

# Evaluation of toxicity of lunar and Martian regolith on skin microbiome-relevant bacteria.

Makaila Olson, Noah Robbins, Helena Huyke, Hugo Castillo Human Factors and Behavioral Neurobiology Department, Embry-Riddle Aeronautical University, Daytona Beach FL 32114



# Introduction

Lunar regolith potential alterations of the skin microbiome:

- Physical irritation
- Chemical alteration
- pH, moisture content, toxic elements
- Immune response modulation
- Secondary radiation species from galactic cosmic ray exposure

## Hypotheses

- Growth rates will be inhibited when simulant is added to bacteria in nutrient broth.
- Death rates will increase when simulant is added to bacteria in buffer(no nutrients).
- Increasing the concentration of simulant will worsen the effects





## Lunar dust on human health

•Apollo astronaut, Harrison Schmitt, reported that all 12 men who stepped foot on the Moon struggled with short-term nasal congestion, sore throat, and watering eyes. This condition was later labeled "lunar hay fever".



Spacesuit exposed to the lunar surface on the Apollo 12 mission (Christoffersen, 2009)



 Long-term studies are being conducted on respiratory and visual systems to analyze the long-term health risks of regolith exposure.

•Other research with regolith simulants have shown cell death and DNA damage in

## in both conditions.

Adapted from: Baldwin, 2017

#### neuronal and lung cell lines. (Caston, 2018)



# **Substrate Preparation**

### **Simulant Sterilization Method**

- To maintain and allow for pure cultures to be analyzed.
- Optimize control over experimental conditions.
- Utilize autoclave and UV light sterilization techniques
- Test sterility through streak plates





## **Particle Sediment Test**

- Observe average time simulant settles from nutrient broth.
- Optical density at 5-minute intervals 100 µL 100 µL 100 µL 100





# **Preliminary Results**



First trials show MGS-1 settles faster than LHS-1



# Future work

Antibiotic resistance of *Serratia marcescens* post microgravity (RCCS) and simulant exposure

- Grow Serratia marcescens under microgravity conditions using the RCCS
- Expose the cells to simulant
  - Observe changes in growth rates and biofilms
- Observe the appearance of pigment
- Total cell counts on nonselective agar
- Kirby Bauer antibiotic assay

# References

Baldwin, H. E., Bhatia, N. D., Friedman, A., Eng, R. M., & Seitel, S. (2017). *The Role of Cutaneous Microbiota Harmony in Maintaining a Functional Skin Barrier*. JDDonline. https://jddonline.com/articles/the-role-of-cutaneous-microbiota-harmony-in-maintaining-a-functional-skin-barrier-S1545961617P0012X/?\_page=3 Caston, R., Luc, K., Hendrix, D., Hurowitz, J. A., & Demple, B. (2018). *Assessing Toxicity and Nuclear and Mitochondrial DNA Damage Caused by Exposure of Mammalian Cells to Lunar Regolith Simulants*. AGU Advancing Earth And Space Sciences. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017GH000125

 Christoffersen, R., Lindsay, J. F., Noble, S. K., Meador, M. A., Kosmo, J. J., Lawrence, J. A., Brostoff, L., Young, A., & McCue, T. (2009). Lunar Dust Effects on Spacesuit Systems: Insights from the Apollo Spacesuits. ResearchGate.

https://www.researchgate.net/publication/253621993\_Lunar\_Dust\_Effects\_on\_Spacesuit\_Systems\_Insights\_from\_the\_Apollo\_Spacesuits



Kirby Bauer assay on Serratia marcescens prior to any stressors