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the detection phase incorrectly estimates the first event. This situation results

from the discrepancy between interpolant roots and discontinuity function

roots. In these situations the smallest interpolant root is not the first root in

g(t, x). The third case handles the scenario depicted in Fig. 4.2(b) where an

interpolant indicates the presence of a root in g(t, x) when there actually is

none.

5.2.3 Incorporating a region of concurrency

The means by which CEL
+

improves efficiency is first, by preventing

discontinuity sticking which results in fewer rejected integration steps which

in turn produces shorter solution times. However, for certain systems the

benefits can be outweighed by the drawbacks. Park and Barton’s algorithm

guarantees location of each individual event but, for systems with many closely

spaced events this effecvitvely guarantees very small step sizes. Small step sizes

are one of the very things a discontinuity handling procedure aims to avoid. In

some cases, the resulting stepsizes are so small, a standard smooth ODE solver

might traverse the discontinuities with comparable or larger stepsizes. Or, even

if stepsizes were roughly the same size, a smooth ODE solver not burdened with

the computational overhead associated with discontinuity processing might

produce a reasonably accurate solution in shorter time.

The region of concurrency (ROC) is a modification to CEL
+

that retains

the benefits while at the same time allows the engineer to make a tradeoff

between locating individual event times and allowing multiple closely spaced

events to occur “at the same time.” For systems whose bilateral discontinuous
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events may be allowed to occur “at the same time” without an intolerable

loss of accuracy, the ROC provides the ability for many closely spaced events

to be triggered during a single integration step. Using the ROC with systems

that contain nearly concurrent events, only one integration step is necessary to

trigger N events at N closely spaced times. In contrast, CEL
+

is more costly

requiring N attempted integration steps at N distinct times even if the events

are separated by 1 × 10−10 or 1 × 10−14. It should be noted that the ROC

is useful for bilateral discontinuities only. The definition on which unilateral

events is based is mutually exclusive with the premise on which the ROC is

based. This underlying premise states that if CEL
+

guarantees event location

“slightly” after ta, then if td can be located “slightly farther” past ta without

causing integration step failure, this may allow multiple events to occur during

the same timestep.

The process of detecting and locating discontinuous events may be

viewed as a sequential reduction of the Ng-set down to the (frequently empty)

Nr-set (Fig. 5.8). Implementing the ROC is a two-phase procedure for reduc-

ing the Nr-set to the Np-set, then the Nc-set. Phase one estimates how many

events might occur once the root finding procedure locates an event time.

These calculations occur between blocks 5 and 6a of Fig. 5.6 and are relatively

inexpensive because they assume all gi behave linearly in the neighborhood of

td,est and require no RHS function evaluations.

Without the ROC, the root finding procedure locates the root of the

first estimated event after stepping up to td,est. With the ROC, the Np-set is

extracted from the Nr-set by including all estimated event times that lie within

81



���������
	�������	�����������	������
��	���������� �!��"$#�� �%&�(')�*��'+������,
���-�.��/0� 1(�)���-�32�	�4�5�.�768�*9���� ��'�1;:=<?>@<?>BADC�EGF

��HI�J���
	��KH����	��K� ������	I�*� /0	L�NM-����	&4	&#O���
����	L�$���P�*�
	Q����R��	��&F

��"��J���
	���"*����	L�K%&�(')�B�.� '��������S#�����%&��'+��� '+���T��,U�V��'�%L�*���('���� 'W����	�X�4��(�
� 	&/YF

�QZ[�
������	������\����	���H&�R��	��&F
���
	���ZG���	��K� ������	���/]X
� ������#�	^�RM-�T�*	&4	&#

Figure 5.8: Sets used within the DODE algorithm

εc of the first event. The Np-set is a time-filtered subset of the Nr-set. Next,

the Np-set is distilled to an estimate of what the Nc-set will be by including all

elements of the Np-set whose linear estimates of |ĝi| ≤ εROC . This is essentially

an amplitude-filtered subset of the Np-set (Fig. 5.9). The end goal for reducing

the Nr-set to the estimated Nc-set is to choose the discontinuity function with

the greatest estimated event time while still preserving all consistent event

location guarantees. This is implemented by determining which ĝi should be

passed to the root finding procedure for root location. For the example shown

in Fig. 5.9 Newton-Raphson would be used to locate the root of ĝ4.

The second phase in constructing the ROC is an appraisal of how many

events actually occurred after the root finding procedure has located the final

event time, td. This is done by evaluating g(tk, xk) and g(ttd , xtd) with the

definition of L in (5.3). These calculations occur in block 6c of Fig. 5.6.
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Figure 5.9: Potentially concurrent events (i.e. the Np-set) lie within εc of the
first event. The rightmost event estimated to cause all leftward
events to lie within the ROC (i.e. the Nc−set estimate) is chosen
for root location.

5.3 Benchmark problems

The problems chosen to demonstrate the algorithm not only highlight

the method’s specific features but also provide a means of comparison with

other solvers. Problems 1, 2, and 3 from both Birta et.al. (BOK) and

Carver are presented as benchmark problems solved elsewhere in the liter-

ature [29, 30, 56]. The 100-bouncing-balls problem is shown as a simple exam-

ple of what constitutes “nearly concurrent” events. It also demonstrates the

potential for improvement provided by the region of concurrency for systems

with many concurrent events. The marble jar problem is designed to provide

a challenging set of DODE similar to what might be found in an industrial

multibody dynamics problem. This problem proved to be the most difficult
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problem to solve and revealed several shortcomings of previous solver versions

that performed exceptionally well on the first six benchmark problems. This

previous version’s detection and location methods were not robust enough to

handle the numerous degenerate cases presented by the marble jar problem.

All problems are solved with the Dormand-Prince RK-5(4) pair, hmax =

0.1(s), and the following (smooth) stepsize choice:

hnew = min

[
hmax, 0.8 · h ·

(τ
δ

) 1
6

]
(5.7)

where δ is the estimated locate truncation error, τ is the allowable error, and

tol is the requested integration tolerance,

δ = ‖x5 − x4‖∞, τ = tol ·max(‖x‖∞, 1.0). (5.8)

Unless otherwise stated, the stepsize chosen immediately following an event

is min(h0, hsmooth). This chooses the smaller of either the initial stepsize,

h0 = (tfinal − tinitial) · 1 × 10−5, or the stepsize specified by the smooth inte-

grator. Table (5.2) outlines the benchmark problems and their characteristics.

Individual tables within the following subsections show the algorithm’s per-

formance on each problem.

5.3.1 The BOK problems

Problems 1 and 3 in Birta et.al.[29] have exact analytic solutions which

provide the “correct” answer useful for evaluating a numerical solution. Al-
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though they provide an explicit solution for problem 2, it is suspected that

these values were arrived at via numerical integration and thus are affected

by integrator error. Regardless, they present the problems and provide means

for comparison through Nrhs and the final state values. The results for this

algorithm’s performance are shown in table(5.3) for integration tolerance εx =

1× 10−5 and root location tolerance εd = 1× 10−10. For comparison purposes,

in the following tables, Nrej is an accumulation of unused integration steps

not only from oversized (smooth) stepsizes. In addition, it includes rejected

steps to t+h once the detection process initiates a step to td,est. It also in-

cludes rejected steps to td,est after the event detection process verifies an empty

Nr-set.

One advantage the current method has over that presented in Birta

et.al. is the ability to locate events down to machine tolerance. Incorporating

a Newton-Raphson method during the location phase is not a new idea as

evidenced by their explicit solution for problem 2. However, the incorporation

of CEL
+

and CEL
−

made high accuracy root location viable although not a

requirement through the user-specifiable root location tolerance, εd. For the

BOK problems, the penalty in Nrhs incurred by Newton-Raphson was offset

by the improvements provided by the Dormand-Prince RK-5(4) pair.

The results presented in table 5.3 reflect improved solution efficiency

for problems #1 and #2 and reduced efficiency for #2.
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5.3.2 The Carver problems

Carver solved 4 example problems using a method based on Gear’s

stiff solver published by Hindmarsh (see [30]). This is a multi-step predictor

corrector with Nordsieck stepsize control. The accuracy with which event

times are located is not stated explicitly, however from his eqs.(3) and (4),

it is presumed equal to the integration tolerance, εx = 1 × 10−5. Results for

the present algorithm’s performance on his first three problems are shown in

Fig. 5.4 with both integration tolerance and root location tolerance at 1×10−5.

Carver’s results for problem 1 are ambiguous however, for problems 2

and 3, the results presented here are less efficient. He presents Nrhs = 387

and 419 for problems 2 and 3, respectively. His greater efficiency is primarily

attributed to the availability of inexpensive and sufficiently high-order inter-

polants provided by the multi-step integrator. These interpolants not only

guarantee event detection, but also allow root location with no extra function

evaluations.

The success found by Carver is impressive and only offset by the lack

of features like consistent event location (either CEL
+

or CEL
−

) and the fact

that his method does not have an integrator independent root location mecha-

nism. This makes locating events to within machine tolerance difficult if at all

possible. Because the discontinuity functions are appended to the integration

state vector, specifying high accuracy in event location would likely become

the limiting factor in stepsize choice. For larger systems, appending ġ to ẋ
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and integrating (Nstates + Ng) ODE’s would significantly increase the cost of

each integration step. This may, at some point, become prohibitively costly

irrespective of event location tolerance.

5.3.3 100 bouncing balls

This problem is intended as a simple demonstration for the region of

concurrency. Since the ROC is based on linear estimates it is intended to im-

prove performace on systems that contain several events (very) closely spaced

along the time axis. For example, events originally intended to occur “at the

same time” are not always triggered during the same step because of roundoff,

integration, or root location errors.

The system is an independent group of bouncing balls that undergo

spring-damper contact individually with the ground only. There are 100 balls

falling from initial heights, each offset by ∆y = 1 × 10−9 from the previous

resulting in groups of 100 events separated by ≈ 2.26× 10−10(s).

By using the ROC, several events are allowed to occur within the same

timestep. Table (5.5) shows performance improvements between a smooth

ODE solver, the new algorithm without the ROC, and the new algorithm

with the ROC. Although the problem may be solved with unilateral or bilateral

events, the ROC only provides improvements for bilateral events.

Integration and event location tolerance were maintained at εx = 1 ×

10−3 and εd = 1× 10−10, and the ROC tolerances were εc = 1× 10−7, εROC =

1 × 10−6. It should be apparent that the ROC provides significant reduction

in the number of RHS-evaluations compared to both the smooth solver and
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the discontinuous solver without the ROC.

5.3.4 The marble-jar

This system describes tangentially frictionless spring-damper contact

between Nballs marbles and a jar-like container modeled with the intersection

of a plane and cylinder.
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Figure 5.10: Simple DODE system modeling glass marbles being poured into
a glass jar.

The system was designed to generate DODE for rigorously testing the

solver’s detection and location capabilities. The number of integrated states

is 2Nballs and the discontinuity functions are distances between each marble

and all other marbles as well as the plane and cylinder. With Nwalls = 2

representing the cylinder and plane, the total number of discontinuity functions

increases with the number of marbles with

Ng = N2
balls +NballsNwalls −

Nballs∑
i=1

i (5.9)
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This problem serves to underscore the importance of verifying a correct

solution in addition to improving solution efficiency. For no losses, the system’s

total energy should remain constant and is used as a scalar metric for assessing

solution quality. With no losses, the total system energy is

Ek =

Nballs∑
i=1

(
mighi +

1

2
miv

2
i

)
+

Ng∑
j=1

1

2
kjδ

2
j . (5.10)

Fig. 5.11 and table 5.6 show improvements in both accuracy and efficiency of

the new algorithm versus a smooth ODE solver.

The trajectories in Fig. 5.11 were made with Nballs = 10, εd = 1×10−10

and requested integration tolerances of 1×10−3 and 1×10−6. Although the four

cases shown all exhibit some change in energy, the ∆E in the new algorithm

can be attributed primarily to the underlying integration method. The smooth

solver’s ∆E results from a combination of the underlying integration method

accompanied by the results of discontinuity “hunting”.

Figs.5.12(a) and 5.12(b) shows the reduction in Nrhs and cpu-time pro-

vided by the new algorithm over a smooth solver for Nballs=2,4,8, and 16. From

these plots, it is apparent that the new algorithm reduced the total number

of RHS function evaluations by a factor of ≈4.6 for Nballs = 2 and ≈2.8 for

Nballs = 16. (note: 4.6 ≈ 2(15.8−13.6))
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Figure 5.11: This algorithm improves solution quality compared to a smooth
RK-5(4) ode solver.

5.4 Conclusions

Solving discontinuous ODE is a challenging task complete with issues

in equation formulation, event detection, location, and solution verification.

Given the ability to arbitrarily manipulate the state vector at each event,

this automated numerical method is subject to greater risk of failure but also

carries with it the potential for significant gains in both accuracy and efficiency.

These two chapters presented a DODE solution method based on a generic

single-step integrator. Ideas previously presented in the literature such as

discontinuity locking, discontinuity sticking, and consistent event location were
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restated to lay the groundwork for further development. Assuming the use of

discontinuity locking through a status vector, L, events were characterized as

either structural or parametric in their discontinuous changes. With the help of

Fig. 5.8, section 5.1.2 explained that parametrically discontinuous systems do

not necessarily require L in their formulation, while structurally discontinuous

system equations are conveniently formulated with the use of L.

Discontinuous events were also characterized as either unilateral or bi-

lateral. The underlying causes of discontinuity sticking were extended to both

types of events. Two forms of consistent event location, CEL
+

and CEL
−

were

presented as solutions to eliminate discontinuity sticking in bi- and unilateral

systems.

Detecting and locating all events in the correct order while maintaining

reasonable efficiency is particularly difficult using low accuracy interpolants.

The primary difficulty in detecting all events is shown in Fig. 4.2(a). This

is effectively dealt with by populating the Nr-set with all interpolants that

contain roots or satisfy a test identifying it as error-prone. The event location

problem, separate from the detection problem, contains primarily two diffi-

culties, both of which are effectively handled using the try-catch model. The

try-catch model uses Newton-Raphson and post-analysis to manage two types

of exceptional cases during the root location process. The first is the problem

of nonexistent roots and the second is incorrectly sequenced roots as predicted

by the interpolants. The first problem is illustrated in Fig. 4.2(b) and both

exceptional cases are handled by the pseudocode in section 5.2.2.

A region of concurency is presented as an efficient means for allowing
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multiple closely spaced events to occur during a single integration step. The

ROC is only useful for bilateral events because the premise on which it is based

excludes it from use with unilateral events.

Finally the example problems demonstrate the feasibility of the single-

step method using low-order interpolants. The first six problems represent a

benchmark set of DODE previously published by Carver and Birta et.al. The

results of the new method on these problems revealed a mixture of increased

and reduced efficiency, as measured by NRHS. This is primarily attributed

to the multi-step integrator’s provision of interpolants with guaranteed accu-

racy. This decrease in performance is, however, offset by extra features. These

include consistent event location for both uni- and bilateral events, the flexi-

bility of integrator independence, the ability to locate roots to within machine

tolerance independent of integrator tolerance, and a framework that does not

increase the number of integrated states with the number of discontinuity func-

tions. The 100 bouncing ball problem not only demonstrated the degradation

in performance from multiple closely spaced events but also the improvements

provided by the ROC. The marble jar problem provided a challenging set of

DODE on which to test the method’s detection and location capabilities. In

the absence of an analytic solution, an energy metric was used to verify solu-

tion accuracy, and for the smooth solver at εx = 1×10−3, indicated a failure

that otherwise may have gone unnoticed. The method generated solutions

that reduced the number of RHS function evaluations over comparable solu-

tions from a smooth ODE solver by factors ranging from 1.4-4.2 for Nballs = 10

and 4.6-2.8 for Nballs = 2 − 16. It also produced more accurate results with
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roughly an order of magnitude smaller variations in total system energy for

undamped scenarios.
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Problem Name Nstates
a Ng

b g-typec Feature
Carver #1 1 1 bi requires an appropriate hmax to

avoid missing events; f = 2
Carver #2 1 2 bi parametric discontinuities (see

section 5.1.2)
Carver #3 4 4 bi challenging IC’s; required i1 and

i2 to be small but ≥ 0; equation
structure discontinuities

BOK #1 3 1 bi likely to cause schemes to fail
that rely upon sign changes in
g; parametric discontinuities

BOK #2 2 1 bi second-order damped dynamics;
event times become increasingly
close as t increases

BOK #3 3 2 uni requires CEL
−

to maintain
g(t, x) ≥ 0; event times become
increasingly close as t increases

bouncing balls 200 100 uni/bi ball-ground contact only;
spring-damper contact model
7→ bilateral events; coefficient
of restitution contact model 7→
unilateral events

marble-jar,
Nballs=2,4,8,10,16

4,8,16,
20,32

5,14,44,
65,152

bi simulates pouring marbles into
a glass jar; spring-damper con-
tact models

aNstates: number of integrated states in (5.1)
bNg: number of discontinuity functions in (5.2)
cg-type: discontinuity type, either bilateral or unilateral

Table 5.2: Discontinuous problem profiles
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Problem (A=) xfinal
a Nev

b Nrhs
c Nacc

d Nrej
e Nit

f Nctch
g Nfl

h

BOK #1, 0.35 0.8554069 3 307 42 3 5 0 0
BOK #1, 0.40 0.8000413 3 307 41 3 6 0 0
BOK #1, 0.41 0.7819808 1 237 35 2 2 0 0
BOK #1, 0.45 0.7432341 1 231 35 1 2 0 0
BOK #2 0.9427525 16 1041 123 16 29 0 0
BOK #3 0.1653847 20 725 58 20 36 0 0

axfinal: relevant state value at tfinal for comparison with BOK results
bNev: total number of events located
cNrhs: total number of right-hand-side function evaluations
dNacc: total number of steps accepted
eNrej : total number of steps rejected
fNit: total number of Newton-Raphson iterations
gNctch: summation of case II occurrences sucessfully handled by the try-catch model
hNfl: summation of case III occurrences sucessfully handled by the try-catch model

Table 5.3: Solver performance on the BOK problems.

Problem Nev Nrhs Nacc Nrej Nit Ncatch Nfl

Carver #1,a 3 229 30 3 4 0 0
Carver #2 7 447 53 10 9 0 0
Carver #3b, no ROC 22 873 88 27 23 0 0
Carver #3, ROCc 16 741 79 21 18 0 0

af = 2, t ∈ [0 0.9], and after each event, hrestart = 1× 10−6

bThis problem required integration of d2i1/dt
2 and d2i2/dt

2 to fit the form g = g(t, x)
cεc = 1× 10−6(s), ε

ROC
= 0.01

Table 5.4: Solver performance on the Carver problems.

Solution method on 100
bouncing balls problem

Nev Nrhs Nacc Nrej Nit Ncatch Nfl

smooth ODE solvera - 4963 401 426 - - -
new method, no ROC 1200 31423 1239 1200 2398 0 0
new method, with ROC 18 685 57 18 33 0 0

abased on the Dormand-Prince RK-5(4) pair

Table 5.5: Performance results for the 100 bouncing ball problem.
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Solver εx ∆Ea Nev Nrhs Nacc Nrej Nit Ncatch Nfl

smoothb,
undamped

1e -3 2.81e -2 - 414025 36326 32679 - - -

new
meth., un-
dampedc

1e -3 3.55e -3 2272 98385 7653 3334 4653 7 0

smooth,
undamped

1e -6 3.01e -4 - 439147 40324 32868 - - -

new
meth.,
undamped

1e -6 3.34e -5 2088 132283 15189 2237 3925 0 0

smooth,
damped

1e -3 failed - - - - - - -

new
meth.,
damped

1e -3 0.2937 13404 471259 32225 17876 23974 2 3

smooth,
damped

1e -6 0.2939 - 624367 68810 35252 - - -

new
meth.,
damped

1e -6 0.2939 5663 438329 50733 10593 9841 0 0

a∆E = max(E)−min(E) and represents the total energy variation.
bsmooth ODE solver based on Dormand-Prince RK-5(4) pair.
cAll new method results are for εd = 1×10−10, no ROC, and hmax = 0.1(s).

Table 5.6: Comparison of discontinuous and smooth solver efficiency on
marble-jar problem.
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Chapter 6

Conclusions and future work

6.1 Conclusions

Two solution methods were developed for solving a class of semi-explicit,

high-index DAE and discontinuous ODE. Both methods demonstrated im-

proved solution efficiency or accuracy (or both) over existing methods. In gen-

eral, the costs associated with solving DAE and DODE were reduced enough

to warrant further work. The development environment in which the numeri-

cal experiments were performed was in no way optimal. Significant efficiency

improvements may be found by reimplementing both methods in a higher

performance computational environment.

A hybrid DAE solution method was developed in chapters 2 and 3 that

draws on strengths from computational mathematics-based DAE and sliding

mode control theory. Fig. 6.1 is a graphical depiction of the major issues

contributed by both SMC control theory and DAE solution methods as well
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as the contributions reflected back upon the two original bodies of literature.

An explicit transformation was made between the mathematics form of con-
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Figure 6.1: Major contributions transferred both to and from the original
bodies of literature.

strained multibody dynamics DAE to an equivalent control problem in canon-

ical state-space form in the control literature. SMC’s ability to directly handle

time-varying, nonlinear, holonomic and nonholonomic systems under a unified

framework made it ideal as a control strategy for solving MBS DAE. In ad-

dition, SMC’s reaching-phase dynamics naturally accommodates inconsistent

initial conditions which otherwise is a known difficulty when solving DAE.

Integration error was used as an upper bound for limiting post-stabilization

adjustment in an attempt to produce physically realistic soltions. Finally,

an acceleration-level stabilization method was identified from study of SMC’s

boundary layer dynamics and used during each RHS function evaluation. It

was shown to be both necessary for correct solutions and analugous to com-

puting all constraint Jacobians at each integrator stage value.
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A DODE solution method was presented in Chapters 5 and 4 using a

generic single-step integrator. Previous techniques such as discontinuity lock-

ing, interpolant creation, and consistent event location were implemented in

the single-step environment. Fig. 6.2 is a graphical depiction of the major

issues contributed by current multi-step methods in the literature and this

single-step DODE solver. A distinction was drawn between how discontin-
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Figure 6.2: Major contributions contributed from previous work and this
single-step DODE solver.

uous equations are written. They can be parametric or structural in their

formulation. This was followed by further classification of discontinuities into

uni- and bi-lateral events along with their related mechanisms for discontinu-

ity sticking. The process of (re)implementing past DODE technologies in a

single-step environment led to further developments such as CEL
−

, the try-

catch method, and the region of concurrency. Unlike multistep methods that
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provide high-order interpolants, low-order interpolants were shown largely suc-

cessful for event detection in the single-step envirnment. In the situations

where low-order interpolants failed, a try-catch method of post-analysis was

used to catch two specific failure cases during event location. Six benchmark

problems were solved that revealed a mix of improved and decreased perfor-

mance. The performance decrease is attributed primarily to the provision of

high-order interpolants provided by multistep integrators.

6.2 Future work

The original intent in developing a single-step DAE solver along with

a single-step, integrator-independent DODE solver was ultimately to combine

the two, along with a stiff integrator, into a single solver (Fig. 6.3). This

solver would represent the state-of-the-art in single-step methods for solv-

ing stiff discontinuous, high-index DAE. This class of equations is one of the

most challenging classes to solve in physical system simulation. Currently

the only other solving environment that directly addresses this class of equa-

tions and also implements discontinuity locking and consistent event location

is DAEPACK[36]. DAEPACK, among other things, is a software implemen-

tation of Park and Barton’s paper [56].

Future work in DAE solution methods include extension of SMC’s ca-

pabilities to a broader, more general class of DAE. Also, post-stabilization

apparently exhibits some growth in it’s adjustment magnitude for long-time

simulations. Investigating the reasons for and attenuating this growth is an
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Figure 6.3: The original intent of creating single-step DAE and DODE
solvers.

area for future work.

Other future work involves improving the detection process and, pos-

sibly providing detection guarantees using some combination of logic and the

high-order interpolants developed by Enright et.al. in [40] and [41]. Also,

implementing the region of concurrency and/or CEL
−

in a multi-step envi-

ronment could not only provide increased efficiency for a multi-step DODE

solver, but would also provide the functionality for solving systems with uni-

lateral discontinuities.

Lastly, some equation solving environments that might benefit from con-

sistent event location (either CEL
+

or CEL
−

) and discontinity locking include

Matlab, ACSL, the solvers at netlib.org, DAEPACK, and the dynamic sys-
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tems modeling environments ADAMS1 [26], DADS2 [35], MSC.visualNastran

4D3 [63] and EASY5[38].

1ADAMS is a registered trademarks of Mechanical Dynamics, Inc.
2DADS is a registered trademarks of LMS International
3MSC.visualNastran 4D is a registered trademark of The MSC.Software Corporation
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