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Abstract. A linear model of the microstructured continuum based on Mindlin 
theory is adopted which can be represented in the framework of the internal 
variable theory. Fully coupled systems of equations for macro-motion and 
microstructure evolution are represented in the form of conservation laws. A 
modification of wave propagation algorithm is used for numerical calculations. 
Results of direct numerical simulations of wave propagation in periodic medium 
are compared with similar results for the continuous media with the modelled 
microstructure. It is shown that the proper choice of material constants should be 
made to match the results obtained by both approaches. 

1. Introduction

The classical theories of continua describe the behaviour of homogeneous 
materials.  In reality, however, materials are always characterized by a certain 
microstructure at various scales. The character of a microstructure can be regular 
(like in laminated composites) or irregular (like in polycrystalline solids or alloys). 
Even more, regularity and irregularity may be combined like for some FGMs. The 
characteristic scale of a microstructure must always be compared with the spatial 
scale of excitation. The choice of proper mathematical models is extremely 
important in order to describe the wave fields with needed accuracy.  

In general terms, the starting point for describing a microstructure could be 
either the discrete or the continuum approach. In the discrete approach the volume 
elements are treated as point masses with interaction [1]. Or, especially for 
laminated composites, the effective stiffness theory has been used [2]. The 
homogenization methods based on properties and geometry of constituents are 
widely used for static and quasi-static problems [3].  From the viewpoint of 
continua, the straight-forward modelling leads to assigning all the physical 
properties to every volume element dV in a solid which means introducing the 
dependence on space coordinates. Thus, the governing equations are so 
complicated that can be solved only by numerical methods.  

Another way is to separate macro- and microstructure in continua. Then the 
conservation laws for both structures should be formulated separately [4, 5] or in a 
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more sophisticated way the microstructural quantities could be introduced into one 
set of conservation laws for the macrostructure [6]. Quite recently it has been 
shown that the generalization of such theories can be obtained by using the 
concept of dual internal variables [7].   

To check the capabilities of the theory, it is useful to compare the theoretical 
predictions with results of direct numerical simulation of wave propagation 
through a certain known microstructure. In what follows, the derivation of a mi-
crostructure model is presented in the one-dimensional setting. The concept of 
dual internal variables is applied for the physical description of continua with mi-
crostructure. The finite volume wave propagation algorithm is used for both direct 
numerical simulation and the microstructure modeling. Results of direct numerical 
simulations of wave propagation in a periodically layered medium are compared 
with similar results for the homogeneous medium with a modelled microstructure. 

2. Governing Equations 

The governing equations of thermoelasticity are local balance laws for linear mo-
mentum and energy [8]. In the one-dimensional case these governing equations 
are reduced to (no body forces) 
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complemented by the second law of thermodynamics 
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Here t is time, �0 is the matter density, v is the physical velocity, � is the Cauchy 
stress, E is the internal energy per unit volume, S is the entropy per unit volume, �
is temperature, Q is the material heat flux, and  the "extra entropy flux" K  van-
ishes in most cases, but this is not a basic requirement. 
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3. Internal Variables 

Up to now the microstructure was not specified. In the framework of the 
phenomenological continuum theory it is assumed that the influence of the 
microstructure on the overall macroscopic behaviour can be taken into account by 
the introduction of an internal variable �, which we associate with the integral 
distributed effect of the microstructure, and a certain dual internal variable �. We 
suppose that the free energy depends on the internal variables �, � and their space 
derivatives W = W*(ux, �, �x, �, �x). Then the constitutive equations follow 
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We include into consideration the non-zero extra entropy flux [9] 
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It can be checked that the dissipation inequality in the isothermal case reduces to 

     � � .0)( ���� ������ �� xx                (3.3) 

In the non-dissipative case the dissipation inequality can be satisfied by the choice 

     � �,),( xx mm ������ ����� ��              (3.4) 

where m is a coefficient. The latter two evolution equations express the duality be-
tween internal variables: one internal variable is driven by another one and vice 
versa.  

The simplest free energy dependence is a quadratic function [10] 
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where A, B C, D, and c are material constants.  
Here we include only the contribution of the second internal variable itself. In 

this case, the evolution equation for the internal variable � is a hyperbolic equation 
[7] 

     � �.2
xD m ��� ����                (3.6) 



4

As a result, we can represent the equations of motion in the form 

     ,2
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where I = 1/(m 2D) is  an internal inertia measure. In terms of stresses introduced 
by Eq. (3.1), the same system of equations is represented as 
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It is worth to note that same equations are derived in [11] but based on different 
considerations. 

3.1 Single Wave Equation 

The governing equations (3.7) and (3.8) can be reduced to one equation. We can 
determine the first space derivative of the internal variable from Eq. (3.8) and its 
third derivatives from Eq. (3.7). Inserting the results into the balance of linear 
momentum (3.7), we obtain a higher order equation [9] with clearly separated 
wave operators which describe the influence of the microstructure 
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3.2 System of Equations 

At the same time, in terms of strain and velocity, Eq. (3.7) is rewritten as 

     .2
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The particle velocity and the strain are related by the compatibility condition 

     ,xt v��                              (3.12) 

which form the system of equations for these two variables. 
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Similarly, introducing a microvelocity w as follows: 
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and using Eq. (3.6) with m =1, we have 

     ,xt w��                         (3.14) 

that is nothing else but the compatibility condition at micro-level. It follows from 
Eqs. (3.14) and (3.8) that 
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Integrating the latter equation over x, we arrive at 

.)( dxBACIw xt � ��� ���                          (3.16) 

Thus, we have two coupled systems of equations (3.11), (3.12) and (3.14), 
(3.16) for the determination of four unknowns: �, v, �, and w. These two systems 
of equations are solved numerically to describe the microstructure dynamics. 

4 Numerical Simulations  

4.1 Algorithm Description 

There are many computational methods used to describe wave propagation 
phenomena (see, e.g. [12]). In our computations we apply a modification of the 
wave propagation algorithm [13] that was successfully applied to the simulation of 
wave propagation in  inhomogeneous media with rapidly-varying properties [14]. 
In simulations of wave propagation in a layered medium with known location of 
inhomogeneities, the numerical scheme is the same as described in [14]. However,  
the wave propagation algorithm is modified in order to solve the coupled systems 
of equations in the modelling of the microstructure. This modification is needed to 
treat the source terms which appeared in equations due to their coupling.  

4.2 Linear Waves 

As an example, the propagation of a pulse in an one-dimensional medium which 
can be represented as an elastic bar is analysed. This bar is assumed homogeneous 
except of a region of length d, where periodically alternating layers of size l are 
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inserted. The density and longitudinal velocity in the bar are chosen as �0 = 4510 
kg/m3 and c = 5240 m/s, respectively. The corresponding parameters for the ma-
terial of the inhomogeneity layers are �1 = 2703 kg/m3 and c1 = 5020 m/s, respec-
tively. The shape of the pulse before the crossing of the inhomogeneity region is 
formed by an excitation of the strain at the boundary for an limited dimensionless 
time period (0< t < 100) 

     .))50/)50(cos((1),0( ��� tt ��               (4.1) 

The time step used in calculations is by definition a unit. The length of the 
pulse L = 100 �x is comparable with the size of inhomogeneity (l = 128 �x).  Us-
ing the notion of the bar, it must be stressed that l and L are much smaller than the 
diameter of the bar [15]. 

Direct numerical simulation of linear elastic wave propagation in the medium 
with variable properties shows that the pulse holds its shape up to the entering into 
the inhomogeneity region. After the interaction with the periodic multilayer, the 
single pulse is separated into many reflected and transmitted parts as it can be seen 
in Fig. 4.1. Normalized time shown in Fig. 4.1 is measured in hundreds of time 
steps. During the propagation in the periodic medium, the amplitude of the pulse 
is diminished due to multiple reflections. 

Fig.4.1 Scattering of a pulse by a periodic multilayer.  

The same pulse propagation was simulated by the microstructured model de-
scribed above with the following choice of material parameters: A = 49 �0c2, I = 
�1, C = Ic1

2, B = 24.6 A2�0c2. In this case, there is no assumption of periodicity of 
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microstructure, however, in calculations of the pulse propagation, the internal 
length l for the microstructure is kept the same as in the case of periodic multilay-
er. The ratio of scales l and L together with the value of the parameter A deter-
mines the contribution of the microstructure to the macromotion.  

Here the coupled systems of equations (3.11), (3.12) and (3.14), (3.16) are 
solved simultaneously. It should be noted that no boundary conditions for the in-
ternal variable are prescribed. A non-zero solution for the microstructure is in-
duced due to the coupling.  

Results of numerical simulation are presented in Fig.4.2, where the correspond-
ing transmitted pulses from the solution of the problem with periodic multilayer 
are also shown. 

Fig.4.2 Transmitted pulses.  

As one can see, the adjustment of material parameters in the microstructure 
model allows us to reproduce the first pulse with perfect accuracy while the 
second one is essentially smaller in amplitude, because of the absence of a reflect-
ed trail in the case of the microstructure model. 

4.3 Weakly Nonlinear Waves 

We consider again the propagation of a pulse in a layered 1D medium (elastic bar) 
where the length of inhomogeneity l = 4 �x is much smaller than the length of the 
pulse L = 100 �x.  The properties of materials are the same as previously with a 
weak nonlinearity for the less stiff material (cf. [16]) 
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where N is a parameter of nonlinearity. 
Direct computations in this weakly nonlinear case (N = 0.04) show that the ini-

tial bell-shaped pulse is transformed in a train of soliton-like pulses propagating 
with amplitude-dependent speeds (Fig. 4.3) like for the celebrated KdV case. 

Fig 4.3. Transformation of a bell-shaped pulse in a weakly nonlinear periodic me-
dium (after 4600 time steps). 

If we return to the microstructure model then the linear governing equations 
(3.7), (3.8) must be modified. Instead of the free energy function (3.5), a cubic 
function is used:    
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where M  and N are new material constants (see [17]). 
Now the governing equations yield (cf. (3.7), (3.8)) 
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Besides dispersive effects (see [10]), the governing equations (4.4) and (4.5) 
include also nonlinear effects in macro- and microscale. The dispersive effects are 
analysed in [10] while the influence of nonlinearities is described in [18]. It is not 
surprising that the balance between the dispersive and nonlinear effects can occur 
resulting in emergence of solitons.  

For numerical simulation, the system of equations (4.4), (4.5) can be repre-
sented in the form of a single (4th order) equation (like Eq. (3.10)). The initial 
value problem for such a model nonlinear equation is solved by the pseudospectral 
method [18]. The initial pulse-type excitation leads to the train of solitons similar 
to that shown in Fig. 4.3. 

5 Conclusions

If we know all the details of a given microstructure, namely, size, shape, composi-
tion, location, and properties of inclusions as well as properties of a carrier me-
dium, the classical wave theory is sufficient for the description of wave propaga-
tion. Usually our knowledge about the microstructure is limited – we know only 
the characteristic scale of microstructure and its physical properties. Then the ac-
curacy of classical theories is not sufficient and the more advanced theories of 
continua should be used.  

In the paper, we have compared results of direct numerical simulations of wave 
propagation in given layered media with the corresponding results obtained by a 
continuous model of the microstructure. The presented model looks like a promis-
ing variant of the theory, complicated enough to describe various effects of the 
microstructure. This model can be naturally extended to include non-linear effects 
and dissipation [19]. However, numerical simulations demonstrate that the 
straight-forward numerics and the modelling on the basis of continuum theories 
need a careful matching of material coefficients. 

Some general remarks should be made in addition. The concept of dual internal 
variables introduced in [7] permits to model consistently microstructure(s) for 
both dissipative (not analysed here) and non-dissipative processes (see above). 
Such an approach gives an excellent basis to clarify the structure of generalised 
continuum theories such like linear Cosserat, micromorphic, and second gradient 
elasticity theories. This will be a subject of our forthcoming publications. 
      Once the wavefields in microstructured materials are described with needed 
accuracy, the respective mathematical models can also be used for solving the in-
verse problems. In linear cases, the dependence of phase velocities on the micro-
structure can be used for determining the material properties. In nonlinear cases, 
when the balance between dispersive and nonlinear effects supports the propaga-
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tion of solitary waves, the algorithms for solving the inverse problems can be 
based on the analysis of shapes of solitary waves. It has been shown namely [17] 
that the nonlinearity of the microstructure leads to asymmetric solitary waves. 
This property can be used for constructing an algorithm which determines the pa-
rameters of the microstructure from measured asymmetry (see [17]). 

Support of the Estonian Science Foundation is gratefully acknowledged. 
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