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Abstract 

This paper proposes a classification approach for flight delays using Bidirectional Long Short-

Term Memory (BiLSTM) and Long Short-Term Memory (LSTM) models. Flight delays are a 

major issue in the airline industry, causing inconvenience to passengers and financial losses to 

airlines. The BiLSTM and LSTM models, powerful deep learning techniques, have shown 

promising results in a classification task. In this study, we collected a dataset from the United 

States (US) Bureau of Transportation Statistics (BTS) of flight on-time performance information 

and used it to train and test the BiLSTM and LSTM models. We set three criteria for selecting 

highly important features to train and test the models. The performance evaluation of the models 

and Confusion matrix shows that BiLSTM outperforms the LSTM model. In evaluating the 

models using the Mathews Correlation Coefficient (MCC), the BiLSTM model offers a better 

correlation of 0.99 between the original and predicted classes. Our experiment shows that for 

predicting flight delays, the BiLSTM model takes advantage of the forward and backward hidden 

sequences and the deep neural network for performance exploration and exploitation to achieve 

high accuracy, recall, and F1-Score. Our findings suggest that the BiLSTM model can effectively 

predict flight delays and provide valuable information for airlines, passengers, and airport 

managers.  

Keywords: analysis, BiLSTM, deep learning, flight delay, machine learning  

 

 Introduction 

Recently, flight delays have increased due to the rapid growth of air transportation system 

demand and the influence of globalization in the 21st century (Cheevachaipimol et al., 2021; Wu 

et al., 2022). The International Civil Aviation Organisation (ICAO) report in 2019 shows 

constant growth in the aviation industry. There were 155 million commercial passengers between 
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2018 and 2019, resulting from an expansion year-on-year with a 6.07% increase (Bisandu et al., 

2022; Cheevachaipimol et al., 2021). This growth in demand for air travel outpaces airport 

capacity expansions. Also, the Civil Aviation Administration (CAA) of China reported in 2020 

that there was an 88.52% increase of the on-time rate of flights from civil aviation (CAA, 2021) 

and an 80.13% significant increase in 2018 (Fu et al., 2020). However, civil aviation still faces a 

major problem of flight delays (Carvalho et al., 2021; Liu et al., 2008; Maxson, 2018). The 

negative effects of flight delays on all the stakeholders cannot be overemphasized (Ball et 

al.,2010), leading to losses of huge amounts of money (Carvalho et al., 2021; Efthymiou et al., 

2019),  conflict between airlines and passengers (Gu et al.,2020), and reduced operational 

efficiency in the entire civil aviation sector (Cai et al., 2017; Wu, 2008). Flight delay 

characteristics research and prediction model establishment have improved the services of the 

decision support department of the aviation control and airlines (Etani, 2019; Gui et al., 2020), 

enhanced operational efficiency of civil aviation (Ding, 2017; Qu et al., 2020), and reduced loss 

(Dou, 2020). 

Air transportation delay cost in 2007 was estimated to total $33 billion in the United 

States (U.S.), and $16.7 billion of the delays were associated with passengers (Baumgarten et al., 

2014; Dou, 2020). Hence, this indicates how important the issue of flight delay is in the air 

transportation system, and management needs to pay close attention to understand and evaluate 

its occurrences effectively. Other, non-aviation businesses  are also affected by the impact of 

flight delays, among other financial and operational aspects of civil aviation. The overall goal is 

to minimize unnecessary cost  and enhance the performance of the flight delay prediction model  

to help avoid and mitigate risk for the stakeholders in the commercial aviation industry. There are 

internal and external factors that have been identified to cause flight delays. The controllable 

factors by the airline are referred to as the internal factors, such as the availability of the gate, 
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while the external factors depend on the uncontrollable factors, such as baggage handling, 

passenger handling, and bad weather. The complexity of understanding datasets related to flight 

delay prediction make it one of the aviation industry's most challenging problems. Also, internal, 

and external factors significantly increase the problem's complexity. 

One of the most important performance indicators to effectively assess the service quality 

of airline and airport management is the punctuality of scheduled flights. In theory, the time 

required to design practices may not be possible because of uncontrollable factors, such as 

sudden pilot sickness and bad weather. Reports from Federal Aviation Administrator (FAA) and 

standards for operation show that any flight that landed 15 minutes after the originally scheduled 

time is considered delayed. There are many regulations by many airports requiring airlines to 

compensate passengers who experience delays exceeding a certain threshold. It is common to 

have congestion, which makes the delays common, too. Delay can lead to detrimental effects due 

to its consecutive propagation. Hence, it will be more beneficial to all involved stakeholders in 

the air transportation system to predict the occurrence as it will help them be prepared and make 

all the necessary responses to avoid further consequences. 

The advances in data analytics and artificial intelligence have motivated research on the 

possible application of flight delay in predicting the use of commercial airlines. Several 

approaches are applied in the analysis and prediction of flight delays. These are machine 

learning, statistical analysis and deep learning (Bisandu et al., 2022). Therefore, the 

understanding and critical evaluation of the different techniques align with the application 

domain. Neural networks have been proven to perform better in state-of-the-art deep learning 

methods when applied to complex datasets with higher accuracy. However, the real-time video 

and image datasets were applied to feed the models with a complex structure considered 

unstructured or semi-structured datasets. But it is highly significant that the viability of applying 
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a bidirectional long short-term memory (LSTM) type of recurrent neural network (RNN) model 

with structure and offline dataset such as for flight delays to study the performance comparison 

similarity with others. Also, based on our findings, there are limited contributions in the research 

area of flight delay predictive modelling in which the bidirectional LSTM model is used to 

predict flight delays. 

In this paper, we utilize a bidirectional deep LSTM architecture to perform flight delay 

analysis and prediction using flight on-time datasets obtained from the U.S. Department of 

Transportation’s Bureau of Statistics (BTS). The primary objective is to investigate bidirectional 

deep LSTM architecture with the deep neural network and unidirectional LSTM architecture in 

the flight delay predictive task evaluated with well-known benchmark metrics. 

The rest of the paper presents other past studies of flight delay analysis and predictive tasks, 

explains the material and methods of the proposed approach, discusses the results in detail, and 

concludes with future directions for research. 

Related Work 

Researchers and industry practitioners have faced challenges in accurately predicting 

flight delays for decades. However, the applicability of recent studies using state-of-the-art 

approaches such as machine learning, big data, and deep learning has demonstrated better 

prediction results on flight delays than statistical approaches (Kim et al., 2016; Lin et al., 2019). 

As a result, several research studies have been conducted to assess the factors and impact of non-

meteorological and meteorological conditions on flight delays. 

Bisandu et al. (2022), utilize a special type of deep recurrent neural network (RNN) 

known as deep long short-term memory (LSTM) and social ski driver conditional autoregressive-

based deep learning to study non-weather impacted delays using datasets from the U.S. Bureau of 

Statistics. Their experiment shows that data pre-processing and improving the model learning 
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randomization of the deep learning algorithm with optimization algorithms improve the model's 

accuracy, error rate, and reduced computational requirements compared to other metaheuristic 

methods. In Carvalho et al. (2021), and Mueller and Chatterji (2002), the authors discuss the 

relevance of data in predicting flight delays and identifying major methods, such as machine 

learning, deep learning and statistical methods, as the currently applied methods in the research 

of flight delay predictive tasks. Kim et al. (2016) proposed different architectural designs and 

implementations of LSTM and RNN in predicting flight delays using sequences of thresholds. 

Lin et al. (2019) used convolutional LSTM (Conv-LSTM) to predict airport flight delays using 

temporal and spatial characteristics in China civil aviation. 

 Mueller and Chatterji (2002), explore the characteristics of an aircraft's arrival and 

departure delay to develop a time series model that determines the probability of the correlation 

of the features using poison and normal probability distribution with density function. Vandehzad 

and Holmgren (2020) combine a mathematical weight value with linear and non-linear kernels of 

regression algorithms to propose a model for predicting flight delays using data from a Swedish 

airline software and services provider, Aviolinx. Also, Gui et al. (2020), collected data using 

surveillance-broadcast aviation platforms and used random forests based on LSTM to explore 

factors influencing flight delays. Belcastro et al. (2016), incorporated parallel algorithms using 

MapReduce with weather datasets to predict arrival flight delays. Finally, Chen and Li 

(2019)proposed a multi-label random forest propagation and classification model using an 

optimal feature selection process that predicts chains of delays considering the initial departure. 

 Ye et al. (2020) proposed a method for predicting the flight departure delay in Nanjing 

Lukou International Airport by applying four different supervised machine learning algorithms 

known as support vector machine, Light Gradient Boosting Machine (LightGBM), multiple 

linear regression and extremely randomized trees using a comparative study to explain their 

5
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suitability base on their experiments. Bisandu et al. (2021) performed a comparative study 

between deep feedforward architecture with shallow architectures using a filter-based feature 

selection technique on non-weather impacted flight delays; the experiment results show how 

important parameter tuning is in making a model more reliable in predicting departure and arrival 

flight delays. Manna et al. (2018) analyzed air traffic data using a gradient boost decision tree, 

and the model produces higher accuracy based on their experiment. Chakrabarty (2019) used a 

grid search hyper-parameter tuning and gradient boosting classifier model for analyzing and 

predicting the arrival delay of American Airlines using the top five busiest airports with a binary 

classification technique. Kuhn and Jamadagni (2017) employed a single-layer neural network 

with logistic regression and a decision tree to detect whether an arrival flight will be delayed 

using only the top three features from the feature importance results as the model inputs. Takeichi 

et al. (2017) predicted arrival delays at Tokyo Airport using queue analysis artificial neural 

network (ANN) with Rectifier Linear Unit (ReLU). 

 Gopalakrishnan and Balakrishnan (2017) proposed a flight delay prediction model based 

on origin-destination pairs using a two-hour time horizon with an architecture of multiple 

artificial neural networks and the Markov Jump Linear System. Yu et al. (2019) proposed a 

model for flight delay with novel factors known as crowdedness in the Beijing International 

Airport route using a deep belief network and support vector regression (DBN_SVR) on the top 

layer of the proposed model. Khanmohammadi et al. (2016) offered a new method to predict 

incoming flights at John F. Kennedy (JFK) International airport using ANN and Defect of 

Modules Prediction (DPM). Lv et al. (2015), applied stacked autoencoders (SAE) for traffic flow 

prediction using a greedy deep learning architecture, which learns best from the features. Zhang 

et al. (2019) proposed an airport delay prediction model using BiLSTM sequence learning with 

spatiotemporal analysis. Their model shows better stability and accuracy than the other methods 

6

Journal of Aviation/Aerospace Education & Research, Vol. 32, No. 2 [2023], Art. 4

https://commons.erau.edu/jaaer/vol32/iss2/4
DOI: 10.58940/2329-258X.1992



   
 

   
 

in their experiment. Karim et al. (2017) developed a model for time series classification using 

fully connected convolutional networks and LSTM with a novel fine-tuning technique for the 

LSTM cell. Despite the remarkable results from the previous studies, there is a common 

conclusion among them, and it is the fact that there is a need to perform more analysis and 

propose more models based on new context and perspectives in checking the suitability and 

viability of the prediction models considering the change in every aspect of the transportation 

industry, most especially the air transport sector. 

With the advent of neural networks and deep learning with LSTM architectures, there is a 

paradigm shift in the performance of predictive models, especially flight delay tasks. Previous 

revised studies have used complex data such as images and videos with models (Mueller & 

Chatterji, 2002; Manna et al., 2018). However, no study has compared bidirectional deep LSTM 

with unidirectional LSTM with structure data from flight on-time records. Therefore, this paper 

investigates the efficacy and viability of bidirectional deep LSTM on flight on-time records to 

perform flight delay predictive tasks. This study intends to contribute to the air transportation 

system by proposing an innovative, accurate flight delay prediction model using bidirectional 

deep LSTM architecture and the U.S. BTS dataset. 

Materials and Methods 

This study employed an airline performance on-time dataset downloaded from the U.S. 

Department of Transportation. Specifically, we used the October to December 2013 dataset for 

the experiment. There were 29 features initially in the dataset before pre-processing. 

Data Description and Pre-Processing 

The information in the dataset is from October to December 2013 flight on-time U.S. 

BTS. Table 1 shows the 29 features with their corresponding definitions (Yazdi et al., 2020) and 

the attribute types for each feature (Cios et al., 2007). They needed to be reduced further because 
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of constraints in computation, inconsistencies and empty cells or non-required features.  

Researchers divided the training and testing datasets into 70% and 30%, respectively, grouping 

the delay time into two for the presence of delay and no delay blocks instead of applying the 

exact delay time. The delay block and flight that arrived or departed 15 minutes later is 

considered delayed, known as Class 1, while the non-delay on-time block is any flight that 

arrived and departed in less than 15 minutes, called Class 0. From the 29 features, we selected 6 

features for training the model, which are the most relevant features to the flight delay predictive 

task.  
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Table 1 

Dataset Features and their Descriptions 

S/No Feature Attribute Type Details 

1 Year Numerical (Discrete) Example, 2000 

2 Month Numerical (Discrete) Example, 12 

3 DayOfMonth Numerical (Discrete) Example, 01-31 

4 DayOfWeek Numerical (Discrete) Example, 1 (Monday) - 7 

(Sunday) 

5 DepartureTime Numerical (Continuous) Example, 1456 

6 ScheduledDepartureTime Numerical (Continuous) Example, 1456 

7 ArrivalTime Numerical (Continuous) Example, 1456 

8 ScheduledArrivalTime Numerical (Continuous) Example, 1456 

9 UniqueCarrierCode Categorical (Nomimal) Example, PS 

10 FlightNumber Numerical (Discrete) Example, 1454 

11 PlaneTailNumber Categorical (Nominal) Example, N923XJ 

12 ActualElapsedTime  Numerical (Continuous) Example, 193 

13 ScheduledElapsedTime Numerical (Continuous) Example, 200 

14 FlightTime Numerical (Continuous) Example, 94 

15 ArrivalTime Numerical (Continuous) Example, 1015 

16 DepartureTime Numerical (Continuous) Example,1015 

17 Origin  Categorical (Nominal) Example, LHR 

18 Destination Categorical (Nominal) Example, MAN 

19 Distance Numerical (Continuous) Example, 1448 

20 TaxiIn Numerical (Continuous) Example, 10 

21 TaxiOut Numerical (Continuous) Example,10 

22 Cancelled Binary (Categorical) Example, 0 or 1 

23 ArrDelay Numerical (Nominal) Example, -11, 12, 0 

24 DepDelay Numerical (Nominal) Example, -10, 13, 0 

25 CarrierDelay Binary (Categorical) Example, 0 or 1 

26 WeatherDelay Binary (Categorical) Example, 0 or 1 

27 AviationSystemDelay Binary (Categorical) Example, 0 or 1 

28 SecurityDelay Binary (Categorical) Example, 0 or 1 

29 LateAircraftDelay Binary (Categorical) Example, 0 or 1 
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Features that do not add much to our model performance were removed because some had 

information after the delay had been confirmed, had complete zero in all the cells, or had the 

same value that did not impact the model's training performance. Summarily, our conditions and 

criteria for the feature selection process were to  focus on delays arising in the departure airport. 

Therefore, features associated with post-departure information are not considered. For example, 

TaxiIn is omitted due to information about when the flight wheels arrive at the destination gate 

runaway; others are ArrTime, AirTime, ActualElapsedTime, and ScheduledElapsedTime. In 

addition, there are 5 other variables: NASDelay, WeatherDelay, SecurityDelay, 

LateAircraftDelay, and CarrierDelay). Features having no information about flight delays, such 

as TailNum, Year, UniqueCarrier, FlightNum, DestCode, OriginCode, Diverted, 

CancellationCode, DayOfWeek, DayofMonth, and Cancelled. We have calculated the correlation 

coefficient to estimate how a pair of variables influence one another and to detect collinearity 

between variables. Variables such as Delay_Level, DepTime, and ScheduledArrivalTime are 

omitted due to high correlation with Month, DepDelay and ArrDelay. We used the following six 

features in training our model: Months, ScheduleDepTime, Distance, TaxiOut, DepDelay, and 

ArrvDelay.  

Flight delay is created  by numerous factors, including carrier, weather conditions, air 

traffic congestion, security, and mechanical issues. However, some of the essential features that 

affect flight delays are: The month of the year (Months), as different months may experience 

different weather patterns or holiday travel patterns that can impact flight schedules. For instance, 

holiday seasons may experience more delays due to people travelling more spent time with their 

loved ones. Distance: The distance of the flight can also impact its delay, as longer flights may 

encounter more air traffic congestion, require more time for boarding and unloading, and may 
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have more complicated routing. ScheduleDepTime: The scheduled departure time can affect the 

delay of a flight as certain times of day, such as peak travel times, may experience more 

congestion on the runway or in the air. TaxiOut: The time it takes for an aircraft to taxi from the 

gate to the runway, known as taxi-out time, can significantly impact the delay of a flight. Longer 

taxi-out times can lead to a delayed departure, causing the flight to arrive late. DepDelay: The 

departure delay, which measures the time difference between the scheduled and actual departure 

times, is one of the most crucial features affecting flight delay. A longer departure delay may lead 

to more significant delays throughout the flight, impacting the arrival time. ArrDelay: Finally, the 

arrival delay, which measures the time difference between the scheduled arrival time and the 

actual arrival time, is also a critical factor in a flight delay. Longer arrival delays can disrupt 

passengers' schedules, cause missed connections, and impact airline performance.  

Table 2 shows the features we utilized in training our model. The remaining features with 

incomplete information, such as N.A., were also removed to process the dataset further to be 

suitable for the proposed model. 
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Table 2 

Features Used in Training the Model 

S/No Feature Type Description 

1 Month Numerical(Discrete) Recorded flight months from October to 

December. 

2 Distance Numerical (Continuous) Origin and destination distance in miles. 

3 ScheduleDepTime Numerical (Continuous) Departure schedule. 

4 TaxiOut Numerical (Continuous) Taxi-out time in minutes. 

5 DepDelay Numerical (Nominal) Time difference between a scheduled and 

actual departure. 

6 ArrDelay Numerical (Nominal) Time difference between a scheduled and 

actual arrival. 

Note. The dataset contains 10 airports with their codes, as shown in Table 3. 

 

Table 3 

Airport Codes Used in the Study 

S/No Airport Codes Name of Airport 

1 ATL Atlanta 

2 ORD Chicago 

3 LAX Los Angeles 

4 SAN San Diego 

5 MSP Minneapolis 

6 PHX Phoenix 

7 PHL Philadelphia 

8 SFO San Francisco 

9 DEN Denver 

10 BOS Logan 

 

We used min-max normalization for our data because it is all in numerical form. We 

transformed the data to fit the training and testing set. This process is important because all 
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features may have various data types. The numerical differences are eliminated because of the 

different range of values when computing. A value x is converted into 𝑥 , range [max_new – 

min_new] as follows 

𝑥 , =
𝑥−𝑥𝑚𝑖𝑛

𝑥−𝑥𝑚𝑎𝑥
 x [max_new – min_new] + min_new          (1) 

where the range of the transform values is denoted from min_new to max_new. We set min_new 

= 0 and max_new = 1. The transform values were then used as input into the BiLSTM 

architecture. 

Proposed Methodology 

The methodology proposed for this study is described in detail in this section, 

concentrating on all aspects that helped improve the tuning capabilities of the methods we 

compared. Figure 1 shows the clear steps taken in the proposed methodology. The proposed 

BiLSTM model pseudocode is presented in Algorithm 1. 

Figure 1 

Proposed Prediction Methodology 
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Algorithm 1 

Proposed BiLSTM Approach Pseudocode 

Input: Dataset 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑡𝑒𝑠𝑡  of data 

Output: Flight classification prediction results R of test data 

1 Load input dataset 

2 Split dataset into 𝐷𝑡𝑟𝑎𝑖𝑛  and 𝐷𝑡𝑒𝑠𝑡; 70:30 percentage ratio 

3 Split 𝐷𝑡𝑟𝑎𝑖𝑛 into train and validation set for training the algorithm 

4 Dataset pre-processing of the 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑡𝑒𝑠𝑡 

Min-Max normalization using Equation (1) 

5 BiLSTM layers for enhancing the extraction of important prediction 

features 

6 Preventing overfitting with Dropout layers 

7 Batch normalization layer using Equations (2) to (5) 

8 Dense layers 

9 Fully connected layers 

10 Sigmoid final layer 

11 For each training epoch 

12      Train the proposed model; Train (P) 

13 End for 

14 Evaluate the model 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑡𝑒𝑠𝑡 using performance measures  

Batch Normalization Layer 

The training dataset is acquired batch-by-batch. The distributions are consequently 

unstable and non-uniform, and the network parameters in each training cycle must be fitted, 

showing the model's significant convergence. Batch normalization is used for reparameterization. 

The mean 𝛼𝐷 and variance ∝𝐷
2  is determined by the batch normalization technique for each 

training dataset batch and the scale adjusted for the original dataset to unity-variance and zero-

mean. The shifted data �̂�1 are applied to weight and bias to help enhance expressive power. 

Equation 2 to Equation 5 shows the computation of the batch normalization. The batch 

normalization algorithm does the reparameterization update coordination across the neural 

network layers. 
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𝛼𝐷 =  
1

𝑛
∑ 𝑎𝑖

𝑛
𝑖=1                (2) 

∝𝐷
2 =  

1

𝑛
∑ (𝑎𝑖 − ∝𝐷)2𝑛

𝑖=1                  (3) 

            �̂�1 =  
𝑎𝑖− ∝𝐷

√∝𝐷
2 + 𝜀

                (4) 

𝑏𝑖 =  𝛾�̂�1 +  𝛽                 (5) 

where 𝑏𝑖 𝜀, 𝛾 and 𝛽 is the final normalized value and parameters that make sure the batch 

normalization learns the identity function in a few cases. 

Bidirectional Long Short-Term Memory (LSTM) Architecture 

The most sophisticated type of machine learning available today is deep learning. It has 

brought about the growth in various models with neural networks for application in solving real-

world problems. We utilized an effective deep learning method known as long short-term 

memory because of its memory-oriented features to model and analyse flight delays. BiLSTM, as 

a deep learning approach, is efficient in analysing and extracting important data features needed 

for a predictive task. It is an extension of the Recurrent Neural Network (RNN). The LSTM 

structure was designed to address the vanishing gradient problem of the RNN structure. The 

LSTM Cell structure contains an input gate, output-gate, forget gate and memory unit (Gers et al, 

2000; Hochreiter & Schmidhuber, 1997). The memory block structure of a one-layer neural 

network controls the forget gate. Equation 6 can determine the activation of the gate.  

𝑓𝑎 =  𝜎 (𝑊[𝑥𝑎, ℎ𝑎−1, 𝐶𝑎−1] + 𝑏𝑣)                       (6) 

where 𝑥𝑎 denotes the sequence of inputs; ℎ𝑎−1 is the output of the previous block; 𝐶𝑎−1 denotes 

the block memory of the previous LSTM; and the bias vector is denoted by 𝑏𝑣. The individual 
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weight vectors for each input are denoted by 𝑊, while the logistic sigmoid activation function is 

denoted by 𝜎.  

The basic N.N. with the tanh activation function has an input gate as part of its structure with 

new memory created by the block effect of the prior memory. The operations can be computed 

using Equation 7 and Equation 8. 

𝑖𝑎 =  𝜎(𝑊[𝑥𝑎, ℎ𝑎−1, 𝐶𝑎−1] +  𝑏𝑖)                (7) 

𝐶𝑎 =  𝑓𝑎 . 𝐶𝑎−1 + 𝑖𝑎. 𝑡𝑎𝑛ℎ([𝑥𝑎,ℎ𝑎−1, 𝐶𝑎−1] +  𝑏𝑐)              (8) 

LSTM with one-way movement relies on past data, but it is always inadequate. Dependencies are 

prevented by consciously remembering long-term information, which in practice is the behaviour 

of the LSTM by default. The BiLSTM only analyzes data in two directions. Two values are held 

by the hidden layer of the BiLSTM (Graves & Schmidhuber, 2005), which are employed for 

forward computation and reverse calculation. The final output prediction performance of the 

BiLSTM is enhanced by the two values which determine the output (Zhang et al., 2019). Figure 2 

shows the architecture of a BiLSTM. 

Figure 2 

An Architecture of a BiLSTM 
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Figure 2 shows two recurrent components, forward and  backward. The forward 

component computes the hidden and cell states, similar to a standard LSTM, while the backward 

component computes by a reverse-chronological input sequence. For example, it is taken from Ta 

to 1 timestamp. The backward component usage creates a way in which future data are captured 

by the network and tries to learn its weights, respectively. It helps capture some dependencies by 

the network that a standard unidirectional LSTM might not have been able to capture. BiLSTM is 

also good in Natural Language Processing because of its ability to capture input sequence 

dependencies quite well. The forward components' hidden and cell states differ from the 

backward components. Therefore, the hidden and cell states of the forward component are 

concatenated with the backward components to get encoded. 

Unidirectional Long Short-Term Memory Architecture 

The sequence of time series is taken as input by the LSTM encoder (each LSTM cell 

takes a one-time step), and an input sequence for encoding is created. A vector consisting of 

hidden and cell states is created by encoding all the LSTM cells. The LSTM decoder receives the 

encoding and other decoder inputs generated for the predictions (decoder outputs). We set our 

target output sequence during the model training as the decoder output for the model to train 

against the targeted output. Figure 3 shows the architecture of the unidirectional LSTM. 
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Figure 3 

An Architecture of a Unidirectional LSTM 

 

 

Model Evaluation Metrics 

To measure the performance of our model in the experiment, we employed some well-

known benchmark metrics for evaluating models for classification and predictive tasks. These 

benchmark evaluation metrics are accuracy, recall, precision, F1-score, and Mathew's correlation 

coefficient (MCC). The accuracy is the rate of the correctness of a classifier. We then use the sum 

of true-negative (T.N.), true-positive (T.P.), false-positive (F.P.) and false-negative (F.N.). Thus, 

the ratio of records correctly predicted to the total number of records is known as accuracy, as 

shown in Equation 9. The rate of correctly predicted values from the positive record is the recall, 

also known as sensitivity or true positive rate (TPR), thus calculated as Equation 10. The ratio of 

true positive records to the predicted positive records is the precision, as shown in Equation 11. 

The F1-score is the harmonic mean of the recall and precision, and Equation 12 shows how to 

calculate the F1-score. At the same time, Mathew's correlation coefficient measures the 

classification quality as compared with each of the classes' recall and precision relative to each 

other, as shown in Equation 13. 
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Accuracy can be represented by Equation 9: 

Accuracy =  
∑ (𝑇𝑃𝑎+ 𝑇𝑁𝑎)𝑧

𝑎=0

∑ (𝑇𝑃𝑎+ 𝑇𝑁𝑎+ 𝐹𝑃𝑎+ 𝐹𝑁𝑎)𝑧
𝑎=0

                  (9) 

Recall can be represented by Equation 10: 

  Recall =  
∑ 𝑇𝑃𝑎

𝑧
𝑎=0

∑ (𝑇𝑃𝑎+  𝐹𝑁𝑎)𝑧
𝑎=0

                          (10) 

Precision can be represented by Equation 11: 

  Precision =  
∑ 𝑇𝑃𝑎

𝑧
𝑎=0

∑ (𝑇𝑃𝑎+  𝐹𝑃𝑎)𝑧
𝑎=0

                          (11) 

F1-score can be represented by Equation 12: 

  F1 =  2 X
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
                            (12) 

Mathew's correlation coefficient (MCC) can be represented by Equation 13:  

MCC =  
∑ (𝑇𝑃𝑎 X 𝑇𝑁𝑎)− (𝐹𝑁𝑎 X 𝐹𝑃𝑎)𝑧

𝑎=0

∑ (𝑇𝑃𝑎+𝐹𝑃𝑎)+ (𝑇𝑃𝑎+𝑇𝑁𝑎)+ (𝑇𝑁𝑎+ 𝐹𝑃𝑎)+ (𝑇𝑁𝑎+ 𝐹𝑁𝑎)𝑧
𝑎=0

           (13) 

The model results can be visualized in Confusion Matrix format, as shown in Figure 4. 

Figure 4 is the 2X2 matrix called the Confusion Matrix, where all the correctly classified results 

are diagonal. The sum of the diagonals is the number of all those correctly classified. 
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Figure 4 

The Structure of a Confusion Matrix for a Binary Classification Task 

 

 

Results and Discussion 

The proposed method results validated on three months public dataset. The performance 

of  the proposed method with  BiLSTM is then compared with unidirectional LSTM, and 

different merge mode performances were also evaluated to discover the most suitable. 

We plotted a correlation matrix to show the collinearity of the multiple variables in the 

dataset. This helps to determine which variables have the same effect on the output variable: the 

flight delay. Figure 5 shows that Actual Elapsed Time and Distance are highly correlated, so 

dropping either from the dataset will not affect the model prediction. From the heap, we can see 

the importance of each feature in the flight delay class. The ScheduleDepTime has a high 

contribution base on the correlation values on the delay class, while DepDelay and ArrDelay 

features have a similar level of importance on the delay classes. The month is the next most 

important feature of the delayed classes. Finally, distance is the next important feature, and 

taxiOut has the minimum importance to the delay classes. 
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Figure 5 

Flight Correlation Matrix 

 

 

Experimentation Setup 

We evaluated the proposed model efficacy by conducting our experiment on a U.S. BTS 

for 2013 with three months of records of real flights. All the computations were conducted on a 

Personal Computer (PC) with Intel(R) Core(T.M.) i7-9700 CPU with a processor speed of 

3.00GHz   and 32GHz RAM. We used the following libraries TensorFlow Core-2.4.1, 

TensorFlow GPU-2.4.1, Pytorch 1.9.1, NumPy-1.19.1, pandas-0.25.3, sci-kit learn-0.23.2, Scipy-

1.5.2, PySimpleGUI-4.29.0, and Matplolib-3.3.1. 
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Results Comparative Discussions 

In this section, we present the comparative analysis of the evaluated methods in this 

research. Table 4 contains the performance values of each of the methods.  

 

Table 4 

Performance Comparison of LSTM and BiLSTM Models 

S/No Methods Classes  Precision Recall F1-

Score 

Support MCC 

1 LSTM Class 0  0.8384 0.9443 0.8756 107892  

 

 

 

0.4644 

Class 1  0.4469 0.0743 0.0896 101823 

                               Accuracy  - - 0.7645 209715 

                             Macro 

Average 

 0.4532 0.4532 0.4356 209715 

                          Weighted 

Average 

 0.7362 0.7453 0.7453 209715 

2 BiLSTM Class 0  0.8324 0.9898 0.8945 107892  

 

0.9944 

 

Class 1  0.5643 0.0989 0.4988 101823 

                                 Accuracy  - - 0.9756 209715 

                              Macro 

Average 

 0.4202 0.4332 0.4122 209715 

                         Weighted 

Average 

 0.70023 0.7234 0.7213 209715 

 

The LSTM model had an accuracy of 76.45%, which is comparatively lower than the 

BiLSTM model. The LSTM model has a precision, recall and F1-Score of 83.84, 94.43% and 

87.56%, respectively, in predicting class 0, which is better than that of class 1, having a precision 

of 44.69%, recall of 7.43%, F1-Score of 8.96%, respectively. It can be seen in the confusion 

matrix classification report presented in Figure 6, where the model classified all the delay classes 

without misclassification while the not delayed class has some misclassification. When predicting 

classes of the delay, the LSTM model results show a lower performance when compared with the 
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BiLSTM; however, a better performance LSTM model shows on the precision of class 1, which 

indicates that the correctly retrieved instances of the model on the class. The mutual correlation 

of the LSTM predicted classes, an MCC score of 0.4644, is significantly lower than the BiLSTM 

because of their overall differences in the accuracy of predictions, which means forward and 

backward networks of BiLSTM help in retrieving the sequences of the previous layers during the 

training. 

The results show that the BiLSTM model performs better than the LSTM in prediction 

instances with just a few misclassifications, as can be seen in the confusion matrix in Figure 7. 

The results of the BiLSTM model show an accuracy of 97.56%, an increase of 21.11% compared 

to the LSTM accuracy model. The model performance in class 0 is solid, with precision, recall, 

and F1-Score of 83.24%, 98.98% and 89.45%, respectively. Although the performance has a 

small margin compared to LSTM on class 0, the model correctly identifies a higher proportion of 

the not delay class. The precision of class 1 is 56.43%, but it is better than the baseline LSTM 

model in class 1. The models recall, and F1-Score in class 1 are 9.89% and 49.88%, respectively. 

The MCC score for the BiLSTM model is 0.9944, which shows a high correlation between the 

two predicted classes of the model and, thus, means a good model. 
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Figure 6 

Confusion Matrix for LSTM Approach 

 

 

The subsequent data points are more important than the previous ones, which is 

considered missing information by the LSTM model. The BiLSTM model solves this LSTM 

model problem by doing two forward and backward LSTM model training for the training dataset 

sequences. The confusion matrix in Figure 5 shows that the unidirectional LSTM model correctly 

predicts 107,572 and 101,561 of the delayed and not-delayed flight classes, respectively, while 

Figure 6 shows that BiLSTM correctly predicted 107, 892 and 101, 580 of the delayed and not-

delayed flights classes. It clearly shows from the confusion matrix results that the BiLSTM 

model's performance in predicting the flight is better than that of the LSTM model. The overall 

result shows the advantage of using deep BiLSTM over an LSTM because the prediction error of 

an LSTM tends to increase significantly as the number of prediction steps. 
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Figure 7 

Confusion Matrix for BiLSTM Approach 

 

 

 

Conclusion and Future Direction 

The delay propagation in the air traffic network propagates through the entire network 

with speed due to the complex nature of the system.  This study compared two classification and 

prediction methods known as LSTM and BiLSTM by building a classification model to analyse 

flight delay on-time datasets to assess the efficacy and viability of BiLSTM to LSTM. The 

BiLSTM model has a higher accuracy of 97.56% than the unidirectional LSTM with an accuracy 

of 76.45%; the change in the accuracy of the BiLSTM model shows its potential in the prediction 

of flight delays. BiLSTM plausibly outperforms the LSTM model due to its bidirectional ability 

(forward and backward), leveraging any feature selection to handle missing sequences during the 
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model training. Another reason could be that BiLSTM takes additional time to fetch batches of 

data to have an equilibrium, though it is slow because of this process. It indicates that the 

additional features associated with the data are captured by BiLSTM but cannot be exposed by 

the unidirectional LSTM models because the training is only one way. Thus,  the researchers 

recommend BiLSTM over LSTM for binary time series analysis, classification, or prediction. 

This research contributes to air transportation and stakeholder in decision-making 

processes, thereby improving air passengers ' experience and increasing income from aviation 

and non-aviation services. More cross-validation methods and larger sample sizes across different 

regions is needed to develop models and further evaluate the regional performance of the model 

towards a universal central prediction of flights across nations.  The architectural design should 

be improved to achieve better tuning and higher accuracy of the neural network.   Training the 

model with the weather, aircraft age, aircraft model, and factors limiting airport infrastructure 

(i.e., available runways to flights)may help solve the low performance related to the 

unidirectional LSTM model because, from the  dataset, the weather-related delay is highly 

imbalanced. 
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