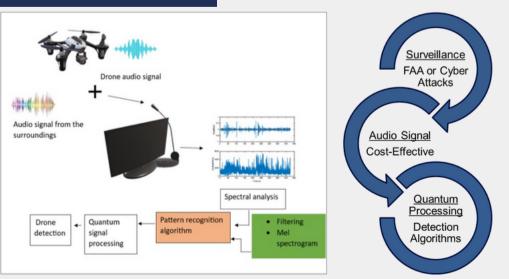


Drone Detection through Acoustic Signal Processing

Khushboo Patel, Lynette Ramirez

Space Trajectories & Applications Research

Introduction


Audio signal processing enables for the development of a drone detection algorithm to improve national security.

Modern Drone Detection Technologies											
Method	Pros	Cons									
Radar Frequency	 Resistant to weather conditions High resolution range 	 Most likely to lose drone's path due to vehicle size 									
Radio Frequency	 High detection range for flight path 	Can only monitor drones that use communication channels									
Visual/Optical Sensing	 Cameras cost-effective clear visual when in line-of- sight 	 Weather conditions can obstruct visual Require verification by a person Limited detection range 									
Audio Signal Processing	 All type of drones can be monitored High detection range Audio sensors cost-effective 	 Measured audio signals not fully resistant to outside noise ✓ Algorithm can be trained to filter outside noise 									

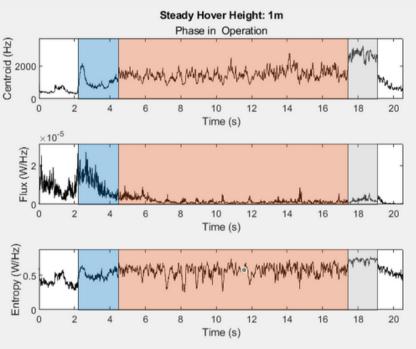
<u>Objective</u>

- Extract the drone's audio signal through spectral descriptors to then be used for the development of pattern recognition algorithm.
- Report on limitations for pattern recognition algorithm for ranging operation frequency & background noise levels
- Compare audio signal processing methods
 - i. Support Vector Machine for pattern classification
 - ii. Quantum Signal Processing, using Shor's & Grover's algorithm

<u>Methodology</u>

Initial Results

I.) Spectral Descriptors


Drone Analysis: 1m alt for Flight

Conditional Statistics: based on Drone operation recordings in a closed environment. Divided into three phases of operation as follows:

- Take off
- Steady Hover ii.
- iii. Landing

Pattern Recognition: Use conditional statistics to verify the presence & phase in the operation.

Test the algorithm: Implement similar frequencies during operation recordings to test the pattern recognition algorithm.

Figure 1: Pattern of Drone operation using spectral centroid, flux, & entropy.

Time	e Section #	1	2	3	4	5	б	7	8	9	10	11	12	13	14
Operation Phase	Turn On	0%	16.5%	0%	2.8%	7.9%	2%	0%	1.6%	5.6%	0%	0%	0.1%	3.3%	0%
	Steady Hover	8.3%	1.4%	89.1%	0%	0%	98.0%	8.3%	0%	0%	99.6%	25.6%	10.4%	1.3%	0%
	Turn Off	0%	0%	0%	4.2%	0%	0%	0%	4.2%	0%	0%	1.4%	3.8%	11.2%	6.9%
	Total %	8.3%	17.9%	89.1%	7.0%	7.9%	100.0%	8.3%	5.8%	5.6%	99.6%	27.0%	14.3%	15.8%	6.9%

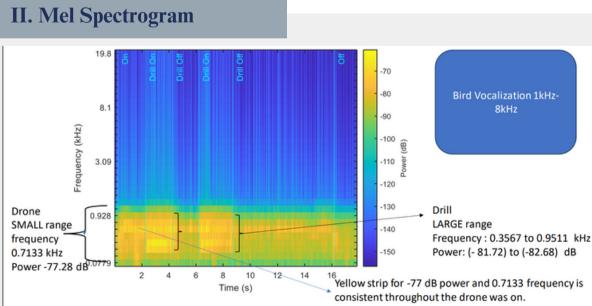
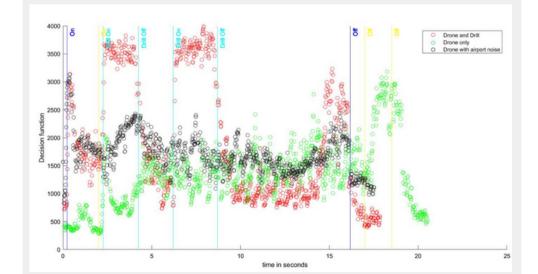



Figure 2: Pattern of Drone operation with imposed interruption of similar frequency (Drill). Testing pattern recognition in accordance to phases in operation.

