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The purpose of this experiment is studying the data science technique, Principal Component Analysis. We 

learn how to apply it to facial recognition in python to help create a deeper understanding of the technique 

when used on large data sets. Facial recognition has grown exponentially, driven by complex techniques 

such as artificial intelligence. There remains a need for simple, low-cost systems that can compare faces to 

pre-constructed data sets. Here we utilize the Principal Component Analysis (PCA) to process photos from 

the Yale Face Database.[3] These facial scans have numerous identifying variables so they are linearly 

reduced into a small matrix so that we can efficiently compare faces. We took the facial scan and processed 

it into large vectors. Then placed those vectors into a large matrix where each column represents one of the 

scanned faces, and each row represents a number pixel in the image. This matrix helps find the average 

face in the form of a column vector so that it can be deducted from the original face, this is to save 

unnecessary comparisons. The PCA reduces the matrix to reduce the image but keep most of the important 

data. We find the eigen values and their corelated eigen vectors (eigen faces) and use them as identifying 

values. For projections of a person whose face is altered from the original image in the data set we must 

compute the projection of their vector onto the set of eigen vectors obtained previously and use the mean 

face to reconstruct the missing attributes. This method is simple, fast, and low cost. It's intended for police 

stations, hospitals, or even surveillance cameras for the average homeowner.

Abstract

Before the covariance matrix is calculated we calculate the mean face. The mean face is the average face for all members of 

the data set. To save the PCA some time and energy we find obvious common attributes among all the faces; all participants 

have facial features such as a nose, mouth, and eyes. This is done by calculating the average face and subtracting it form all 

faces. In python image_arrays_centered = image_arrays_reshaped - mean_Face.reshape(-1,1)

Each row of matrix P corresponds to feature or variable of the image. There are 77760 rows because there are that many 

pixels/variables per image. In order to become a Covariance Matrix, we must preform 𝑃𝑇𝑃, bringing it from a 15x77760 

matrix to a 15x15 matrix. In python it calculated buy suing the np.dot function. (covariance_matrix = np.dot(P.T, P)). From 

that 15x15 Covariance Matrix we can obtain the eigen values and eigen vectors that are shown below. To do this we use a 

built-in function values, vectors = np.linalg.eig(covariance_matrix). 

Each column vector is a principal component, PC, of the data set. Some principal components are less valuable than o0th0ers, 

only contributing small amounts of data that would prove helpful in distinguishing faces apart. To find the most valuable PC’s 

that so that we can prioritize we look at the eigen values. The largest are the most significant and the least significant are the 

values closest to zero.

Results

Principal Component Analysis

Invented in 1901 by Karl Pearson, it was intended as an analogue for the principal axis theorem.[1] It's been 

used for many various fields of mathematics. Signal processing, empirical orthogonal functions, spectral 

decomposition, and more. The Principal Component Analysis in data science is a method of dimension 

reduction for data analysis, it prioritizes in data sets with large amounts of factors that contribute to some 

desired investigation.[2] Typically, the most important attributes or variables are used to create a correlation 

model. This is problematic because it loses out on so many other components that could have important 

contributing data. The PCA utilizes a covariance matrix that has "n" eigen vectors and "n" eigen values that 

are orthogonal to each other. The eigen vectors are the attributes or components that are important, the eigen 

values corresponding to those vectors describe its significance. There are thousands of pixels in each 

photograph and not all of them are necessary when we compare them. The PCA takes all contributing 

variables and combines them into Principal Components, new factors that generalize groups of data that 

prove to be the most significant. With just 2-3 Principal Components we can generalize most of the 

contributing variables.
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Figure 4 – These are the eigen values from the 

Covariance Matrix. These represent the importance 

of their corelated column vector.

Figure 2 – The mean of all the faces within the data 
set.

Figure 3 – The mean face was taken out of all the faces individually; yellow highlights represent 
the deductions while the dark green is what's left.

Figure 5 -  Each column is the column vectors obtained from the covariance matrix. These columns are the principal components of the 

data. Column 0 is related to eigen value 𝜆1, column 1 is related to  𝜆2 and so on.
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The project successfully utilized the PCA to digest and prioritize a large set of images. To further this 

project and test how well it preforms one could do a percent recognition by using projections of altered 

version of images that are in the data set. For example, an image with glasses or maybe a hat would create 

an incomplete view of the persons face. The image would be processed all the same previous faces, then the 

mean is subtracted just as before so that we can center the image. By projecting the subtracted vector onto 

the previously calculated eigenvectors, we effectively decompose the partial face image into its principal 

components. Afterwards we add the mean face back to reconstruct the original image. The product is the 

altered image put back into its semi original state, no hat, no glasses.
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