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Abstract

Discontinuities in elastic solids are represented in the paper as singular sets of
material points. Evolution of a discontinuity is driven by the configurational force
acting at such a set. The main attention is paid to the determination of the velocity
of a propagating discontinuity. Martensitic phase transition front and brittle crack are
considered as representative examples.
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In memory of Professor Gérard A. Maugin

Introduction

In the framework of continuum mechanics, a discontinuity ba idealized as a surface
of discontinuity in 3D and a line defect in 2DM@augin (2000). Among various
possible discontinuities in elastic solids, propagatingcahtinuities hold a special
place due to their theoretical complexity and practical agm@nce. Dynamics of such
discontinuities is determined by two factors, i.e., by th&idg force acting at the
discontinuity and by the discontinuity velocity. Both thevihg force and the velocity
of discontinuity have been subjects of intensive researthe case of phase transition
fronts (Abeyaratne and Knowle006) and crack dynamics—eund(1990; Broberg
(1999; Ravi-Chandar2004). The driving force acting at discontinuity is a specific
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example of the well established concept of configuratiooatds Maugin (1995;
Kienzler and Herrman2000; Gurtin (2000; Maugin (2011). However, the velocity
of a discontinuity cannot be uniquely determined in thedad continual framework. A
possibility of the computation of the value of the velocifyaodiscontinuity is discussed
in the paper on the basis of the thermodynamically condisieite-volume algorithm
(Berezovski et al(2008).

Discontinuities in elastic solids attracted the attentioh Prof. Maugin for
decades. His main contribution in this field was the advamcegnof the concept
of driving (configurational) forces acting at a discontiguiThe formulation of the
principle of virtual power for media presenting singularrfages and interfaces
(Daher and Maugir{1986) can be considered as the starting point. At the next step,
this formulation was applied for nonlinear electroelastidtids and extended on the
case of shocksAni and Maugin(1988 1989). Various representations of the balance
of linear momentum in nonlinear inhomogeneous elasticigreacritically examined
to demonstrate their similarity and distinctiomMgugin and Trimarcd1992; Maugin
(1993).

The field theoretic formulation of nonlinear anistropic amhogeneous elasticity
capturing the essential material properties uses notibpseudomomentum, Eshelby
stress, and inhomogeneity force. This formalism has beplieaito the case of an elastic
body containing a crack of finite extent, following in the ioot of suction force acting
at the tip of the crackascalu and Maugi(i993; Maugin (1993). The J-integral and
energy-release rates in dynamical fracture were analyzedins of material formulation
for magnetoelastic Maugin (19949), electroelastic Pascalu and Maugin(19949),
piezoelectric DPascalu and Maugin(1993), and ferromagnetic Sabir and Maugin
(1996) finitely deformable materials with cracks.

Another example of the discontinuity is provided by phasedition fronts in
thermoelastic solids. The transition of a thermoelastiaseh into another one
with different symmetry is viewed as the progress of a makeimhomogeneity
(Maugin and Trimarcd1995gb)). This progress is intimately related to the canonical
formulation of balance laws, which determines the jumptietes that must hold at
a coherent phase-transition front. All these findings wemarearized by unifying the
notion of material force for all types of inhomogeneitieselastodynamics, fracture,
defect mechanics, and in the propagation of phase trandittmts (Maugin (1995).
The developed formalism has been extended then on thersticef@rromagnets
(Fomethe and Maugin(1997), thermoelectroelastic crystalsMaugin and Trimarco
(1999), and hard ferromagnets@methe and Maugi(lL.998).

As a logical consequence, the canonical formalism thatiders simultaneously the
second law of thermodynamics and the balance of canonicatentum is used to
incorporate the case of shock waves among those singutstty whose dissipation
is in fact related to the power expanded by a driving forcerinireeversible motion
of the singularity setNMaugin (1997 1998). It was shown that the formal expression
of the driving force acting on a one- dimensional or two-disienal singular set of
material points (crack tip in fracture, phase-transitioont or shock wave) and of
the accompanying dissipation in an irreversible progrésh@ set is independent of
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the precise material behavior at regular poimg(gin and BerezovsKiL999; Maugin
(2000; Maugin and Trimarc@2001)).

The material symmetry of the physical system is broken bypitesence of a field
singularity of a given dimensionality (point, line, surégovolume). Usually all these
domains were studied separately but a general framewote(Bian mechanics) was
developed in a somewhat synthetic form. In this framewollkc@nfigurational forces
appear as forces of a non-Newtonian nature, acting on therialaianifold (the set
of points building up the material whether discrete or cmmius) and not in physical
space which remains the realm of Newtonian forces. Thataefigurational forces
acquire a true physical meaning only in so far as they cauttito the global dissipation
(Maugin and Trimarcg2001); Maugin(2003).

Configurational forces are thermodynamic conjugates &vémsible material body
evolutions such as extension of cracks, progress of pmassition fronts, movement
of shock waves, etc. They do correspond to a change of mlateriéiguration. Various
configurational forces such as those appearing in inhomegenbodies, at the tip
of a propagating crack, at the surface of a propagating ptnassition front, or of
a shock wave, and those due to local structural rearrangsnfplasticity, damage,
growth), were unified and examined from the point of view ddittdissipated power
(Maugin and BerezovskP00§; Maugin(2011).

Theoretical elaboration was complemented by numericallsition of moving
discontinuities. It was provided in a series of papers d=bi stress-induced martensitic
phase-transition front propagatioBgrezovski and Maugir(2002; Berezovski et al.
(2002 2003; Berezovski and Maugir{2003 20059; Berezovski et al.(2009). The
results were summarized in the bookBgrezovski et al(2008.

While the configurational driving force acting at the phasarary can be calculated
by means of standard numerical methods, the velocity of trese transition front or
the crack tip depends on an unknown stress jump at the dieodgt The problem
cannot be resolved theoretically without an additionaliagstion regarding a kinetic law
(Truskinovsky(1987; Abeyaratne and Knowlg4990; Maugin and Trimarc§1995b).
Fortunately, it has an algorithmic solution based on thelynamic consistency
(Maugin and BerezovsKR003; Berezovski and Maugif2004)) in the case of singular
surfaces Berezovski and Maugif2005ab); Maugin and Berezovski2009). In what
follows we describe the numerical algorithm in detail on repée of martensitic
phase-transition front propagation. A much more soplagtid consideration was
proposed for the dynamics of straight-through brittle kré8erezovski et al(2007);
Berezovski and Maugi(2007h 2010).

Martensitic phase-transition front

The most clear example of an evolving discontinuity in étasblids is a stress-
induced phase-transition front between martensite anteitss phases in a shape
memory material, because its continuum description can dwsidered in one-
dimensional settingAbeyaratne and Knowle@00§). Martensitic transformations are
first order, diffusionless, shear solid state structurangfes Christian (19653). The
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propagation of phase interfaces in shape-memory alloyserumaghplied stress is
an experimentally observed phenomenon, which providesstéebstic behaviour of
shape-memory materialsSliaw and Kyriakideg1997). At the continuum level of
description, the phase-transition front is representea lsurface of discontinuity of
zero thickness separating the different homogeneousritestend martensite phases
(Abeyaratne and Knowlg2009).

The simplest formulation of the stress-induced phasesitian front propagation
problem is given in the case of an isothermal uniaxial motéra bar. Consider an
isothermal motion of a bar with a unit cross-section. The deagupies the interval
0 < x < L in areference configuration and assumed to be long comparesddiameter
so itis under uniaxial stress state and the swsé€sst) depends only on the axial position
and time. The density of the materjals assumed constant.

Let u(x,t) be the displacement of a pointat timet¢ in the reference configuration.
Then strain and velocity fields are given by

gz, t) = g_x’ v(x,t) = e 1)

respectively. Away from a phase boundary, balance of linle@mentum and kinematic
compatibility require that
ov  Jo

PE = a_xa (2
de  Ov

where the functiom (¢) specifies the stress-strain relation.
The velocity and strain fields subject to the following iaitand boundary conditions:

g(x,0) = v(x,0) =0, for 0<z<L, 4)

0(0,8) = vo(t), e(L,t)=0, for t>0, )

whereuv, (t) is a given time-dependent function.

Suppose now that an isolated strain discontinSitgropagates along the bar with a
velocity V. On the discontinuityS the balance laws reduce to the Rankine-Hugoniot
jump conditions

Vel + [v] =0, (6)

Vipv] + [o] =0, (7)
where

[A] = At — A~ (8)

denotes the jump of the enclosure at discontinuity, Affddenote the uniform limits of
A in approaching the discontinuity from theside.

It is well understood that the martensitic phase transftionas a dissipative process
that involves entropy changalfeyaratne and Knowlg2006). The strain discontinuity
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that occurs across a propagating phase boundary is a sofirdessipation. The
energy dissipation at moving martensitic phase boundarpkins the experimentally
observed hysteresis. Irreversibility due to the dissigpatieads one to the notion
of the driving force on a phase boundamtefdug and Lehne(1989; Truskinovsky
(1987; Abeyaratne and Knowle$1990; Maugin and Trimarco(19958). Therefore,
jump relations §), (7) must be supplemented by the entropy inequality in the form

fsV >0. 9)

where
fs ==[W]+(o)[¢], (10)

is the associated configurational driving ford#, is free energy per unit volume,
(o) = (ot +07)/2.

The macroscopic jump conditions do not provide enough méiion to specify the
velocity of the phase boundaiy uniquely. The uniqueness of the solution is provided
by the introduction of two supplementary constitutiveelifelationships: a kinetic law
for a driving force that establishes the speed of the transdition front and a nucleation
criterion (Abeyaratne and Knowle2006). The constitutive theory of kinetic relations
is not completely established yet. However, the velocityhef phase boundary can be
determined algorithmically in spite of the absence anytiinelation. The main idea is
based on the relation

V?= M, (11)
ple]
which follows from jump relations&) and (/) since the density is constant in the
considered case. The only question is in the accuracy ofétermination of the stress
(or strain) jump at the interface. Fortunately, the strasgj can be accurately determined
algorithmically.

Finite volume interpretation

Averaged and excess quantities

Numerical methods deal with approximated values of fieldades. In finite volume
methods such an approximation is achieved by simple avegawier the computational
cell. This means that the value of any extensive quandity the sum of its averaged
counterpartd and its excess part.,,

A=A+ A,,. (12)

In the case of elasticity
c=0+% v="0+V. (13)

Here overbars still denote averaged quantity anahd)’ are the corresponding excess
guantities. However, the introduced excess quantitiesisetess (and even superfluous)
until the rules of their treatment are specified.
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Let us introduce a computational grid of cell§ = [z,,, x,,+1] with interfacese,, =
nAz and time levelg; = kAt. For simplicity, the grid size\z and time stepAt are
assumed to be constant.

Integrating the balance of linear momentubh ¢ver the computational cell gives:

a Tn+1
pa/ vdv =0} —0, =0, +XF -7, - X, =% -2 (14)

where superscripts "+” and "-” denote values of the quaasitt right and left boundaries
of the cell, respectively. Similarly, the kinematic conipaity ( 2) leads to

Tn+1
%/ ede =v) —v, =0, + VI -0, -V, =V -V, . (15)

Tn

The definition of averaged quantities

1 Tn4+1 1 Tn41

pUy = E/ p(z,tp)v(z, ty)dz, &, = E/ ez, ty)dz,  (16)

Tn Tn

allows us rewrite a first-order Godunov-type scheme in teshexcess quantities

At _
At
el —a =, V) (18)

Here the superscript denotes time step and the subscriptienotes the number of
computational cell. Now we need to compute the values of&xqgaantities.

Excess quantities in the bulk

Though the excess quantities are determined formally ewegye inside computational
cells, we need to know their values only at the boundaridsetells, where they play the
role of numerical fluxes. The boundaries between compuraticells represent regular
material points and therefore the total stress should b&mnmus across the boundary
between cells

[+ %] =0. (29)

The same condition follows from the jump relation for theebm momentum, because
the boundary between computational cells does not movep Jwhation (9 can
be considered as theontinuity of genuine unknown fielgt the boundaries between
computational cells.

Similarly, the jump relation following from the kinematiompatibility reads

[5+ V] =o0. (20)
It is instructive to represent jump relatiorisf and @0) in the numerical form

(Z+)n—1 - (E_)n = (5)n - (5)11—1, (21)
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(V+)n—1 - (V_)n = (ﬁ)n - (ﬁ)n—l- (22)

The values of excess stresses and excess velocities at theddrees between
computational cells are not independent. Using the coaservof Riemann invariants
we have for for excess quantities

pncV, +%, =0, (23)

pn—lcn—lv»:_l - E»,t_l = 07 (24)

It follows that we have the system of linear equations fordieéermination of excess
guantities. This system of equations can be solved exaatlgdch boundary between
computational cells. After that the field quantities can pdated for the next time step
by means of numerical schemE7j-(18).

Excess quantities at the phase boundary

To determine the values of excess stresses at the moving pbasdary, we keep the
continuity of excess stresses across the phase boundary

[>] =0, (25)

which yields
=), - (=), =0, (26)

where phase boundary is placed between elenfentsl) and(p).
The last jump relation can be interpreted as ¢baservation of the genuine jump at
the phase boundaiin the numerical calculations becaug&)(means that

[o] = [z + %] = [5]. 27)
To be consistent, we require the conservation of the gejump also for velocity
[V] =o0. (28)

We still keep the relations between excess stresses angsexelecities 23), (24). This
means that in terms of excess stresses Hg).y(elds

(E+)p—l + (E_)p
Pp—1Cp—1 PpCp

=0. (29)

It follows from the conditionsZ6) and @9) that the values of excess stresses vanish at
the phase boundary
(ET)p-1=(Z7)p=0. (30)

Similarly, due to relations3), (24)

(V)1 =(V7), =0. (31)
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Now all the excess quantities at the phase boundary arendiett, and we can update
the state of the elements adjacent to the phase boundary.

Thus, the supplementary constitutive information needeavbid the non-uniqueness
of the solution of the boundary-value problem is providedrmans of non-equilibrium
jump relations at the moving phase boundary, which are ftated in terms of
excess quantities. The same excess quantities are used @oistruction of a finite-
volume numerical scheme that coincides with the conseeatiave propagation
algorithm in the absence of phase transformation. The woityi of the excess
guantities at the phase boundary leads to the conservatigeraine jumps at the
phase boundary. As a result, a closed system of governingtiegs and jump
relations can be solved numerically. Results of such cafimris are presented in
(Berezovski and Maugi(2002; Berezovski et al(2002 2003; Berezovski and Maugin
(2003 20059; Berezovski et al(2006 2008).

Straight brittle crack

Dynamic crack propagation is the subject of numerous agieind books due to its
practical importance. The main difficulty in the theoretidescription of the crack
dynamics is the singularity of stress distribution in theinity of the crack tip in the
framework of linear elasticityRreund(1990; Broberg(1999; Ravi-Chanda(2004). In
practice, the singularity is avoided by means of varioussyaych as the introduction
of a nonlinear zone ahead of the crack tip (cohesive z8agenblatt(1959; Dugdale
(1960), plastic flow Prugan et al(1982)) or phase field model$-¢ancfort and Marigo
(1998). The indicated models consider the velocity of the craskgaven. This is,
probably, the consequence of the result of the scaling aisalby Fineberg and Marder
(1999 for a straight brittle crack

Ve =cr (1 — 170> , (32)
whereVe is the crack tip velocitygr is the Rayleigh wave speetis the length of the
crack, and,, is the critical length. This result is coincided with that tbin plates under
tension Freund(1990). It is concluded that the equation of motion for simplectrés
correct, as long as a crack remains simpl@éberg and Bouchbindé2015). However,
results of numerical simulations of the crack velocity pecéetl by various methods can
differ by three times in valueBraun and Fernandez-S§2014), and all of them remain
remarkable less than the Rayleigh wave speed. This mearthéhdetermination of the
crack velocity is still under question even for simple crmck

Mode | fracture in thin plate

The simplest formulation of the crack propagation problemnresponds to mode |
fracture in thin plates. We consider the crack propagati@thin cracked plate subjected
to a load as shown in Figute

Neglecting both geometrical and physical nonlinearities, can write the bulk
equations of linear elasticity in a homogeneous isotropidybin the absence of body
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A A B
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LYY vy v v v v v vy Y vy vy

Figure 1. Model problem for a crack in a plate.

force as follows:

8% 8aij
— 33
aO'ij ka 8vi 8’1}7'
= A=—24; 1), 34
ot Oxp tu <3xj + 83:1) (34)

wheret is time, z; are spatial coordinates; are components of the velocity vector,
is the Cauchy stress tenspg, is the densityh andy are the Lamé coefficients.

In the case of thin plates, the problem can be simplified byma@#fthe plane stress
approximation (thin strip geometry;s = 0,7 = 1, 2, 3). Corresponding solutions stress
and strain fields can be found elsewhere (efeund(1990; Ravi-Chanda(2004).

For the irreversible process of crack propagation we shtakd into account the
inequality of Clausius-Duhem

95 | 9(Qi/9)

>0, (35)

whereQ); is the heat fluxS is the entropy per unit volume, afids temperature.

The crack frontin the thin plate problem is a straight linein— z3 plane, propagating
in the z; direction. This is illustrated in Fig. The jump relation across crack frofit
corresponding to the balance of linear momentG@8) (eads

Velpovil + Njloi;] = 0. (36)

Here V¢ is the material velocity of the crack front along nornig|.
The corresponding jump relation for the entropy should leikai source term

Ve [S] - N;[Q;/0] = oc >0, (37)
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whereoe is unknown scalar. The driving force and crack velocity avaestrained to
satisfy the second law of thermodynamics at the crack ffostich thatflaugin(1997)

fiVi=0coc > 0. (38)
However, the jump relations are useless until we deterniees&lue of the velocity of

the crack front.

Velocity of the crack in mode |

For given stress and strain fields we can estimate the vglofdihe crack by means of the
jump relation for linear momentun36). In the small strain approximation, the material
velocity V; is connected with the physical velocity by (Maugin 1993

8ui
vi = —=(dij + %)Vj' (39)
Inserting the latter relation into Eq36), we have
8ui
Vo |l pol0ij + 5=)Vi || = Njloy] = 0. (40)
J

The projection on the normal to the crack front reduces thiedapression to

Ve [po(1 +e11)Vi] — [o11] = 0, (41)

whereo; is the component of the stress tensor normal to the crack fgamce we have
no material behind the crack front, jumps are equal to vadfigsiantities in front of the
crack front which leads to o1y
VEi= —. 42

“ po(l+en) (42)
However, we are not able to determine exact values of thesssttemponents at
the crack tip due to the square-root singularity. To be aldlegd further, we
apply the non-equilibrium jump relation as in the case of pinase transition front

L X

Figure 2. Crack front
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(Berezovski and Maugin 2004ue to the similarity between E¢}%) and Eq. (1)

|:|:011 +6 (%)Ujﬂ =0. (43)

It follows from Eq. @3) that the "effective” value of the normal stress at the crirokt
is determined by the corresponding entropy derivative

g11 — —0 (ﬁ) . (44)
8611 .

Taking into account the entropy jump at a discontinuity (€q) ) and the expression for
entropy production8), we see that in the isothermal case the entropy at the craok f
is dependent only on the driving force

_ Je
S = R (45)
Calculating the entropy derivative on the right hand side@f@4) we have
B 08 _fo [ 00 dofc
o1 = -0 (8611)0 - 0 (8611>U (8611 o'. (46)

This means that the normal stress at the crack front can beessed in terms of the
driving force as follows:

g11 = fc (47)

20 +w) (afc)
904(3)\ + 2/14) 8611 o ’

wherea is the thermal expansion coefficient.

It is commonly accepted that the driving force acting at tlmack tip can be
calculated by means of the path-independeirttegral, which has the physical meaning
of the energy release rate. The dynanfiintegral for a homogeneous cracked body
(Atkinson and Eshelby(1969; Kostrov and Nikitin (1970; Freund (1972; Maugin
(1999) can be expressed in the case of mode | straight crack asviall

g 2U
50 7 Oz

Ou;
J = lim ((W+K)51j S ) n;dr. (48)
r
Heren; is the unit vector normal to an arbitrary contddrpointing outward of the
enclosed domain. The kinetic energy dendiy,is given by

K = % poV>. (49)

In the two-dimensional case, the driving force is relateth®s value of the/-integral
(48) as follows:

fo=—, (50)
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whereq is a scaling factor which has dimension of length.
Summing up, we can represent the "effective” stress at thekdront as

011 = ﬂ - <%> ) (51)

a 8811
with
20+
~ Ba(3N+2p)

Simple kinetic relation

Let us check the consistency of the "effective” value of tlenmal stress at the crack
front with existing estimations. In the simplest case, we ©aglect the second term in

Eq. 61), which reduces it to

AJ
11 — —. (52)
a

In the framework of the linear theory, we can expect a lingass-strain relation between
the "effective” stressg 1, and the "effective” straing1,

g11 — BEll. (53)
Inserting Eq. §3) into Eqg. 62), we have

|/ " S— 54
" po(l+0u/B) (4
The value of the coefficienB is determined from the condition that the velocity of the
crack front should approach the Rayleigh wave velogityat high values of;. In such

a case, we have
9 B

lim V2 =¢2 = =. 55
Jim VE = cfy = = (55)
Taking into account relation$®) and 65), we can represent Ech4) in the form
% POCHa -t
— =11 . 56
% ( + AJ (56)

This means that for sufficiently small values pfcka/AJ we have in the first
approximation

VCQ poc%a

—~ 1 - == 57

% AJ 7)
Extracting the root from both sides of the last expressianptain

Ve / pockl POCHA
— ~1/1— ~1— . 58
CR AJ 2AJ ( )

Actually this is another form of the well-known relation fiwe crack velocity§2). Thus,
the "effective” value of the stress at the crack frontin itaglest form does not contradict
to existing estimates.
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Not so simple kinetic relation

Certainly, there are other possibilities in the choice eftalue of the "effective” stress
at the crack front. It should be noted that Egl)(can be considered as the definition of
averaged and excess stresses in the computational celeatlja the crack front in full
analogy with the case of phase transitions

o11 = 011 + Y11, (59)

5’112%, and 2112—(%> .

8811

with

To perform calculations, we can suppose a proportionaditwben:,; andagq,
Y11 = Daoq;q. (60)
In such a case, we have the following expression for the itglo€the crack front

5’11(1 +D)

Vie v 61
= (1 +011/B) (1
Consequently,
) B . Xn
hmV2:—(1+hm _—):02 1+D). 62
o VO Jm = 7 ( ) (62)

As one can see, here the limiting value of the velocity of ttaek front is different from
the value of the Rayleigh wave velocity. Denoting the limitivalue of the velocity of
the crack front ad/r, we can represent the expression for the velocity of thekdrant

as follows:
9 9 pocka ! 5 AT \7!
Va=Va1+ —/2 =Vill—-|(1 . 63
¢ T( A ) g ( +p00§%a> (63)

To be able to compare the obtained relation with experinhefata, we note that the
value of theJ-integral is proportional to the square of the stress intgrfiactor K in
the considered problem. Therefore, we can rewrite the bgstession in terms of the
stress intensity factor

Ma\ " K2\ !
VZ=Vi(1+— =V2[(1-(1+—L 64
c T(+K12) T( (+J\/[a ; (64)

where the coefficient/ depends on properties of the material.

Thus, the derived kinetic relation contains two model paems: the limiting velocity
Vr, which directly corresponds to the condition taken for tkeess stress at the crack
front, and the characteristic length scaldBoth model parameters may by adjusted to fit
experimental data.

Prepared usingagej.cls



14 Journal Title XX(X)

It should be noted that the expressi@d)(is applied only for the value&’; > K.,
where K. is the critical value of the stress intensity factor (fraettoughness). The
'averaged’ K1 — Vi relationship suggested byavi-Chandan2004) is based on the
experimental observationRévi-Chandar and Knau$$984)), where the crack velocity
remained constant in each individual experiment. It is gasgee that for sufficiently
small values ofM L in Eq. (64), we will have a practically constant crack velocity. Its
limiting value V- appears to be dependent on the conditions of experiment.

One can suppose that the characteristic lemgthay be taken to be similar to the
process zone length

K
an~ —~. (65)
o

*

In the thin strip geometry, it is possible to relate the valuef 0. and J
(Hauch and Mardef1998), which leads to

K}
~ —C 66
a 7 (66)

In this case we arrive at an expression for the velocity ottlaek front in the form

MEK2N\ K* \7!
2 2 Ic 2 I
%:w0+1¢) :WC_O+MW) , (67)

whereM’ is another material constant.

As the comparison of theoretical relations (Ed@gl)@nd ¢7) ) with experimental data
shows Berezovski and Maugif2007a2010), a good fit of the experimental curves is
obtained by adjusting values of the limiting velocity andlué characteristic length.

Conclusions

The prediction of the location of a propagating discontiys important from both
theoretical and practical points of view. Theoreticallyg texistence of a propagating
discontinuity leads to an incompleteness of the contineatdption expressed in the
indeterminacy of the velocity of such a discontinuity. Iragtice, this indeterminacy
results in the necessity of an additional experimental work

As it is shown in the paper, the indeterminacy of the velooitg propagating phase-
transition front can be avoided in computations implenrenthe conservation of the
genuine jump at the phase boundary, at least in the simplaliomensional situation.
In principle, the kinetic relation can be extracted fromstiebndition under suitable
assumptionsRBerezovski and Maugi(005h 2010).

Computation of the crack tip velocity needs, however, thewkadge of the kinetic
relation in advance (because of the singularity at the diptkProposed kinetic relations
are still dependent on experimentally determined matgrébmeters, but with the
reduced corresponding work.
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