

Detecting UV-filters In Fish Tissue

Importance of UV Filters and Why Fish Tissue?

- The purpose of this Narrative Literature review is to explore consistency of methodology used in quantifying the specific UV filters in fish tissues when quantifying with GC-MS or LC-MS.
- UV Filters are widely known to be used in sunscreen products, hair sprays and moisturizers
- However, when bioaccumulate into large bodies of water, they can stick onto fish tissue
- Our narrative literature review focuses on specific UV Chemical Compounds found within Fish Tissue. Namely the following...
- Benzophenone-3, 4-methylbenzylidene camphor (4-MBC), octocrylene, ethylhexyl methoxycinnamate (EHMC) and homosalate
- Additionally, we looked to highlight the published GC-MS & LC-MS detection methodologies and determining the differences

Methods

- There are 4 things we specifically focused on
- Species Analyzed
- Sample Tissue Extraction
- Quantification
- Extraction Controls

Our findings Within The Literature

- A multitude of species were analyzed, among them included eel (Anguilla anguilla), snakehead (Channa Argus) and Common Carp (Cyprinus)
- Quantification varied, however most favored the use of GC-MS rather than LC-MS
- Sample Prep and Extraction varied; most studies utilized composite samples
- Some studies evaluated only fish muscle tissue (8,18, 25,30,33,35,37)
- Others removed fat tissue (9,33), while others evaluated non-muscle tissues (4,11,19,23,36,40)
- Sources can be found within the QR code

Key Takeaways

- 1. Species analyzed were diverse
- 2. Composite samples are shown to be best for accuracy
- 3. Fish Tissue extracted can be diverse
- 4. Majority of the studies utilized GC-MS over LC-MS
- 5. Recommendations include all the above

Acknowledgements & References

Angel Hinojosa Embry-Riddle Aeronautical University Worldwide

917crodriguez@gmail.com

Table 1 Reported measured values (ng/g lipids) of target chemicals detected in fish tissues (LOD = limit of detection)

	BP-3	4-MBC	OCTOCRYLENE	EHMC	HOMOSALATE
GC/MS					
Bachelot (2012)	_	_	- LOD - 7112	3 - 256	_
Buser (2005)	_	73 - 166	_	_	_
Cunha (2018)	<lod -="" 55.72<="" td=""><td>5.0 - 14.09</td><td>< LOD - 66.6</td><td><lod -="" 32.7<="" td=""><td><lod -="" 22.1<="" td=""></lod></td></lod></td></lod>	5.0 - 14.09	< LOD - 66.6	<lod -="" 32.7<="" td=""><td><lod -="" 22.1<="" td=""></lod></td></lod>	<lod -="" 22.1<="" td=""></lod>
Emnet (2015)	<lod -="" 14.1<="" td=""><td>_</td><td>_</td><td></td><td></td></lod>	_	_		
Fent (2010)	<lod -="" 151<="" td=""><td>_</td><td>_</td><td><lod -="" 701<="" td=""><td>_</td></lod></td></lod>	_	_	<lod -="" 701<="" td=""><td>_</td></lod>	_
Langford (2015)	<lod -="" 1037<="" td=""><td>_</td><td><lod -="" 11875<="" td=""><td><lod -="" 36.9<="" td=""><td>_</td></lod></td></lod></td></lod>	_	<lod -="" 11875<="" td=""><td><lod -="" 36.9<="" td=""><td>_</td></lod></td></lod>	<lod -="" 36.9<="" td=""><td>_</td></lod>	_
Mottaleb (2009)	37 - 90		_		
Negreira (2013)	<lod< td=""><td><lod< td=""><td>15 - 20</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>15 - 20</td><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	15 - 20	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
Petrarca (2022)	<lod< td=""><td>_</td><td>_</td><td><lod -="" 10.6<="" td=""><td>_</td></lod></td></lod<>	_	_	<lod -="" 10.6<="" td=""><td>_</td></lod>	_
Picot Groz (2014)	_		* - 3992	* - 1765	
Sang (2016)	<lod -="" 10.3<="" td=""><td><lod< td=""><td><lod -="" 11.6<="" td=""><td><lod -="" 51.3<="" td=""><td></td></lod></td></lod></td></lod<></td></lod>	<lod< td=""><td><lod -="" 11.6<="" td=""><td><lod -="" 51.3<="" td=""><td></td></lod></td></lod></td></lod<>	<lod -="" 11.6<="" td=""><td><lod -="" 51.3<="" td=""><td></td></lod></td></lod>	<lod -="" 51.3<="" td=""><td></td></lod>	
Subedi (2011)	<lod< td=""><td><lod< td=""><td><lod< td=""><td></td><td></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td></lod<>		
Tang (2019)	<lod -="" 100<="" td=""><td><lod -="" 16.2<="" td=""><td><lod -="" 13.7<="" td=""><td><lod -="" 41.2<="" td=""><td><lod -="" 11.0<="" td=""></lod></td></lod></td></lod></td></lod></td></lod>	<lod -="" 16.2<="" td=""><td><lod -="" 13.7<="" td=""><td><lod -="" 41.2<="" td=""><td><lod -="" 11.0<="" td=""></lod></td></lod></td></lod></td></lod>	<lod -="" 13.7<="" td=""><td><lod -="" 41.2<="" td=""><td><lod -="" 11.0<="" td=""></lod></td></lod></td></lod>	<lod -="" 41.2<="" td=""><td><lod -="" 11.0<="" td=""></lod></td></lod>	<lod -="" 11.0<="" td=""></lod>
Tsai (2014)	3.3 - 6.9				<lod -="" 0.7<="" td=""></lod>
Zenker (2008)	<lod< td=""><td><lod< td=""><td>_</td><td>4 - 142</td><td>_</td></lod<></td></lod<>	<lod< td=""><td>_</td><td>4 - 142</td><td>_</td></lod<>	_	4 - 142	_