# Solving Inverse Problems Using Finite-Element Physics Informed Neural Networks in Presence of Noise

#### Abstract

This study builds upon a previous investigation of Finite-Element Physics-Informed Neural Networks (FE-PINNs) by performing an analysis of their sensitivity to noise. FE-PINNs were previously shown to be capable of performing a two-dimensional linear elastic full waveform inversion on a soil column. As a further step towards applying this methodology to problems involving real data, FE-PINNs were used to inversely determine the elastic modulus of a single quad element, with varying degrees of noise (0-20%) present in the training data. It was found that, depending on the accuracy of the initial estimate of the element's elastic modulus, FE-PINN can successfully solve the inverse problem with up to 20% noise in the training data.

#### **Inverse Problems**

#### Consider a dynamical system

#### $\mathbf{y} = f(t, \mathbf{x}, \mathbf{\Theta})$

where x is the system state vector, t is time,  $\Theta$  is a vector of system parameters, and  $\nu$  is a noise vector. Suppose sensor measurements  $(\mathbf{y_m})$  of the system are available.

 $\mathbf{y_m} = g(t, \boldsymbol{\Theta}) + \nu$ 

Inverse Problem: Given  $\mathbf{y}_{\mathbf{m}}$ , estimate  $\boldsymbol{\Theta}$ 

# **Existing Methods**

Finite Element Model Updating (FEMU)



While powerful, this method has a few weaknesses

- Computationally expensive to simulate
- High fidelity models are rarely available
- Final result depends strongly on model resolution

Proposed alternative: Finite Element-based Physics Informed Neural Networks (FE-PINN)

#### **Traditional Physics-Informed Neural Networks**

|   | Ordinary<br>Neural Network                 |                  | $x_1$ $h_1^{(1)}$ $h_2^{(2)}$ $\hat{y}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                         |                    |
|---|--------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|--------------------|
| • | Learns purely from data                    | Inputs, <i>x</i> | $x_2$ $h_3^{(1)}$ $h_3^{(2)}$ $\hat{y}_2$ $\hat{y}_2$ $h_4^{(1)}$ $h_4^{(2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | Predicte                                | d Dis              |
|   |                                            |                  | Measured Displacements, $y_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | P Loss<br>Ba                            | $\dot{s} = M$      |
|   | Physics Informed<br>Neural Network         |                  | $egin{array}{cccc} h_1^{(1)} & h_1^{(2)} & h_1^{(2)} & h_2^{(2)} & \hat{y}_1 & \hat{y}_1$ |                   |                                         |                    |
| • | Learns from data<br>Regularized by physics | Inputs, <i>x</i> | $x_2$ $h_3^{(1)}$ $h_3^{(2)}$ $\hat{y}_2$ $\hat{y}_2$ $h_4^{(1)}$ $h_4^{(2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | Predicted                               | d Disj             |
|   |                                            |                  | Measured Displacements, $y_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Data Lo $L_D = N$ | $\frac{\partial SS}{ASE(\hat{y}, y_m)}$ | ))<br>, <i>L</i> = |
|   |                                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | Ва                                      | ckpro              |

Strengths: Rapid forward prediction, potential for GPU acceleration, higher-fidelity surrogate model Weakness: Many partial derivatives in physics loss term often lead to convergence issues

Anthony LoRe Starleaf & Dr. Siddharth Parida

Embry-Riddle Aeronautical University

# Finite Element Physics-Informed Neural Networks

- 1. Can be used to increase fidelity of existing FE model by incorporating data
- 2. Can be used to estimate parameters of FE model

Finite Element Method

- Low-order derivatives
- Implicitly satisfied BCs
- Easier derivation
- No partial derivatives

Physics Informed Neural Networks

- Rapid forward prediction
- GPU acceleration
- Physics enforcement

# **Computational Experiment**

The FE-PINN algorithm was used to determine the Young's modulus (E) of the quad element shown below, subjected to varying amounts of noise. The model's initial estimate of E was also varied.



(a) Single quad element subjected to a dynamic load. Nodes 1 & 4 fixed.

#### **Governing Equations**

Strong form of equilibrium

$$\rho \frac{\partial^2 u}{\partial t^2} = E \frac{\partial^2 u}{\partial x^2} + G \left( \frac{\partial^2 v}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} \right) + c \frac{\partial u}{\partial t} + b_x$$
$$\rho \frac{\partial^2 v}{\partial t^2} = E \frac{\partial^2 v}{\partial y^2} + G \left( \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 v}{\partial x^2} \right) + c \frac{\partial v}{\partial t} + b_y$$

With Boundary/Initial Conditions

$$u(x, y = 0, t) = 0$$
  
 $v(x, y = 0, t) = 0$   
 $u(x, y, t = 0) = 0$   
 $b_y = -$ 

After application of the FE method,

$$\mathbf{M}(\rho)\mathbf{\ddot{u}} + \mathbf{C}(\nu, E)\mathbf{\dot{u}} + \mathbf{K}(\nu, E)\mathbf{\dot{u}} + \mathbf{K}(\nu,$$

With Initial Conditions

$$\mathbf{u}(t=0) = 0$$
  $\mathbf{\dot{u}}(t=0) = 0$  (4)

With boundary conditions implicitly satisfied. This form is noticeably simpler due to the

- Reduced number of derivatives, and
- Absence of independent boundary conditions

# **Training Data**

The model is trained on the x- and y- displacement histories of only Node 3. It is given no data on Node 2.

# **Model Architecture**

| Input Features | Output Features | Hidden Features | Hidden Layers | Activation |
|----------------|-----------------|-----------------|---------------|------------|
| 1              | 4               | 32              | 3             | Sinusoid   |

Table 1. Hyperparameters of the neural network used to solve the inverse problem.

(1)

(2)





$$b_x = 0$$
  
$$f(t)\delta(x - 5, y - 5)$$
  
$$v(x, y, t = 0) = 0$$

(3)  $(\nu, E)\mathbf{u} = \mathbf{f}(t)$ 

A neural network with the parameters described in Table 1 was trained for 2000 epochs or until E converged to within 2% of the ground-truth value. The optimization was performed once for various noise levels and initialization errors.

| % Noise | % Initial Error | Initial $E$ [Pa] | Predicted E [Pa] | Actual E [Pa] | % Difference |
|---------|-----------------|------------------|------------------|---------------|--------------|
| 0%      | -15%            | 58846156.0       | 68276464.0       | 69230768      | 1.38         |
| 0%      | -20%            | 55384620.0       | 68341040.0       | 69230768      | 1.29         |
| 0%      | -25%            | 51923080.0       | 32707604.0       | 69230768      | 52.76        |
| 0%      | -30%            | 48461536.0       | 20347384.0       | 69230768      | 70.61        |
| 0%      | 15%             | 79615384.0       | 68385776.0       | 69230768      | 1.22         |
| 0%      | 20%             | 83076928.0       | 68285928.0       | 69230768      | 1.36         |
| 0%      | 25%             | 86538464.0       | 68240496.0       | 69230768      | 1.43         |
| 0%      | 30%             | 89999992.0       | 68349984.0       | 69230768      | 1.27         |
| 5%      | -15%            | 58846156.0       | 68328320.0       | 69230768      | 1.30         |
| 5%      | -20%            | 55384620.0       | 68248992.0       | 69230768      | 1.42         |
| 5%      | -25%            | 51923080.0       | 68424024.0       | 69230768      | 1.17         |
| 5%      | -30%            | 48461536.0       | -235790000       | 69230768      | 440.59       |
| 5%      | 15%             | 79615384.0       | 68281624.0       | 69230768      | 1.37         |
| 5%      | 20%             | 83076928.0       | 68383632.0       | 69230768      | 1.22         |
| 5%      | 25%             | 86538464.0       | 68385992.0       | 69230768      | 1.22         |
| 5%      | 30%             | 89999992.0       | 68376728.0       | 69230768      | 1.23         |
| 10%     | -15%            | 58846156.0       | 68356320.0       | 69230768      | 1.26         |
| 10%     | -20%            | 55384620.0       | 68311912.0       | 69230768      | 1.33         |
| 10%     | -25%            | 51923080.0       | 32900322.0       | 69230768      | 52.48        |
| 10%     | -30%            | 48461536.0       | 32813898.0       | 69230768      | 52.60        |
| 10%     | 15%             | 79615384.0       | 68277408.0       | 69230768      | 1.38         |
| 10%     | 20%             | 83076928.0       | 68375256.0       | 69230768      | 1.24         |
| 10%     | 25%             | 86538464.0       | 68352112.0       | 69230768      | 1.27         |
| 10%     | 30%             | 89999992.0       | 68256616.0       | 69230768      | 1.41         |
| 15%     | -15%            | 58846156.0       | 68319232.0       | 69230768      | 1.32         |
| 15%     | -20%            | 55384620.0       | 68303536.0       | 69230768      | 1.34         |
| 15%     | -25%            | 51923080.0       | 68278648.0       | 69230768      | 1.38         |
| 15%     | -30%            | 48461536.0       | 45739968.0       | 69230768      | 33.93        |
| 15%     | 15%             | 79615384.0       | 68121960.0       | 69230768      | 1.60         |
| 15%     | 20%             | 83076928.0       | 68330504.0       | 69230768      | 1.30         |
| 15%     | 25%             | 86538464.0       | 68445960.0       | 69230768      | 1.13         |
| 15%     | 30%             | 89999992.0       | 68296368.0       | 69230768      | 1.35         |
| 20%     | -15%            | 58846156.0       | 68447648.0       | 69230768      | 1.13         |
| 20%     | -20%            | 55384620.0       | 68414216.0       | 69230768      | 1.18         |
| 20%     | -25%            | 51923080.0       | -30599772.0      | 69230768      | 144.20       |
| 20%     | -30%            | 48461536.0       | 32875180.0       | 69230768      | 52.51        |
| 20%     | 15%             | 79615384.0       | 68099240.0       | 69230768      | 1.63         |
| 20%     | 20%             | 83076928.0       | 68197576.0       | 69230768      | 1.49         |
| 20%     | 25%             | 86538464.0       | 68267680.0       | 69230768      | 1.39         |
| 20%     | 30%             | 89999992.0       | 68413616.0       | 69230768      | 1.18         |

# Surrogate Modelling with Trained FE-PINN



Training data is shown in orange.

• Sensitive to the initial estimate of *E* Robust to the inclusion of at least 20% noise • One step closer to applying FE-PINN to experimental data

#### Results

Figure 2. Displacement histories at both free nodes predicted by FE-PINN after training on data with 20% noise.

#### Conclusion

Prediction