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ABSTRACT

This article provides supplemental information for a Letter reporting the rate of (BBH) coalescences inferred from 16
days of coincident Advanced LIGO observations surrounding the transient (GW) signal GW150914. In that work we
reported various rate estimates whose 90% confidence intervals fell in the range 2–600Gpc−3yr−1. Here we give
details on our method and computations, including information about our search pipelines, a derivation of our
likelihood function for the analysis, a description of the astrophysical search trigger distribution expected from
merging BBHs, details on our computational methods, a description of the effects and our model for calibration
uncertainty, and an analytic method for estimating our detector sensitivity, which is calibrated to our measurements.

Key words: gravitational waves – stars: black holes

Supporting material: data behind figures

The first detection of a gravitational-wave (GW) signal from
a merging binary black hole (BBH) system was described in
Abbott et al. (2016d). Abbott et al. (2016g) reported on
inference of the local BBH merger rate from surrounding
Advanced LIGO observations. This Supplement provides
supporting material and methodological details for Abbott
et al. (2016g, hereafter referred to as the Letter).

1. SEARCH PIPELINES

Both the pycbc and gstlal pipelines are based on
matched filtering against a bank of template waveforms. See
Abbott et al. (2016c) for a detailed description of the pipelines
in operation around the time of GW150914; here we provide an
abbreviated description.

In the pycbc pipeline, the single-detector signal-to-noise
ratio (S/N) is re-weighted by a chi-squared factor (Allen 2005)
to account for template-data mismatch (Babak et al. 2013); the
re-weighted single-detector S/Ns are combined in quadrature
to produce a detection statistic for search triggers.

The gstlal pipelineʼs detection statistic, however, is based
on a likelihood ratio (Cannon et al. 2013, 2015) constructed
from the single-detector S/Ns and a signal-consistency
statistic. An analytic estimate of the distribution of astro-
physical signals in multiple-detector S/N and signal-consis-
tency statistic space is compared to a measured distribution of
single-detector triggers without a coincident counterpart in the
other detector to form a multiple-detector likelihood ratio.

Both pipelines rely on an empirical estimate of the search
background, making the assumption that triggers of terrestrial
origin occur independently in the two detectors. The back-
ground estimate is built from observations of single-detector
triggers over a long time (gstlal) or through searching over a
data stream with one detectorʼs output shifted in time relative to
the otherʼs by an interval that is longer than the light travel time
between detectors, ensuring that no coincident astrophysical
signals remain in the data (pycbc). For both pipelines it is not
possible to produce an instantaneous background estimate at a
particular time; this drives our choice of likelihood function, as
described in Section 2.

The gstlal pipeline natively determines the functions
p x0 ( ) and p1(x) for its detection statistic x. For this analysis a
threshold of =x 5min was applied, which is sufficiently low
that the trigger density is dominated by terrestrial triggers near
a threshold. There were M=15 848 triggers observed above
this threshold in the 17 days of observation time analyzed by
gstlal.
For pycbc, the quantity x′is the re-weighted S/N detection

statistic.137 We set a threshold ¢ =x 8min , above which M′=270
triggers remain in the search. We use a histogram of triggers
collected from time-shifted data to estimate the terrestrial trigger
density, ¢p x0 ( ), and a histogram of the recovered triggers from the
injection sets described in Section 2.2 of the Letter to estimate the
astrophysical trigger density, ¢p x1 ( ). These estimates are shown in
Figure 1. The uncertainty in the distribution of triggers from this
estimation procedure is much smaller than the uncertainty in the
overall rate from the finite number statistics (see, for example,
Figure 5). The empirical estimate is necessary to properly account
for the interaction of the various single- and double-interferometer
thresholds in the pycbc search (Abbott et al. 2016c). At high
S/N, where these thresholds are irrelevant, the astrophysical
triggers follow an approximately flat-space volumetric density
(see Section 3) of

¢
¢

¢
p x

x

x

3
, 11

min
3

4
( ) ( )

but they deviate from this at smaller S/N due to threshold
effects in the search.
For the pycbc pipeline, a detection statistic ¢x 10.1

corresponds to an estimated search false alarm rate (FAR) of
one per century.

2. DERIVATION OF POISSON MIXTURE
MODEL LIKELIHOOD

In this section we derive the likelihood function in Equation
(3) of the Letter. Consider a search of the type described in
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137 When quoting pipeline-specific values we distinguish pycbc quantities
with a prime.
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Section 1 over NT intervals of time, of width δi, = ¼i N1, , T{ }.
Triggers above some fixed threshold occur with an instanta-
neous rate in time and detection statistic x given by the sum of
the terrestrial and astrophysical rates:

= +
dN

dtdx
t x R t p x t R t V t p x t, ; ; , 20 0 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )

where R t0 ( ) is the instantaneous rate (number per unit time) of
terrestrial triggers, R1(t) is the instantaneous rate density
(number per unit time per unit comoving volume) of
astrophysical triggers, p0 is the instantaneous density in the
detection statistic of terrestrial triggers, p1 is the instantaneous
density in the detection statistic of astrophysical triggers, and V
(t) is the instantaneous sensitive comoving redshifted volume
(Abbott et al. 2016a; see also Equation (15) of the Letter) of the
detectors to the assumed source population. The astrophysical
rate R1 is to any reasonable approximation constant over our
observations so we will drop the time dependence of this term
from here on.138 Note that R0 and R1 have different units in this
expression; the former is a rate (per time), while the latter is a
rate density (per time-volume). The density p1 is independent
of source parameters as described in Section 3. Let

òº = +
dN

dt
dx

dN

dtdx
R t R V t . 30 1( ) ( ) ( )

If the search intervals δi are sufficiently short, they will
contain at most one trigger and the time-dependent terms in
Equation (2) will be approximately constant. Then the
likelihood for a set of times and detection statistics of triggers,

= ¼t x j M, 1, ,j j{( )∣ }, is a product over intervals containing a
trigger (indexed by j) and intervals that do not contain a trigger

(indexed by k ) of the corresponding Poisson likelihoods
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(see Farr et al. 2015, Equation(21), or Loredo & Wasser-
man 1995 Equation (2.8)).139 Now let the width of the
observation intervals δi go to zero uniformly as the number of
intervals goes to infinity. Then the products of exponentials in
Equation (4) become an exponential of an integral, and we have

⎡
⎣⎢

⎤
⎦⎥ = -

=

dN

dtdx
t x N, exp , 5

j

M

j j
1

( ) [ ] ( )

where

ò=N dt
dN

dt
6( )

is the expected number of triggers of both types in the total
observation time T.
As discussed in Section 1, in our search we observe that R0

remains approximately constant and that p0 retains its shape
over the observation time discussed here; this assumption is
used in our search background estimation procedure (Abbott
et al. 2016c). The astrophysical distribution of triggers is
universal (Section 3) and also time-independent. Finally, the
detector sensitivity is observed to be stable over our 16 days of
coincident observations, so V(t) ; const (Abbott et al. 2016b).
We therefore choose to simply ignore the time dimension in
our trigger set. This generates an estimate of the rate that is sub-
optimal (i.e., has larger uncertainty) but consistent with using
the full data set to the extent that the detector sensitivity varies
in time; since this variation is small, the loss of information
about the rate will be correspondingly small. We do capture
any variation in the sensitivity with time in our Monte Carlo
procedure for estimating á ñVT , which is described in Section
2.2 of the Letter.
If we ignore the trigger time, then the appropriate likelihood

to use is a marginalization of Equation (5) over the tj. Let

 ò 



º

= L + L -L - L

dt
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where

òL =p x dt R t p x t; , 80 0 0 0( ) ( ) ( ) ( )

and

òL =p x dt R V t p x t; , 91 1 1 1( ) ( ) ( ) ( )

with

ò ò= =dx p x dx p x 1. 100 1( ) ( ) ( )

Figure 1. Inferred terrestrial (p0; blue) and astrophysical (p1; green) trigger
densities for the pycbc pipeline as described in Section 1.

(The data used to create this figure are available.)

138 The astrophysical rate can, in principle, also depend on redshift, but in this
paper we assume that the BBH coalescence rate is constant in the comoving
frame.

139 There is a typo in Equation(2.8) of Loredo & Wasserman (1995). The
second term in the final bracket is missing a factor of δt.
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If we assume that R1 is constant in (comoving) time, and
measure p x1 ( ) by accumulating recovered injections through-
out the run as we have done, then this expression reduces to the
likelihood in Equation (3) of the Letter. A similar argument
with an additional population of triggers produces Equation
(10) of the Letter.

2.1. The Expected Number of Background Triggers

The procedure for estimating p x0 ( ) in the pycbc pipeline
also provides an estimate of the mean number of background
events per experiment Λ0 (Abbott et al. 2016c). The procedure
for estimating p0 used in the gstlal pipeline, however, does
not naturally provide an estimate of Λ0; instead gstlal
estimates Λ0 by fitting the observed number of triggers to a
Poisson distribution. We have chosen to leave Λ0 as a free
parameter in our canonical analysis with a broad prior and infer
it from the observed data, rather than using the pycbc
background estimate to constrain the prior, which would result
in a much narrower posterior on Λ0. This is equivalent to the
gstlal procedure for Λ0 estimation in the absence of signals;
the presence of a small number of signals in our data here does
not substantially change the Λ0 estimate due to the over-
whelming number of background triggers in the data set.

Using a broad prior on Λ0 is conservative in the sense that it
will broaden the posterior on Λ1 from which we infer rates.
However, because there are so many more triggers in searches
of terrestrial origin than there are in those of astrophysical
origin there is little correlation between Λ0 and Λ1, so there is

little difference between the posterior we obtain on Λ1 and the
posterior we would have obtained had we implemented the
tight prior on Λ0. Figure 2 shows the two-dimensional posterior
we obtain from Equation (5) of the Letter on Λ0 and Λ1.
We have checked that using a δ-function prior

dL = L -p 270 110 0( ) ( ) ( )

in the pycbc analysis that is the result of the pipeline Λ0

estimate from timeslides140 (Abbott et al. 2016c) and using a
looser prior that is the result of a gstlal estimate on a single
set of time-slid data produce no meaningful change in our
results. Figure 3 shows our canonical rate posterior inferred
with the pycbc Λ0 prior in Equation (11) and our canonical
broad prior.

3. UNIVERSAL ASTROPHYSICAL
TRIGGER DISTRIBUTION

Both the pycbc and gstlal pipelines rely on the S/N as
part of their detection statistic, x. The S/N of an astrophysical
trigger is a function of the detector noise at the time of
detection and the parameters of the trigger. Schutz (2011) and
Chen & Holz (2014) demonstrate that the distribution of the
expected S/N rá ñ in a simple model of a detection pipeline that
simply thresholds on S/N, r rth, with sources in the local
universe is universal, that is, independent of the source
properties. It follows

r
r

r
á ñ =

á ñ
p

3
. 12th

3

4
( ) ( )

This result follows from the fact that the expected value of the
S/N in a matched-filter search for compact binary coalescence
(CBC) signals scales inversely with transverse comoving
distance (Hogg 1999):

rá ñ =
a aA m m S f z B

D

, , , , , angles
, 13

M

1 2 1 2( ( ) ) ( ) ( )

where A is an amplitude factor that depends on the intrinsic
properties (source-frame masses and spins) of the source, the
detector sensitivity expressed as a noise power spectral density
S f( ) as a function of observer frequency and redshift z, and B
is an angular factor depending on the location of the source in
the sky and the relative orientations of the binary orbit and
detector. The redshift enters A only through shifting the source
waveform to lower frequency at higher redshift, changing A
because the sensitivity varies with observer frequency f. For the
redshifts to which we are sensitive to BBH in this observation
period this effect on A is small.
If we assume that the distribution of source parameters is

constant over the range of distances to which we are sensitive,
and ignore the small redshift-dependent sensitivity correction
mentioned above, then the distribution of S/N will be governed
entirely by the distribution of distances of the sources, which,
in the local universe, is approximately

µp D D , 14M M
2( ) ( )

yielding the distribution of S/N given in Equation (12).

Figure 2. Two-dimensional posterior on terrestrial and astrophysical trigger
expected counts (Λ0 and Λ1 in Equation (5) of the Letter) for the pycbc
search. Contours are drawn at the 10%, 20%, K, 90%, and 99% credible
levels. There is no meaningful correlation between the two variables. The
Poisson uncertainty in the terrestrial count is~ 270 , or 16, which is also very
near the Poisson uncertainty in the total count. Because this uncertainty is much
larger than the astrophysical count, changes in the astrophysical count do not
force the terrestrial count to adjust in a meaningful way and the variables are
uncorrelated in the posterior.

(The data used to create this figure are available.)

140 While the statistical uncertainty on the pipeline Λ0 estimate is not precisely
zero, s LL

-100
3

0 , it is so small that a δ-function prior is appropriate.
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Both the pycbc and gstlal pipelines use goodness-of-fit
statistics in addition to S/N and employ a more complicated
system of thresholds than this simple model, but the empirical
distribution of detection statistics remains, to an approximation

suitable for our purposes, independent of the source para-
meters. Figure 4 shows the distribution of recovered detection
statistics for the various injection campaigns with varying
source distribution used to estimate sensitive time-volumes in
the pycbc pipeline. In each injection campaign  1000( )
signals were recovered. For loud signals, the detection statistic
is proportional to S/N in this pipeline, and the distribution is
not sensitive to the complicated thresholding in the pipeline, so
we recover Equation (12); for quiet signals the interaction of
various single-detector thresholds in the pipeline causes the
distribution to deviate from this analytic approximation, but it
remains independent of the distribution of sources. Note that
the empirical distribution of detection statistics, not the analytic
one, forms the basis for p1, the foreground distribution used in
this rate estimation work.
To quantify the deviations from universality, we have

preformed two-sample Kolmogorov-Smirnov (KS) tests between
all six pairings of the sets of detections statistics recovered in the
injection campaigns described in Sections 2 and 3 of the Letter
and featured in Figure 4. The most extreme KS p-value occurred
with the comparison between the injection set with BBH masses
drawn flat in mlog and the one with masses drawn from a power
law (both described in Section 3 of the Letter); this test gave a p-
value of 0.013. Given that we have performed six identical
comparisons we cannot reject the null hypothesis that the
empirical distributions used for rate estimation from the pycbc
pipeline are identical even at the relatively weak significance
α=0.05. Certainly any differences in detection statistic distribu-
tion attributable to the BBH population are far too small to matter
with the few astrophysical signals in our data set (compared with
 1000( ) recovered injections in each campaign).

Because the distribution of detection statistics is, to a very
good approximation, universal, we cannot learn anything about
the source population from the detection statistic alone; we
must instead resort to parameter estimation (PE) follow-up
(Veitch et al. 2015; Abbott et al. 2016e) of triggers to
determine their parameters. The parameters of the waveform
template that produced the trigger can be used to guess the
parameters of the source that generated that trigger, but the bias
and uncertainty in this estimate are very large compared to the
PE estimate. We therefore ignore the parameters of the
waveform template that generated the trigger in the assignment
of triggers to BBH classes.

4. COUNT POSTERIOR

We impose a prior on the Λ parameters of:

L L µ
L L

p ,
1 1

. 151 0
1 0

( ) ( )

The posterior on expected counts is proportional to the
product of the likelihood from Equation (3) of the Letter and
the prior from Equation (15):

⎪
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⎪

⎧
⎨
⎩
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For estimation of the Poisson rate parameter in a simple
Poisson model, the Jeffreys prior is L1 . With this prior, the

Figure 3. Posterior on the population-based rate obtained from our canonical
analysis (blue) and an analysis where the expected background count, Λ0, is
fixed to the value measured by the pycbc pipeline, L = 2700 (green). There is
no meaningful change in the rate posterior between the two analyses.

(The data used to create this figure are available.)

Figure 4. Distribution of detection statistics in the pycbc pipeline for the
signals recovered in the injection campaigns used to estimate sensitive time-
volumes for various BBH population assumptions (see Sections 2 and 3 of the
Letter). The solid line gives the analytic approximation to the distribution from
Equation (12), which agrees well with the recovered statistics for loud signals;
for quieter signals the interaction of various thresholds in the pipeline causes
the distribution to deviate from the analytic approximation, but it remains
independent of the source distribution.

(The data used to create this figure are available.)
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posterior mean on Λ is +N 1 2 for N observed counts. With a
prior proportional to L1 the mean is N for N>0, but the
posterior is improper when N=0. For a flat prior, the mean is
N+1. Though the behavior of the mean is not identical with
our mixture model posterior, it is similar; because we find
áL ñ  1 21 , the choice of prior among these three reasonable
options has little influence on our results here.

For the pycbc data set we find the posterior median and
90% credible range L = -

+3.21 2.4
4.9 above our threshold. For the

gstlal set we find the posterior median and 90% credible
range L = -

+4.81 3.8
7.9. Though we have only one event

(GW150914) at exceptionally high significance, and one other
at marginal significance (LVT151012), the counting analysis
shows these to be consistent with the possible presence of
several more events of astrophysical origin at a lower detection
statistic in both pipelines.

The thresholds applied to the pycbc and gstlal triggers
for this analysis are not equivalent to each other in terms of
either S/N or FAR; instead, both thresholds have been chosen
so that the rate of triggers of terrestrial origin (L p0 0) dominates
near the threshold. Since the threshold is set at different values
for each pipeline, we do not expect the counts to be the same
between pipelines.

The estimated astrophysical and terrestrial trigger rate densities
(Equation (1) of the Letter) for pycbc are plotted in Figure 5. We
select triggers from a subset of the search parameter space (i.e.,
our bank of template waveforms) that contains GW150914 as
well as the mass range considered for possible alternative
populations of BBH binaries in Section 3 of the Letter. There
are ¢ =M 270 two-detector coincident triggers in this range in the
pycbc search (Abbott et al. 2016c). Figure 5 also shows an
estimate of the density of triggers that comprise our data set,
which agrees well with our inference of the trigger rate.

Based on the probability of astrophysical origin inferred for
LVT151012 from the two-component mixture model in
Equation (16) and shown in Figure 6, we introduce a third class
of signals and use a three-component mixture model with expected
counts Λ0 (terrestrial), Λ1 (GW150914-like), and Λ2 (LVT151012-
like) to infer rates in Sections 2.1 and 2.2 of the Letter.

We use the Stan and emcee Markov Chain Monte Carlo
samplers (Foreman-Mackey et al. 2013; Stan Development
Team 2015a, 2015b) to draw samples from the posterior in
Equation (5) of the Letter for the two pipelines. We have
assessed the convergence and mixing of our chains using
empirical estimates of the autocorrelation length in each
parameter (Sokal 1996), the Gelman-Rubin R convergence
statistic (Gelman & Rubin 1992), and through visual inspection
of chain plots. By all measures, the chains appear to be well-
converged to the posterior distribution.
Table 1 contains the full results on expected counts and

associated sensitive time-volumes for both pipelines.

5. CALIBRATION UNCERTAINTY

The LIGO detectors are subject to uncertainty in their
calibration, in both the measured amplitude and the phase of
the GW strain. Abbott et al. (2016b) discussed the methods
used to calibrate the strain output of the detector during the 16
days of coincident observations discussed here. Abbott et al.
(2016b) estimated that the reported strain is accurate to within
10% in amplitude and 10 degrees in phase between 20 Hz and
1 kHz throughout the observations.
The S/Ns reported by our searches are quadratically

sensitive to calibration errors because they are maximized
over arrival time, waveform phase, and a template bank of
waveforms (Allen 1996; Brown & LIGO Scientific Collabora-
tion 2004). Abbott et al. (2016c) demonstrated that the other
search pipeline outputs are also not affected to a significant
degree by the calibration uncertainty present during our
observing run. Therefore, we ignore the effects of calibration
on the pipeline detection statistics x and x′ that we use here to
estimate rates from the pycbc and gstlal pipelines.
The amplitude calibration uncertainty in the detector results,

at leading order, in a corresponding uncertainty between the
luminosity distances of sources measured from real detector
outputs (Abbott et al. 2016e) and the luminosity distances used
to produce injected waveforms used to estimate sensitive time-
volumes in this work. A 10% uncertainty in dL at these
redshifts corresponds to an approximately 30% uncertainty in
volume. We model this uncertainty by treating á ñVT as a

Figure 5. Inferred number density of astrophysical (green), terrestrial (blue), and all (red) triggers as a function of ¢x for the pycbc search (see Equation (1) of the
Letter), using the models for each population described in Section 2.1 of the Letter. The solid lines give the posterior median and the shaded regions give the
symmetric 90% credible interval from the posterior in Equation (5) of the Letter. We also show a binned estimate of the trigger number density from the search (black);
bars indicate the 68% confidence Poisson uncertainty on the number of triggers in the vertical-direction and bin width in the horizontal-direction.

(The data used to create this figure are available.)
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parameter in our analysis, and imposing a log-normal prior:

⎛
⎝⎜

⎞
⎠⎟m

s
m

á ñ µp VT Nlog log , , 17( ) ( )

where μ is the Monte Carlo estimate of sensitive time-volume
produced from the injection campaigns described in Section 2.2
of the Letter and

s s s= + , 182
cal
2

stat
2 ( )

with s m= 0.3cal and sstat is the estimate of the Monte Carlo
uncertainty from the finite number of recovered injections
reported above. In all cases s scal stat.

Since the likelihood in Equations (3) or (10) of the Letter does
not constrain á ñVT independently of R, sampling over á ñVT at the
same time as Λ and R has the effect of convolving the log-normal
distribution of á ñVT with the posterior on Λ in the inference of R.

In spite of the 30% relative uncertainty in á ñVT from calibration
uncertainty, the counting uncertainty on R from the small number
of detected events dominates the width of the posterior on R.

Table 1
Expected Counts and Sensitive Time-volumes to BBH Mergers

Estimated under Various Assumptions

Λ á ñVT Gpc yr3

pycbc gstlal pycbc gstlal

GW150914 -
+2.1 1.7

4.1
-
+3.6 2.9

6.9
-
+0.130 0.051

0.084
-
+0.21 0.08

0.14

LVT151012 -
+2.0 1.7

4.0
-
+3.0 2.7

6.8
-
+0.032 0.012

0.020
-
+0.048 0.019

0.031

Both -
+4.5 3.1

5.5
-
+7.4 5.1

9.2 K K

Astrophysical

Flat in log mass -
+3.2 2.4

4.9
-
+4.8 3.8

7.9
-
+0.050 0.019

0.032
-
+0.080 0.031

0.051

Power Law (−2.35) -
+0.0154 0.0060

0.0098
-
+0.024 0.009

0.015

Note. See Sections 2.1, 2.2, 3, and 4 of the Letter.

Figure 7. Rate at which sensitive time-volume accumulates with redshift.
Curves labeled by component masses in Me are computed using the
approximate prescription described in Section 6, assuming sources with fixed
masses in the comoving frame and without spin; the GW150914 and
LVT151012 curves are determined from the Monte Carlo injection campaign
described in Section 2.2 of the Letter.

(The data used to create this figure are available.)

Figure 6. Posterior probability that coincident triggers in our analysis come from an astrophysical source (see Equation (7) of the Letter), taking into account the
astrophysical and terrestrial expected counts estimated in Section 2.1 of the Letter. Left: the gstlal triggers with x>5; right: pycbc triggers with x′>8.
GW150914 is not shown in the plot because its probability of astrophysical origin is effectively 100%. The only two triggers with P1  50% are GW150914 and
LVT151012. For GW150914, we find P1=1 to very high precision; for LVT151012, the gstlal pipeline finds =P 0.841 and the pycbc pipeline finds =P 0.911 .

(The data used to create this figure are available.)
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6. ANALYTIC SENSITIVITY ESTIMATE

As a rough check on our á ñVT estimates and the integrand
á ñd VT dz, we find that the following approximate, analytic

procedure also produces a good approximation to the pycbc
Monte Carlo estimate in Table 1.

1. Generate inspiral–merger–ringdown waveforms in a single
detector at various redshifts from the source distribution
qs ( ) with random orientations and sky positions.

2. Using the high-sensitivity early Advanced LIGO noise
power spectral density from Abbott et al. (2016f),
compute the S/N in a single detector.

3. Consider a signal found if the S/N is greater than 8.

Employed with the source distributions described above, this
approximate procedure yields á ñ VT 0.107 Gpc yr1

3 and
á ñ VT 0.0225 Gpc yr2

3 for the sensitivity to the two classes
of merging BBH system. Figure 7 shows the sensitive time-
volume integrand,

ò q q q
á ñ

º
+

d VT

dz
T

z

dV

dz
d s f z

1

1
, , 19c ( ) ( ) ( )

estimated from this procedure for systems with various
parameters superimposed on the Monte Carlo estimates from
the injection campaign described above.
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