LP 133-373: A New Chromospherically Active Eclipsing dMe Binary with a Distant, Cool White Dwarf Companion

T. R. Vaccaro
Florida Institute of Technology

M. Rudkin
Florida Institute of Technology

A. Kawka
Czech Academy of Sciences

S. Vennes
Florida Institute of Technology

Terry D. Oswalt
Florida Institute of Technology, oswaltt1@erau.edu

See next page for additional authors

Follow this and additional works at: https://commons.erau.edu/publication

Part of the [Stars, Interstellar Medium and the Galaxy Commons](https://commons.erau.edu/publication)

Scholarly Commons Citation

This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
1. INTRODUCTION

The star LP 133-373 (NLTT 36188)—RA (J2000.0) = 14\textdegree4\textbf{4}39.9\textprim, decl. (J2000.0) = +50	extdegree20\textprim38\textsec—was originally listed in the Luyten (1979) catalog as a red star (\(R = 15.2\text{ mag}\)) with a fainter (\(R = 17.7\text{ mag}\)) white dwarf star (LP 133-374, NLTT 36191) as a common proper motion companion separated by 5\textprim. Figure 1 shows a finder chart for these stars.

LP 133-373 was found to be a partially eclipsing binary during unfiltered CCD-based time series photometry of the field in an attempt to detect variability of the white dwarf (Rudkin 2003; Oswalt et al. 2005). Their original estimate of the binary period (0.81 days) corresponds to half of the correct period (1.63 days) as derived in §3.1 and an analysis of the common proper motion companion LP 133-374 is presented in §3.2. We summarize and conclude in §4.

2. OBSERVATIONS

2.1. Photometry

We recently reprocessed the original photometric measurements obtained by Smith (1997) on 1994 April 2 at the Kitt Peak National Observatory (KPNO) 0.9 m telescope. See Smith (1997) for more details. We remeasured the \(BVRI\) colors for the red dwarf and white dwarf components, respectively: \(B = 16.907 \pm 0.029\text{ mag}, V = 15.319 \pm 0.014\text{ mag}, R = 14.093 \pm 0.012\text{ mag}, I = 12.476 \pm 0.013\text{ mag}, \) and \(B = 18.587 \pm 0.029\text{ mag}, V = 18.020 \pm 0.053\text{ mag}, R = 17.387 \pm 0.027\text{ mag}, I = 16.274 \pm 0.029\text{ mag}.\) The white dwarf colors were differentially determined with a field star, and the red star’s photometry was obtained with an aperture that excluded the white dwarf. The red dwarf data were obtained out of eclipse. The colors clearly show that the red star is approximately of dM4—5 spectral type, in agreement with the spectra, which exhibit chromospheric activity and provide measurements of the TiO5 bandheads, indicating a dM4 classification (see Fig. 2) in agreement with previous classifications (Silvestri et al. 2005). Our comparisons of the available colors with other dM stars in the literature (Cox 2000; Reid & Hawley 2000) also place it in the dM4 range, which we assume for our analysis.

Series of images of LP 133-373 were taken with the 0.9 m telescope of the Southeastern Association for Research in Astronomy (SARA), which is also located at KPNO. The initial eclipsing data were obtained in 2003 May, using SARA’s Ap7P CCD and no filters. Differential light curves were produced from the 2003 through 2005 observing seasons using various comparison stars in the field. Since the data were collected and reduced by several different observers using different comparison stars during this time, and due to the unfiltered nature of the photometry, these light curves served only to establish the ephemeris. Observations made on the (UT) nights of 2006 May 2, 3, 4, 21, and 30 were taken with SARA, using the Finger Lakes CCD with Johnson \(R\) and \(I\) filters. A consistent comparison was used.
along with a check star that was always in the field to get differential measurements. Typical exposures were 30 s, which yielded a S/N ≈ 40. These stars are shown in Figure 1.

All new photometric data were reduced using standard procedures within IRAF\(^4\) and measured with apertures a few arcseconds wide so as to exclude the white dwarf, which may have contributed less than 1% in \(R\) or \(I\) in some cases. However, we believe that observations in these pass bands for the white dwarf reported by Smith (1997) are contaminated by LP 133-373; therefore, we rely on the Sloan Digital Sky Survey (SDSS) \(ugriz\) photometry for the white dwarf, which yields \(u = 20.018 \pm 0.038\) mag, \(g = 18.797 \pm 0.008\) mag, \(r = 18.256 \pm 0.007\) mag, \(i = 18.004 \pm 0.009\) mag, and \(z = 18.076 \pm 0.020\) mag. Sloan data for the red dwarf were marked as saturated and could not be used.

Finally, we obtained Two Micron All Sky Survey (Skrutskie et al. 2006; 2MASS) \(JHK\) photometry of the binary LP 133-373: \(J = 10.905 \pm 0.020\), \(H = 10.306 \pm 0.021\), and \(10.091 \pm 0.015\). The data are useful as an independent verification of the average M dwarf absolute luminosity. The start and end of the observations are HJD 2,451,322.699946 and HJD 2,451,322.704645, respectively, and according to our ephemeris (see Table 1) the data were obtained out of eclipse (phase = 0.7).

2.2. Spectroscopy

2.2.1. KPNO 1989 February

Spectra of the white dwarf LP 133-374 and red dwarf LP 133-373 were originally obtained with the Ritchey-Chrétien (RC) spectrograph attached to the 4 m telescope at KPNO on 1989 February 7 (UT). We obtained a single exposure of 1200 s with both stars on the slit. The BL250 grating (158 lines mm\(^{-1}\)) and TI-2 CCD (15 μm pixel size, circa 1989) were used to obtain a spectral range of 3500–6200 Å with a dispersion of 3.45 Å pixel\(^{-1}\).

\(^4\) IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

and a resolution of \(\approx 14\) Å. The resulting signal-to-noise ratio reached 15 in the red dwarf spectrum near 4150 Å, and 5 throughout the white dwarf spectrum. The white dwarf spectrum appears featureless to the noise limit. The spectrum is also relatively red, indicating a low effective temperature at which hydrogen Balmer lines are expected to be weak. The white dwarf is tentatively classified as a DC. A DA classification remains possible and would be confirmed with the acquisition of a high signal-to-noise ratio H\(\alpha\) spectrum. The red dwarf spectrum revealed emission lines characteristic of chromospherically active stars.

2.2.2. KPNO 2005 July

We obtained two optical spectra of LP 133-373 with exposure times of 1800 s on 2005 July 29 UT at the Mayall 4 m telescope at KPNO. We used the RC spectrograph using the BL450 grating in the second order, resulting in a dispersion of 0.70 Å pixel\(^{-1}\) and a resolution of 1.8 Å. The \(2k \times 2k\) T2KB CCD camera with 24 μm pixel size imaged the spectra. An 8 mm CuSO\(_4\) order-blocking filter was used to decrease the likelihood of order overlap.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_0)</td>
<td>HJD 2452760.70502 ± 0.000013</td>
</tr>
<tr>
<td>(P) (days)</td>
<td>1.6279866 ± 0.0000004</td>
</tr>
<tr>
<td>(a) ((R_\odot))</td>
<td>16.51 ± 0.12</td>
</tr>
<tr>
<td>(i) (deg)</td>
<td>3058 ± 195</td>
</tr>
<tr>
<td>(T_1) (K)</td>
<td>3144 ± 206</td>
</tr>
<tr>
<td>(M_{bol,1})</td>
<td>10.0 ± 0.5</td>
</tr>
<tr>
<td>(M_{bol,2})</td>
<td>9.8 ± 0.5</td>
</tr>
<tr>
<td>(\Omega_1)</td>
<td>0.330 ± 0.014</td>
</tr>
<tr>
<td>(\Omega_2)</td>
<td>0.34 ± 0.02</td>
</tr>
</tbody>
</table>

\(T_0\) and \(P\) are expressed in HJD. The \(a\) and \(i\) are in \(R_\odot\) and deg, respectively. \(T_1\) and \(M_{bol,1}\) are in K and mag, respectively. The \(\Omega_1\) and \(\Omega_2\) are in 10\(^{-10}\) erg cm\(^{-2}\) s\(^{-1}\) Å\(^{-1}\).
within the blue end of the spectrum. The range of wavelengths covered was 3800–5100 Å. We caught the stars near quadrature (HJD = 2,453,580.67333196 or phase = 0.67, and HJD = 2,453,580.70308391 or phase = 0.69), as predicted by the ephemeris generated from the early photometric data. Figure 2 shows prominent emission lines of H i and Ca ii H and K. The Ca ii H and K and the Balmer lines were split, indicating a velocity separation between the two binary components of ≈144 km s⁻¹. Further details are presented in the analysis section (§ 3.1).

2.2.3. APO 2006 September

LP 133-373 was observed using the Dual Imaging Spectrograph (DIS) attached to the 3.5 m telescope at the Apache Point Observatory (APO) on 2006 September 30 02:31:24.7 UT and 02:47:16.0 UT (mid-exposure times). The exposure time of each spectrum is 900 s. We used the 830.8 line mm⁻¹ grating to obtain a spectral range of 6440–8150 Å with a dispersion of 0.84 Å pixel⁻¹ in the red. We also used the 1200 line mm⁻¹ grating to obtain a spectral range of 3830–5030 Å with a dispersion of 0.62 Å pixel⁻¹ to obtain a spectrum in the blue. The slit was set for 1.5″, resulting in a resolution of 2.1 Å in the red and 1.7 Å in the blue. For each spectrum, the signal-to-noise ratio reached 5 near 4150 Å and 20 near Hα.

Previous spectra had been obtained at APO (Silvestri 2002; Silvestri et al. 2005) on 2001 February 4 09:59:13 UT (mid-exposure) but did not show double lines because the orbit was near conjunction (phase = 0.9). Our more recent APO spectra (2006 September 30), taken nearly an hour after eclipse (phase = 0.53), yields an Hα emission velocity \(v(\text{H}\alpha) = \pm 32.0 \pm 5.0 \text{ km s}^{-1} \), which should closely match the systemic velocity, but the expected line split (≈20 km s⁻¹) at this time was not detected due to limited resolution (≈100 km s⁻¹). Further details are presented in the analysis section (§ 3.1).

All new spectroscopic data were reduced using standard procedures within IRAF. Heliocentric corrections were applied to the wavelength scale of all spectra.

3. ANALYSIS

3.1. The Eclipsing Binary LP 133-373

To determine the binary parameters we followed four steps. First, we used the epoch of all seven eclipses, which include four eclipses observed using unfiltered CCD data taken during 2003–2005 and three eclipses observed using filtered photometry in 2006 May, and we determined the initial epoch of the primary mideclipse and the orbital period (Table 1). Figure 3 shows the O–C diagram for the epoch of all seven eclipses. Significant deviations with respect to our ephemeris are evident. We attribute these deviations to the presence of surface spots with varying contrasts and locations. The epoch of primary eclipse is (HJD)

\[
T = 2,452,760.70502 \pm 0.00013 \\
+ E 1.6279866 \pm 0.0000004 \text{ days}
\]

In a second step, we used the ephemeris as a starting point for the binary star program PHOEBE (Prša & Zwitter 2005) and we performed detailed light curve modeling of our \(R \) and \(I \) data taken in 2006 May. We do not model unfiltered data. The program PHOEBE is based on the Wilson-Devinney (WD) program (Wilson & Devinney 1971; Wilson 1979, 1990). The similarity in the primary and secondary eclipses led us to adopt a mass ratio of 1.0, a circular orbit, and typical dM4 temperatures (Cox 2000; Reid & Hawley 2000) for each star of 3100 K.

The radial velocity measurements provide the only anchor in establishing the semimajor axis \(a \). Radial velocities were determined from our 2005 July spectroscopy, which included measurements from Hβ, Hγ, Hδ, and Ca ii K emission lines while excluding the very blended lines of Hε and Ca ii H. The line centers were measured using IRAF’s routine for deblending multiple profiles, in this case two profiles—one for each star. Only two sets of heliocentric velocities were obtained at phase = 0.67, \(v_1 = -108.2 \pm 4.4 \text{ km s}^{-1} \) and \(v_2 = 31.1 \pm 4.1 \text{ km s}^{-1} \), and phase = 0.69, \(v_1 = -100.9 \pm 6.3 \text{ km s}^{-1} \) and \(v_2 = 47.6 \pm 7.2 \text{ km s}^{-1} \). The average velocity separation is 144 ± 8 km s⁻¹. A best fit to the velocities starting with the known period, a systemic velocity between the measured velocities ≈−33 km s⁻¹ (which is close to the APO measurement of \(v = -32.0 \pm 5.0 \text{ km s}^{-1} \) at phase 0.53), and an inclination of 90° yields a minimum total mass of the system ≤0.67 \(M_\odot \).

We repeated the radial velocity analysis using the absorption line spectra. We adopted the spectrum of the dM3.5 star Gliese 15B as a template for both component stars of LP 133-373. The spectrum of Gliese 15B was obtained at KPNO on 2006 November 27 with the same instrumental setup used on 2005 July. We established the zero-velocity scale using the radial velocity measurement of Nidever et al. (2002), \(v(\text{Gl}15\text{B}) = 11.0 \pm 0.4 \text{ km s}^{-1} \). We shifted the two templates independently within a velocity range of −200 to +200 km s⁻¹ and fitted the combined templates to the observed spectrum of LP 133-373 using a \(\chi^2 \)-minimization technique. The best fits for the 2005 July spectra resulted in \(v_1 = -94 \pm 10 \text{ km s}^{-1} \) and \(v_2 = 46 \pm 10 \text{ km s}^{-1} \) (phase = 0.67), and \(v_1 = -90 \pm 10 \text{ km s}^{-1} \) and \(v_2 = 60 \pm 10 \text{ km s}^{-1} \) (phase = 0.69), which corresponds to an average velocity separation of 145 ± 14 km s⁻¹. The velocity separation measurements using absorption and emission-line spectra are essentially identical. We also measured the systemic velocity in the APO 2006 September spectrum (−24 ± 7 km s⁻¹) using K resonance lines at \(\lambda = 7664.911 \) and 7698.974 Å. We find that the mass ratio \((M_2/M_1) \) ranges from ≈1.0 using the emission spectra to ≈1.1 using the absorption spectra. Although we adopted
$M_2/M_1 = 1$, we will explore the effect of a varying mass ratio (see below).

Next, in a third step, the inclination and potentials (stellar radii) were then iteratively adjusted within PHOEBE until both eclipse depths and widths matched the observed light curve. Note that all solutions are based on an atmosphere of 3500 K ramped from a blackbody approximation at 1500 K, and on logarithmic limb darkening with coefficients by van Hamme (1993) for temperatures of 3500 K, since the coefficient values are not known below this temperature. Table 1 presents the simultaneous light/velocity solutions.

Finally, in a fourth and final step we introduced surface spots. Initial fits were done with the light levels adjusted to match the eclipses. We subsequently scaled the model light curve to values outside of eclipse (near phase 0.25), and spots were added to fit the complete light curve since a spot wave is clearly evident. Light curve models were compared to the light curves implied by our R, I, and unfiltered photometry. The unfiltered comparisons are only for a check on the ephemeris, since spot configurations are surely different between the 2003 and 2006 epochs. We fit our photometric data with model light curves using the spot parameters given in Table 2.

No satisfactory fit was possible without starspots, so cool spots were added one at a time, with typical temperature factors, $T_{\text{spot}}/T_{\text{photosphere}}$, of about 0.80. Spots on the facing hemisphere of each star were needed. A similar effect on the light curves would occur if the spots were on the outer facing hemispheres, but the models were best fit with the inner facing configuration. The spot parameters were refined with the differential-corrections-routine part of the Wilson-Devinney code. Figure 4 shows the light curve using parameters for the two spots given in Table 2, and Figure 5 shows the binary configuration at four phases ($\Phi = 0.0$, 0.25, 0.5, and 0.75) and as seen along the line of sight.

We also examined the sensitivity of the solutions to our assumption of a mass ratio $q = 1$. If we let the mass ratio reach $q = 0.9$ and 1.1, in both cases the separation increases from 5.1 to 5.15 R_C, corresponding to a slight increase in the total systemic mass from 0.68 to 0.69 M_\odot, and no significant effect on the inclination. Of course, by introducing a mass asymmetry, the predicted systemic velocity shifts from -33 to -29 km s$^{-1}$ at $q = 0.9$ and to -40 km s$^{-1}$ at $q = 1.1$. The solutions closely match the limits allowed by our systemic velocity measurement of $v = -32.0 \pm 5.0$ km s$^{-1}$, and therefore the actual mass ratio should be found within the range $q = 0.9 - 1.1$.

Tables 3 and 4 present our photometry, where ΔR and ΔI refer to magnitude differences between LP 133-373 and the comparison star shown in Figure 1.

3.1.1. Luminosity and Distance Estimate of the Red Dwarf

We computed the distance to the binary several ways. This allowed us to check the modeled binary luminosity for consistency and to find the luminosity of the white dwarf common proper motion component. Two methods of determining luminosity for the binary from observable measurements were used. One method uses the $V-I$ colors to obtain the absolute visual magnitude M_V.

![Fig. 4.—Light curve model (solid lines) compared with our I-band (top) and R-band (bottom) photometry (open circles).](image1)

![Fig. 5.—Binary configuration as seen along the line of sight at $\Phi = 0.0$, 0.25, and 0.5. The images were generated with PHOEBE.](image2)
The other method utilizes the TiO5 band strength to get M_V. The apparent magnitude (m_V) can then be used to compute a distance modulus. We assumed that the stars were identical enough to facilitate a simple distance correction. The inverse square law allows us to correct the distance computed for two identical stars by treating them as one and multiplying the result by $\sqrt{2}$.

The empirical color magnitude diagram of nearby stars yields the following relationship for $0.85 < V - I < 2.85$ (Reid & Hawley 2000):

$$M_V = 3.98 + 1.437(V - I) + 1.073(V - I)^2 - 0.192(V - I)^3,$$

with $\sigma(M_V) = 0.5$. Using our $(V - I) = 2.843$, we get an $M_V = 12.3$, which gives a distance of 40 pc for a single star of this color and observed $V = 15.319$. However, we correct this distance by a factor of $\sqrt{2}$ and find the distance to the system to be 56 pc.

A similar relationship exists for the TiO5 band strength (Reid et al. 1995),

$$M_V = 25.33 - 53.15(TiO5) + 64.1(TiO5)^2 - 29.14(TiO5)^3,$$

with $\sigma(M_V) = 0.5$. Using TiO5 $= 0.37$ (Silvestri 2002) we get $M_V = 13.0$ and a distance of 30 pc, which when corrected for two stars becomes 42 pc.

The PHOEBE light curve models compute bolometric magnitudes for both stars, which are similar ($M_{bol} \approx 9.9 \pm 0.5$). Bolometric corrections for the visual bandpass can be computed and subtracted from the modeled M_{bol} to give M_V using the following relation (Reid & Hawley 2000):

$$BC_V = 0.27 - 0.604(V - I) - 0.125(V - I)^2,$$

which gives us $BC_V = 2.5$, and therefore $M_V = 12.4$ for a corrected distance of 55 pc. The model is consistent with the two independently determined distance estimates ranging from 42 to 56 pc.

In summary, the distance estimates imply a modulus of

$$m - M = 3.4 \pm 0.3.$$

Adopting $m_K - M_K = 3.4 \pm 0.3$, the absolute magnitude $M_K = 6.7 \pm 0.3$ for the pair or $M_K = 7.4 \pm 0.3$ for each binary component assuming equal luminosity. The measured $V - K = 5.23 \pm 0.03$ and our M_K estimate for LP 133-373 are consistent with established relations for nearby stars (Reid & Hawley 2000). The main limitation to the usefulness of such relations is the intrinsic scatter found in color-luminosity measurements. Note that the absolute JHK magnitudes of the nearby white dwarf companion (see § 3.2) are ≥ 13 mag; Therefore, potential contamination of the infrared data by the white dwarf is insignificant.

3.2. Physical Parameters and Age of the White Dwarf LP 133-374

To analyze the photometric and spectroscopic data of the white dwarf LP 133-374, we calculated a set of synthetic SDSS $ugriz$ colors using a grid of pure-hydrogen models (Kawka &
neighboring H atoms and H₂ molecules. An examination of additional opacity is due to perturbation of the H atom by the total opacity in the blue part of the optical spectrum. The synthetic colors for pure-hydrogen models and the blackbody colors. (Vennes 2006) for T

Fig. 7.—SDSS (r – i) vs. (g – r) photometry of LP 133-374 compared (filled circle with error bars) to synthetic colors of hydrogen-rich white dwarfs (solid line) and blackbody (dashed line). The effective temperature is indicated in units of 1000 K and for hydrogen-rich colors log g = 7.0, 8.0, and 9.0 (bottom to top). [See the electronic edition of the Journal for a color version of this figure.]

Vennes 2006) for T_{\text{eff}} = 4500–84,000 K and log g = 7.0, 8.0, and 9.0. We also calculated synthetic ugriz colors for blackbody spectra with temperatures ranging from T_{\text{eff}} = 4500 to 84,000 K. Figures 6 and 7 show the observed (u – g) versus (g – r) and (r – i) versus (g – r) colors, respectively, compared to the synthetic colors for pure-hydrogen models and the blackbody colors.

Note that Kowalski & Saumon (2006) recently established that the extended line wing of Lyα contributes significantly to the total opacity in the blue part of the optical spectrum. The additional opacity is due to perturbation of the H atom by neighboring H atoms and H₂ molecules. An examination of Figure 2 in Kowalski & Saumon (2006) suggests that the effect of this additional opacity on a 5800 K hydrogen-rich white dwarf corresponds to an increase of ≈0.25 and 0.02 mag in the u and g bands, respectively. Hence, the effect is mostly apparent in the u – g color index and corresponds, as observed, to a downward vertical shift in the u – g versus g – r diagram.

The temperatures were derived by minimizing the χ² between the observed photometry and the synthetic colors. The synthetic u and g magnitudes for hydrogen-rich models were corrected by +0.25 and +0.02 mag, respectively. The errors in temperatures were determined from considering the uncertainties in the observed colors only. Therefore, the quoted errors do not take into account systematic errors in synthetic colors such as those discussed above. The observed (u – g) versus (g – r) colors correspond to an effective temperature of 5200 ± 100 K using the pure-hydrogen sequence, and 5300 ± 100 K using the blackbody colors. The observed (r – i) versus (g – r) colors correspond to an effective temperature of 5100 ± 100 K using the pure-hydrogen sequence and 5400 ± 50 K using blackbody colors.

We also fit the SDSS ugriz photometry to synthetic ugriz absolute magnitudes, and found that T_{\text{eff}} = 5300 ± 200 K when using the hydrogen-rich sequence (assuming log g = 8.0) and T_{\text{eff}} = 5500 ± 200 K, assuming a blackbody. We also fit the available spectrum (3800–6190 Å) to DA spectra at log g = 8.0 and blackbody spectra to obtain T_{\text{eff}} = 5100 ± 200 K and T_{\text{eff}} = 5580 ± 160 K, respectively. Figure 8 shows the spectrum and ugriz photometry of LP 133-374 compared to a hydrogen-rich spectrum at T_{\text{eff}} = 5100 K and a blackbody spectrum at T_{\text{eff}} = 5500 K.

We determined the possible range of mass values for the white dwarf assuming both hydrogen-rich atmospheres and helium-rich atmospheres (using a blackbody approximation). First, we calculated the absolute magnitude of the white dwarf based on the distance, and therefore if the system is between 42 and 56 pc, then the absolute magnitude (M_v) of the white dwarf is between 15.68 and 15.06.

Assuming the white dwarf is hydrogen-rich, then the mean of the temperatures determined above is T_{\text{eff}} = 5175 ± 100 K. The mass range can then be determined using the mass-radius relations of Benvenuto & Althaus (1999) with a hydrogen envelope of
$M_{\text{H}}/M_{\odot} = 10^{-4}$ and a metallicity of $Z = 0$, where for a given temperature, the absolute magnitude is a function of the radius and therefore the mass. We determined a mass of $0.49 - 0.70 M_{\odot}$ with a cooling age ranging from 3.6×10^7 to 4.5×10^7 yr.

Assuming the white dwarf is helium-rich, and using a blackbody approximation for the energy distribution, then the mean of the temperatures determined using the different methods as discussed above is $T_{\text{eff}} = 5445 \pm 120$ K. For the mass determinations in this case, we used the mass-radius relations of Benvenuto & Althaus (1999) without a hydrogen envelope and with a metallicity of $Z = 0.001$. Therefore, if LP 133-373 is a helium-rich white dwarf with $T_{\text{eff}} = 5445$ K, we can estimate the mass to be between 0.55 and 0.82 M_{\odot} and the cooling age to be between 2.7×10^7 and 4.5×10^7 yr. The progenitor of a 0.82 M_{\odot} white dwarf is an early-type star of $\approx 4 M_{\odot}$ (Weidemann 2000) with a main-sequence life time $\approx 10^8$ yr. These ages imply a minimum age of 3×10^9 yr for the LP 133-373/LP 133-374 system.

For a temperature range of $5000 - 5500$ K, the corresponding 2MASS absolute magnitude $M_J = 13.4 - 13.6$, or an apparent magnitude of $m_J = 16.5 - 16.7$, fainter than the limiting magnitude of the 2MASS survey.

4. SUMMARY AND CONCLUSIONS

We have modeled light and velocity curves of LP 133-373 as an eclipsing binary with two similar dM-type stars with spots. Although the masses and radii of $0.340 \pm 0.014 M_{\odot}$ and $0.33 \pm 0.02 R_{\odot}$ make them appear marginally more massive and smaller than other stars of the same type tabulated by Reid & Hawley (2000), a complete radial velocity study and additional light curves are required before we can reach a conclusion on this matter. The uncertainty in the mass ratio and the paucity of velocity data create a large uncertainty in the semimajor axis and ultimately in the individual masses. The role of spots also plays a critical role in light curve modeling and the resulting fits. The 2006 May data set shows light curve variations suggesting that spot activity had significantly changed within a month. We intend to obtain high-dispersion spectra of LP 133-374 sampling a complete orbital period in the Hα region. New photometry, covering several complete orbital periods, would be helpful in constraining the geometry of the spots and the individual temperatures. The new data will provide the better mass, luminosity, and radius information that is so important for understanding low-mass stars. In addition, limb darkening of these cool stars is also important to the light curve models. A study of additional stars like these is needed to refine limb-darkening models.

The white dwarf is tentatively classified as a DC spectral type, and a possible DA type. It has a temperature of $5100 - 5500$ K depending on the atmospheric abundance of hydrogen. Adopting the distance of its common proper motion companion LP 133-373 (42–56 pc), we constrain the radius, and hence the mass of the white dwarf. The mass of the white dwarf is estimated to be $0.49 \leq M/M_{\odot} \leq 0.82$. Consequently, the minimum total age of the system is 3 Gyr. The angular separation of 5° between the white dwarf and the eclipsing binary corresponds to a projected separation of 210–280 AU. This separation excludes the possibility of past interactions.

New Hα spectroscopy will also help establish the spectral type of the white dwarf and accurately determine its physical characteristics. In turn, this will be helpful in establishing the age of the triple system from the white dwarf cooling age.

We thank KPNO for a generous allocation of observing time. We are especially grateful for the observing support of Rob Wilkos, John Robertson, and Kyle Johnston. M. R. is supported by NASA Graduate Student Research Program NGT5-50450. A. Kawka is supported by GA ČR 205/05/P186. S. V. acknowledges support from the College of Science at the Florida Institute of Technology. This work was supported in part by NSF grant AST-0206115 (T. D. Oswalt, Principal Investigator) to Florida Institute of Technology. M. W. acknowledges support from NSF grant AST-0097616. We thank S. Shaw, R. Wilson, and Casey T. Hendley for useful discussions and N. Silvestri for sharing observing time at APO. We thank the anonymous referee for several useful comments that improved the paper.

This research is also based in part on observations obtained with the Apache Point Observatorio 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium (ARC). Funding for the SDSS and SDSS II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org. This publication also makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

REFERENCES

Luyten, W. J. 1979, A Catalogue of Stars with Proper Motions Exceeding 0.5′′ Annually (2nd ed; Minneapolis: Univ. Minnesota)
Rudkin, M. 2003, M.S. thesis, Florida Institute of Technology