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Abstract
While the current practice of pilot training relies on flight instructors’ subjective assessment, compu-
tational cognitive modeling may be used to support future objective assessment and diagnosis of pilot
performance. We built two models in a cognitive architecture to simulate pilot flight performance
during pre-flight and take-off tasks. Modeling results were compared with human results collected
from the same tasks using X-Plane 11 flight simulator. The models were able to capture human
pilot performance and workload results from both tasks with good levels of fitness (percentage
errors ranging from 0.8% to 13.2%). This work demonstrated the capability and advantage of this
theory-driven modeling approach for supporting general aviation pilot training. We expect that this
type of cognitive model will be complementary to data-driven machine learning models, and the
current work provides the foundation for future work to expand the modeling capability and test
practical applications in general aviation.

Keywords: Cognitive Modeling, QN-ACTR, Pilot Performance, Workload, Competency-Based
Training

Introduction

Current pilot training practice relies on flight in-
structors to assess trainees, diagnose their skill deficits,
and provide recommendations for improvement. There
have been discussions about the need for more objective
methods of pilot assessment because flight instructors may
miss important information and give inconsistent ratings,
as they are limited to what can be observed visually rather
than the comparably ’invisible’ cognitive factors such as
workload management and situation awareness (Brannick
et al., 2002; Flin et al., 2018; Gontar & Hoermann, 2015;
Sarter et al., 2017). It is therefore worthwhile to explore
data-driven and model-driven computational approaches
to complement human instructor assessment.

Machine learning has become a popular approach
for pattern recognition and classification. Related previ-
ous studies in aviation are reviewed in the Background
section. Previous studies have demonstrated that machine
learning models have the potential to support pilot training
by providing objective assessment of pilot performance;
however, a large pool of pilot performance data is needed
for model training and validation, which is not yet avail-
able in this research field. Another limitation of machine
learning models is the skill diagnosis aspect of pilot train-
ing. While machine learning could provide performance
classification, it is not suitable for providing skill analysis,
diagnosis, or recommendation because machine learning
models use a black-box approach, which only calculates
the relationship between input and output, without ex-

plaining the mechanisms that generate pilot behaviors.
For pilot training applications, there is a research gap and
need for computational models that could provide insights
to the cognitive activities of pilots. Addressing this lim-
itation, our goal in the current study is to develop and
test cognitive architecture models that reveal knowledge,
skills, and cognitive mechanisms of pilot behaviors. We
expect that such cognitive models can simulate pilot per-
formance and support skill diagnosis and instruction to
inform customized pilot training.

The current study uses the cognitive architecture
modeling approach, which is both a unified theory of
cognition and a computer simulation program represent-
ing human information processing (Taatgen & Anderson,
2010). Based on the results from simulation with differ-
ent sets of competencies, researchers can establish the
link between pilot performance deficits and the lack of
specific knowledge and skills, and therefore training rec-
ommendations can be prescribed to focus on improving
these aspects. More details of cognitive architectures are
provided in the Background section.

Computational cognitive models could support
competency-based pilot training. Competency-based train-
ing is a modern training approach that has been applied in
many professional, vocational, and continuing education
contexts (Hodge et al., 2020). It emphasizes the identifica-
tion of competencies as explicit statements of knowledge,
skills, and attitudes required to fully participate in a com-
plex social practice and instructional practices that system-
atically built, assess, and retain the competencies (Kearns
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et al., 2017). Currently, the competence descriptions used
in pilot training tend to be very general, and flight hours
are the required metric used to assess expertise towards
licensing criteria, rather than ratings on each competence
statement. Instructor subjective evaluation is currently the
major method to assess competence. Computational cog-
nitive modeling can be a valuable tool to assist instructors
and enhance students’ training experience, by providing
both a detailed symbolic representation of pilot knowledge
and skills and a simulation platform for diagnosing causes
of errors and performance deficits. Such cognitive models
can also support the simulation of what-if scenarios, for
purposes such as workload analysis and interface design
evaluation, reducing the cost associated with conventional
field testing and human-in-the-loop experiments.

This paper is organized as follows. The Background
section provides a review of related existing work about
both the machine learning approach and the cognitive ar-
chitecture modeling approach in aviation. The Human
Data Collection section describes our empirical study con-
ducted to collect human data from pilots. Modeling and
Simulation sections introduce model development, pa-
rameters, and assumptions. The Model Validation Sec-
tion compares model results and human results. Overall
findings and future considerations are presented in the
Discussion and Conclusion section.

Background

Using flight data recording, simulators, and mod-
eling techniques, researchers have developed and tested
computational models for pilot performance assessment,
such as rule-based exceedance models (Masiulionis et
al., 2017), clustering models for abnormal detection (Lee
et al., 2020; Li et al., 2015; Memarzadeh et al., 2020;
Zhao et al., 2021), and supervised learning models for
performance rating prediction (Palladino et al., 2021). For
example, Fernández et al. (2019) applied clustering al-
gorithms to 35,000 samples of flight approach operations
in LEBL 25R. The dataset had 825 features including
operation dynamics, adverse weather, aircraft configura-
tion, pilot status, and flight static information. Applying
Density-Based Spatial Clustering of Applications with
Noise (DBSCAN), the researchers were able to identify
outliers that exceeded the 95% quantile of the distribu-
tion. Similarly, a recent study showed that clustering
algorithms can identify anomalies, such as minor bounced
landing, which have not reached the parameter thresholds
in exceedance detection definition specified by aviation
authorities (e Silva & Murça, 2023). While most ma-
chine learning studies focused on landing anomalies and
risk management, few studies have examined computa-
tional models to support pilot training. In a recent paper,
Palladino et al., (2021) reported results from a proof-of-
concept demonstration using data collected from a flight

simulator. Data from 84 trials of four pilots included 61
operation dynamics and aircraft configuration variables
with performance labels in three categories (good, fair,
and poor). The authors compared different models, such
as regression, stochastic gradient descent, and support
vector machine classifiers, and the results showed that the
support vector machine model had the best accuracy of
80%.

Researchers have been studying and developing cog-
nitive architectures as an artificial intelligent method since
1970s (Anderson, 1974; Kotseruba et al., 2016; Taatgen
& Anderson, 2010). Generally, a cognitive architecture
has a framework representing different functional mod-
ules of the human information processing system. The
interconnected modules, such as visual perception, long-
term memory, production module, and manual control,
send information and requests to each other and act col-
laboratively to solve a task problem. Each module has its
processing logic, processing speed limitation, and capac-
ity limitation, which are programmed in computer codes
and parameters. While the architecture or framework rep-
resents general human capabilities and limitations, each
model defined within the architecture simulates human
performance in a specific task. Therefore, each model
needs to describe task-specific knowledge and skills using
symbolic representations such as chunks and production
rules. A chunk represents a piece of declarative knowl-
edge as a collection of related attributes and concepts. A
production rule represents a piece of procedural skill as a
collection of conditions and corresponding actions taken
when the conditions are met. Differences in knowledge,
skills, and parameters can reflect individual differences in
strategy and competency. To build a cognitive architecture
model, a researcher usually starts with task analysis that
divides the task into multiple steps and elements. Each el-
ement is usually in the time scale of 50-200 ms to capture
the detail of cognitive processes (Anderson et al., 2004).
User studies are often needed to analyze an operator’s
flow of thoughts and decisions during task performance,
and assumptions are needed to specify all the remaining
details for the model. Once a model is built, it can be
connected to a task simulation program via data protocols
to run computer simulation and generate model behav-
iors that can be collected from the task simulator. The
model’s internal processing can also be recorded for anal-
ysis, for example, for the prediction of workload. After
each task component model is validated, multiple com-
ponent models can be combined to represent the entire
task. The modeling work using cognitive architectures is
additive, which means later work can be built upon previ-
ously tested model components and parameters. A cogni-
tive architecture is implemented as a computer simulation
program, so it can be connected to a flight simulator to
perform model-in-the-loop simulation and generate model
predictions. To validate a model, researchers usually need
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to collect human data from various task conditions us-
ing the same task simulator as used by the model. Then,
model results are compared with human results to analyze
model fitness. Good fitness is reflected by small errors
(discrepancies) and a similar trend or pattern observable
from different task conditions in both model and human
results. The goal is to let the model faithfully represent
the capability and limitation reflected in the human data,
which could be from novice or experienced pilots. Previ-
ous studies have built cognitive architecture models for
some aspects of pilot performance in a limited number of
tasks. The following paragraphs give an overview of the
major cognitive architectures used in modeling aviation
tasks.

Adaptive Control of Thought-Rational (ACT-R) is
a widely used cognitive architecture that has influenced
many other cognitive architectures. ACT-R’s modules
include procedural, intentional/goal, declarative, imag-
inal, visual, aural, motor, and speech modules. It has
unique computational mechanisms for modeling memory
and learning as changes in the activation level of chunks
and the utility value of production rules (Anderson et al.,
2004). Many experiments and modeling work have accu-
mulated a collection of tested parameters and validated
models for tasks such as memory retrieval, visual atten-
tion, and perceptual-motor responses. Recent work on
Queueing Network-Adaptive Control of Thought Rational
(QN-ACTR) has added queueing mechanisms to ACT-R to
support the scheduling and natural processing of multiple
streams of task information within the architecture (Cao
& Liu, 2013b). The validated modeling mechanisms and
existing models can support future work using similar task
components and assumptions. Using ACT-R, previous
work has built models for manual control in aircraft taxi-
ing tasks (Schoelles & Gray, 2011) and visual attention
distribution during approach and landing with different
types of information display systems (Byrne et al., 2008).

Cognitive Architecture for Safety Critical Task Sim-
ulation (CASCaS) is a recent cognitive architecture that
combines production rule and control theory systems
(Lüdtke et al., 2009). The production rule system in CAS-
CaS is like ACT-R. CASCaS does not have sophisticated
declarative memory and learning mechanisms, but it has
an autonomous behavior mechanism that is assumed to
work in parallel with the production rule system (Lüdtke
et al., 2011). The autonomous behavior mechanism imple-
ments control theory equations to model dynamic vehicle
control behavior. CASCaS focuses on modeling human
errors resulting from both learned carelessness and atten-
tion allocation issues. Researchers have demonstrated
CASCaS in modeling pilot errors and error recovery be-
havior in flight management tasks due to issues with the
perception of automatic flight mode changes (Lüdtke et
al., 2010).

Soar is a cognitive architecture that has similar
modules as ACT-R (Laird et al., 1987). Previously Soar
had only production rule knowledge without declarative
knowledge, but recent work has added declarative knowl-
edge representation and computations as inspired by ACT-
R. Soar modeling focuses on producing intelligent cogni-
tive processes such as situation analysis, decision making,
and problem solving. The goal of Soar modeling is usu-
ally for the design of highly intelligent agents rather than
representing human limitations. Using Soar, researchers
have modelled intelligent pilots for both fixed-wing and
rotary-wing aircraft simulations (Hill et al., 1998; Jones
et al., 1999).

Air Man-Machine Integrated Design and Analysis
System (Air MIDAS) is an integrated tool for representing
and analyzing human-machine performance for aircraft
interface design (Verma et al., 2003). NASA has utilized
Air MIDAS extensively in the study of a variety of human-
machine systems (Ferrin et al., 1988). Compared with
ACT-R, Air MIDAS does not aim to represent all cogni-
tive mechanisms such as long-term memory, learning, and
decision making. Instead, Air MIDAS uses cognitive en-
gineering methods, such as task analysis, task scheduling,
expert evaluation, and probabilistic models to simulate
human performance and workload (Gore et al., 2008). It
also has integrated physical models for the environment,
aircraft cockpit, and pilot anthropometry to support inter-
face design needs. An Air MIDAS model is composed of
three components: input, output, and processing. Input
includes the external environment and data as well as the
current task; processing includes all input data and rule
matching; output includes the current state of the model
and its performance data (Sebok et al., 2013). Previous
studies have compared Air MIDAS and ACT-R in the
modeling of skilled pilots performing commercial aircraft
approach and landing using a new design of synthetic vi-
sion systems (Leiden & Best, 2005). The results showed
that Air MIDAS models of visual attention fixations had r-
squared fitness of about 55% on average, whereas ACT-R
had r-squared fitness of around 84% on average.

In summary, previous studies have built and exam-
ined a limited number of cognitive architecture models
for the simulation of pilot performance with many limita-
tions. Previous studies focused on limited human factors
measures, such as visual attention distribution and taxi-
ing control performance (Byrne et al., 2004; Schoelles
& Gray, 2011), and there is a lack of simulation of flight
control performance (e.g., altitude and pitch angle), work-
load, and situation awareness. The existing publications
did not provide any detail of task-specific knowledge and
strategies, such as production rules (Byrne et al., 2008).
They did not report any detailed validation data comparing
model results and human results (Schoelles & Gray, 2011).
Researchers have acknowledged the challenges in mod-
eling various aspects of pilot performance because many
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production rules must be programmed to represent human
complex strategies and decision-making processes (Byrne
et al., 2008). To address these limitations, we will study
computational cognitive modeling of pilot performance
from a unique angle focusing on initial skill training stages
in general aviation, where the degree of skill requirements
is simpler than commercial airline flights. In the current
study, we start our work with pre-flight and take-off proce-
dures of small aircraft that generally have fewer steps with
lower complexity. We used the ACT-R approach because
previous work has accumulated the most production rules
and modeling examples in ACT-R related to the current
tasks. Detailed human data during flight operations are
collected and compared with model data from interacting
with the same flight simulator to validate the models. We
publish our data and modeling details to support future
work along the same direction of research for the develop-
ment of competency-based pilot training technologies.

Human Data Collection

Using a flight simulator, human operation data were
collected, including manual control actions and their tim-
ing, aircraft attitude and dynamics, and pilot workload.

Participants

We recruited 18 student pilots between 18 and 24
years old from the University of Waterloo. Although we
tried to recruit both males and females, all the participants
were male due to the low number of female pilots in avia-
tion. They had on average 68 hours of flight experience
(SD = 7.3). All had flight experience at the Region of
Waterloo International Airport (CYKF) with the Cessna
172SP aircraft that was used in the flight simulation. All
had passed the Transport Canada category 1 civil aviation
medical exam.

Apparatus

The simulator system consisted of various displays
and controllers (Figure 1), including a yoke and throttle
quadrant, a rudder paddle, a flight multi-panel, a radio
panel, a flight switch panel, and six flight instrument pan-
els (all made by Logitech). Three 24-inch monitors were
used. X-Plane 11 was used as the flight simulation soft-
ware. We used X-Plane’s dataref function to monitor the
status of the aircraft, with data recording rate at 20 Hz.
The aircraft model was a Cessna 172SP (model developed
by Airfoillabs). A checklist (see Appendix A) describ-
ing pre-flight and takeoff procedures was provided to the
participants. Each checklist item was extracted from the
actual aircraft’s pilot checklist.

Task and Scenario

The simulated environment started at the Region of
Waterloo International Airport (CYKF), which has an ele-
vation of 1,055 feet Above Sea Level (ASL). The weather
was calm and sunny with a temperature of 24°C at 9 AM
Eastern Daylight Time. The runways were completely dry,
with excellent visibility. The air pressure was 29.92 inches
of mercury. There are seven aprons at the airport. The test
aircraft was parked on Apron 3. In Task 1, participants
were instructed to prepare the aircraft using the pre-flight
checklist provided. Participants were required to monitor
the aircraft’s condition and determine when to take the
next action based on their knowledge. Task 2 required
participants to take off from the airport. The instruction
was to take off on runway 08, climb to 4,000 feet (ASL),
and maintain a heading of 74 degrees while climbing. Par-
ticipants were instructed to follow the take-off checklist,
maintain full throttle and rich mixture during takeoff, and
not use any trim.

Procedure

Before the study, participants completed a consent
form and a demographic questionnaire. This study was
reviewed and approved by a research ethics committee at
the University of Waterloo. All participants were given
about ten minutes to practice in a scenario that was dif-
ferent from the actual scenario used in the formal task.
It served to familiarize participants with the flight con-
trollers and the simulator. Participants were provided with
sample instructions to ensure that they could follow them
and complete the task safely and accurately, just as they
would if they were piloting a real aircraft. After the prac-
tice session, the participants were asked to sequentially
complete the two tasks: pre-flight preparation and takeoff
procedures. There was one trial for each task. All par-
ticipants were given a 5-minute break between the two
tasks. Before the start of each trial, all switches on the
instrument panel were consistently pre-set at the same
setting for all participants.

Throughout the study, we recorded the simulator’s
flight dynamics data and switch/button states. Participants’
actions were video recorded for the analysis of response
time and intervals between actions. A camera was used
to record the participant’s hand movement on the flight
control panel, and another camera was used to record the
entire panel and displays. Participants completed a NASA-
TLX questionnaire after each task to measure subjective
workload.

Human Data

For the checklist procedure in Task 1, the time du-
ration used for each step was analyzed from the video
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recordings. The time duration may include three types:
reading, checking, and acting. Reading refers to the
time required for participants to read and comprehend
the checklist items printed on the checklist. Checking
refers to the time required for participants to verify the
status of aircraft components by visually examining the
control panel and devices. Acting refers to the time re-
quired for participants to move their hands and manipulate
aircraft components. The average time durations for each
checklist item from the human participants were calcu-
lated and shown in Table 1. The total time for human
participants to complete all the checklist items was 64.13
s on average (SD = 5.18 s).

During Task 2, participants needed to continuously
control the aircraft’s airspeed and attitude. The total time
to complete the takeoff and climb procedure was recorded.
As shown in Figure ??, while most participants completed
it within 220-260 s, five participants used a longer time of
around 280-320 s, which was the result of deviation from
the standard operation procedures possibly due to the lack
of skills or the application of non-standard strategies.

We compared the flight experience hours between
the two groups. T test showed a significant difference,
t(16) = 2.209, p = 0.042. The five participants with longer
task time had fewer flight hours (44.4 hours, SD = 13.6)
than the rest of the participants (77.1 hours, SD = 31.5). In
the current study, our focus is to demonstrate the modeling
approach in an example of standard task performance. As
a result, we treated the five participants with total time
longer than 270 s as outliers, and the model was designed
to only represent the standard operation and strategy in
the current study. Since in cognitive architecture models,
different skills and strategies could be modelled as differ-
ent production rules, we will further explore the modeling
of the outlier group in future studies. For the remaining
13 participants, the average of their takeoff and climb
total time was 231.9 s (SD = 8.2 s). Their major flight
performance results are summarized in Table 2.

Regarding overall subjective workload measured by
NASA-TLX (possible range from 0 to 100), the average
human results were 25.0 (SD = 7.4) for Task 1 (pre-flight)
and 40.4 (SD = 14.5) for Task 2 (take-off). The workload
from Task 1 is significantly lower than Task 2, t(12) = -
4.94, p ¡ 0.001. These human data provided the references
for model tuning and validation.

Modelling & Simulation

The QN-ACTR cognitive architecture was used in
the current study because previous work has demonstrated
its capabilities and advantages in simulating and predict-
ing multitasking behaviors, workload, and situation aware-
ness (Cao & Liu, 2011, 2012, 2013a; Rehman et al., 2019;
Xu & Cao, 2021), which allow us to comprehensively

model different human factor aspects of pilot flight be-
havior in the current study as well as planed future work.
To build the models for both Task 1 and Task 2, we first
analyzed the steps and task elements that pilots need to
perform for each task following the checklists. Then pro-
cedures from these steps were programmed as production
rules (condition-action pairs) that represent skills used by
the model to complete the tasks. The QN-ACTR models
running these production rules can be directly connected
to the same flight simulator (X-Plane 11) as used by the
human participants. Through the model-in-the-loop sim-
ulation, performance variables and workload predictions
were generated. We compared model and human results
to examine model fitness.

QN-ACTR and Connection to X-Plane

The module structure of QN-ACTR is shown in Fig-
ure 3. Recent studies in QN-ACTR have improved its abil-
ities to model and simulate workload (Cao & Liu, 2013b),
situation awareness (Rehman et al., 2019), and human per-
formance in takeover from automation control (Deng et al.,
2019). These capabilities can support future work to com-
prehensively simulate pilot performance and other human
factor aspects. Source code and sample models for QN-
ACTR can be found online (https://github.com/HOMlab).

The flight simulation for the current study was con-
ducted with X-Plane 11 and a Cessna 172SP aircraft model
plug-in. As a simulation software certified by the FAA
for pilot training, X-Plane is widely used in scientific
research and commercial development. A pilot model
in QN-ACTR can receive and send data to X-Plane in
real time via the User Datagram Protocol (UDP) interface.
This data link enables the model to assess the aircraft’s and
external status environment and send control directives
to the simulated aircraft. The model-in-the-loop simula-
tion is executed as a control loop via a UDP connection
between the cognitive model in QN-ACTR (Java program-
ming language) and X-Plane 11, running on the same
computer. X-Plane will continuously update the model
with aircraft and environmental information. The model
will adhere to its own production rules, perform informa-
tion processing, and issue control commands. Commands,
such as pressing a button or turning the yoke, are con-
verted to data compatible with X-Plane and returned to the
simulator. Using this control loop, the piloting simulation
is done as a discrete event simulation of the pilot and the
aircraft in the virtual environment.

To support the connection between the cognitive
model and X-Plane code, the X-Plane Connect (XPC)
software package was utilized (https://github.com/nasa/
XplaneConnect). Developed by NASA, XPC is an open-
source research tool that enables X-Plane code to com-
municate with external code using C, C++, Java, MAT-
LAB, or Python functions. We tested the connectivity
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between QN-ACTR models and X-Plane using XPC and
confirmed that the delay introduced by XPC connection
was neglectable and did not affect the performance of the
model.

Model Design

The modeling work involved the following steps,
which are a common and standard approach used in cog-
nitive architecture modeling work. First, a cognitive task
analysis was conducted. Flight checklists and typical
flight instructions for the pre-flight and take-off tasks were
consulted for the cognitive task analysis. Second, the
sequence of steps was coded into a series of production
rules. Third, model parameters were determined for each
model component or sub-task procedure. Most parameter
values used their default values that have been used and
validated in previous work. Some parameter values such
as hand motion time when pressing buttons on the cockpit
control panel and coefficients in the manual control equa-
tions for flying the aircraft were estimated and adjusted
by the researchers to fit the current human data because
previous work has not validated these parameters for the
same tasks. After these steps, the finalized models were
examined in the simulation of Task 1 and Task 2, and the
overall performance and workload results were compared
with corresponding human data from the same scenarios.

We designed the overall flight control strategy of
the model to include three major components including
monitoring, decision-making, and control (Figure 4). This
general design follows a similar high-level strategy used
in previous modeling work of dynamic vehicle control
(Deng et al., 2019; Salvucci, 2006). The monitoring com-
ponent involves attending to the environment and displays,
perceiving external information via the visual module,
and preparing the information for decision making. The
decision-making component involves the procedural mod-
ule making decisions and selecting responses prior to
generating actions via production-rule pattern matching.
The control component involves the motor module re-
ceiving action commands and carrying out motor control
operations. Human reaction time is reflected in model
parameters that represent the time duration needed for
each module to complete its processing. For example,
the execution of each production rule in the procedural
module takes 50 ms by default (Anderson et al., 2004).

Specifically, the model is built to control the aircraft
through several types of control actions.

• Switches and Buttons: Interaction between the
model and the buttons, or switches, is a form of
discrete control actions. When a target button
or switch needs to be pressed or changed, the
model performs the following three general steps:
shifting visual attention to the target, moving the

hand to the target, and then changing the status
of the button or switch.

• Throttle and Mixture: When the model needs
to adjust the throttle or mixture, it issues a con-
tinuous action to gradually change the throttle
or mixture position from its current value to the
new desired value.

• Yoke and Rudder: During take-off under Vi-
sual Flight Rules, the model keeps observing the
environment to determine the aircraft’s position
and attitude. The model continuously adjusts the
yoke and rudder paddle to maintain the desired
attitude, based on the perceived pitch, roll, and
heading angles.

• Steering on the Ground: When steering an air-
craft during taxiing, the model keeps the visual
attention on the taxi line in front of the aircraft
to determine the aircraft’s position and adjust the
pedal accordingly as a continuous action. Since
the tasks simulated in the current study did not
include taxiing, steering related production rules
and model mechanisms were not used in the cur-
rent study.

At the implementation level, the above control ac-
tions were programmed as two types of operations. First,
the x-plane-discrete-action operation applies to all inter-
actions with buttons and switches. Typically, this is a
one-time operation, such as turning the beacon light on,
because it is not needed to repeat these actions once done
properly. When the model executes this operation, it sends
a single command to X-Plane and sets the corresponding
variable to its new value. Second, the x-plane-continuous-
action operation applies to all interactions with the yoke,
pedal, throttle, and mixture. Each continuous action is
implemented as a series of micro steps. For throttle and
mixture control actions, the micro steps are implemented
at 20 Hz (50 ms for each step). For yoke, rudder, and steer-
ing control actions, each micro step of control typically
takes 150 ms (executing three production rules).

Pre-Flight Model (Task 1)

The model for the pre-flight task was relatively sim-
ple because the pre-flight checklist provides an explicit
and clear sequence of steps. For each checklist item, the
model would visually scan the checklist to read the in-
formation, visually scan the gauges or controllers to con-
firm its status, and then perform an action to make any
adjustment if needed. The production rules and their de-
scriptions are provided in Appendix B. For the model to
simulate interaction with the control panel, the model’s
visual module and motor module need to know the relative
locations of different gauges and controllers on the con-
trol panel. Since this information was not available from
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the X-Plane data protocol, we created a virtual display
representing the control panel layout by utilizing existing
modeling mechanisms for computer display interaction
built in QN-ACTR. The virtual layout and the relative
sizes of objects represented the same physical system
used in the simulator setup for human participants (Figure
5). The virtual display representing the aircraft control
panel area was set as 2,000 by 1,100 pixels, and 1 cm in
the physical setup corresponds to 20 pixels in the virtual
display.

In the pre-flight task model, only three parameters
were adjusted (Table 3), and all other parameters used their
default values in the cognitive architecture. The imaginal-
delay parameter represents the time duration needed for
the model to form the understanding and meaning of visual
objects it sees; for example, when reading a checklist
item or examining switch states, we used an estimated
1.0 s for all kinds of representations. The hand motion
time for reaching and pressing a button or switch was
estimated as 1.0 s, and the time for the hand to move back
to its original position was also estimated as 1.0 s. These
estimated values were used to represent average human
performance.

Take-Off Model (Task 2)

In the take-off task, pilots’ operation mainly in-
volves controlling the aircraft using the yoke and rudder
pedal. This operation was simulated as a control loop
including both the pilot model and the aircraft in the fight
simulator. Within a typical control cycle, the model used
three production rules to first monitor aircraft attitude
(pitch, roll, and yaw), then encode their values, and finally
issue control actions of minor adjustments using the con-
trollers (yoke and rudder pedal). The production rules
were designed following the take-off checklist items and
previous modeling conventions (see Appendix B). The
model followed the checklist to apply full throttle while
take-off.

Regarding the manual control of aircraft attitude,
mathematical equations were used to determine the
amount of controller adjustment given the model’s per-
ceived value of flight parameter discrepancy, which was
the difference between the desired value (e.g., target pitch
angle for take-off) and their current value (e.g., current
pitch angle). The equations were defined by following a
method of discrete control laws used in a previous model
of vehicle control (Salvucci & Gray, 2004). Three equa-
tions were used for the three dimensions of pitch, roll, and
yaw, respectively.

∆φyoke-pull = ky∆θpitch + kylθpitch∆t, (1)
∆φyoke-steer = ks∆θroll + kslθroll∆t, (2)

∆φrudder = kr∆θyaw + krlθyaw∆t. (3)

In these equations, ∆t is the control cycle (150 ms,
executing three production rules); θ is the flight parameter
discrepancy (for pitch, roll, and yaw respectively); ∆θ is
the change of θ within ∆t. ∆φyoke-pull, ∆φyoke-steer, and
∆φrudder are the micro adjustments to the controllers ap-
plied within each control cycle; k values are coefficient
constants for each term in the equations. The model was
designed to maintain a stable take-off (target roll is 0 de-
grees), following Task 2 instructions (maintain heading
74 degrees) and common general aviation training prac-
tice. Specifically, during initial takeoff, the model applies
no yoke input until the airspeed reaches 55 knots. Once
it reaches 55 knots, the model starts to apply yoke ad-
justment (as described by Equations (1)-(3)) to gradually
reach a target pitch angle of 7.5 degrees. Once the air-
craft has left the ground (above ground level altitude over
150 feet), the model keeps monitoring the airspeed while
climbing. If the airspeed is faster than desired (faster than
75 knots), the model applies yoke adjustment to gradually
reach a larger pitch angle (estimated as 10 degrees), so
the airspeed will decrease. If the airspeed is slower than
desired (slower than 75 knots), the model applies yoke
adjustment to gradually reach a smaller pitch angle (es-
timated as 5 degrees), so the airspeed will increase. We
understand this control logic used by the model is rigid and
specific, which does not represent variations within each
participant or between participants. However, it provides
a simple modeling solution to demonstrate the modeling
capability of our approach. Future studies will further
improve the modeling detail to increase model fitness and
represent performance variations, for example, by draw-
ing parameter values from distributions. To determine
the coefficient k values, we conducted multiple tests with
different values. The tests showed that when k is held con-
stant, larger values of kI lead to faster recovery time of the
aircraft’s attitude. When kI is held constant, larger values
of k lead to greater fluctuation of the aircraft’s attitude. In
the end, we found that k values = 35 and kI values = 15
for all three questions could produce good model fitness,
so these values were used.

Model Validation

For model validation, we connected the models to
the X-Plane simulator under the same configurations as we
did for the human tests. Model simulations were repeated
ten times to obtain average model results to be compared
with average human results. Since the models were not
designed to simulate human variability or individual dif-
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ference, the model results did not contain a large variance,
and ten runs were enough to generate reliable estimation
of average model results. Model fitness was evaluated
using Root Mean Squared Error (RMSE) and Mean Abso-
lute Percentage Error (MAPE), where Xh represents the
human data, Xm means the model data, i is the index, and
n is the number of comparisons made. Smaller RMSE
and MAPE mean better model fitness.

RMSE =

√∑n
i=1(Xhi −Xmi)2

n
and (4)

MAPE =
100%

n

n∑
i=1

∣∣∣∣Xhi −Xmi

Xhi

∣∣∣∣ , (5)

For the pre-flight task, we recorded the model’s
average time to complete each checklist item, as shown in
Table 4.

For Task 1, the total duration of the model’s run
was 69.84 seconds on average. The total time from the
human data was 64.13 s on average, so the RMSE is 5.71
s, and the MAPE is 8.9%. For Task 2 flight performance
measures, the comparison and model fitness results are
shown in Table 5.

In addition to simulating pilot performance, QN-
ACTR can also assess pilot workload by analyzing to-
tal server utilization, which represents how busy the ar-
chitecture’s modules are processing information during
each task (Cao & Liu, 2011). The overall utilization
value ranges from 0.0 (completely idle) to 1.0 (completely
loaded). While server utilization reflects the theoretical
absolute value of workload, NASA-TLX is a subjective
report measure that better reflects relative workload be-
tween conditions rather than the theoretical absolute value.
As a result, for model fitness analysis, we test whether the
ratio of workload between Task 2 and Task 1 predicted by
the model is like the ratio from the NASA-TLX results
reported by the participants, which showed Task 2 had
higher workload than Task 1. From the simulation results,
the model had overall utilization of 0.22 in the take-off
task and 0.13 in the pre-flight checklist task, so the ratio
is 1.69. From the human NASA-TLX results, this ratio is
1.62. Therefore, the model fitness has RMSE = 0.07, and
MAPE = 4.3%.

Discussion and Conclusion

In the current study, we applied computational cog-
nitive models built using QN-ACTR to simulate pilot be-
havior during pre-flight and take-off tasks. The models’
task specific knowledge and skills were coded by analyz-
ing task procedures and aircraft checklists. With a total of
seven parameters adjusted, and the other parameters using

default values in the cognitive architecture, the models
were able to capture human pilot performance and work-
load results from both the pre-flight and take-off tasks with
good levels of fit (MAPE ranging from 0.8% to 13.2%).

In contrast to machine learning models that apply
a black-box approach, the current modeling approach
is a transparent glass-box approach because the model
defines and simulates the cognitive mechanisms, knowl-
edge, and skills that collectively produce human pilot
behavior. The two approaches are complementary for re-
search and industrial applications; however, existing work
studying pilot behavior mostly followed the black-box
approach. Although the glass-box approach has been used
to study driver behavior (Deng et al., 2019; Salvucci &
Gray, 2004), the current study is the first one to publish
model building and validation details for general aviation
pre-flight and take-off tasks using a cognitive architecture.

A major benefit of the computational cognitive
model is that the model’s behavior, capability, and lack of
performance are explainable and understandable to human
beings. These features are very valuable to pilot training
research and practice because instructors need better ways
to model and diagnose trainees’ skill development. We
believe that further advancing computational cognitive
models will support competency-based pilot training. Cog-
nitive modeling provides a method to objectively ascertain
the knowledge and skills that define pilot competencies,
which can go deeper beyond the current descriptive compe-
tence statements obtained from expert subjective opinions.
By building cognitive models of skilled expert pilots, re-
searchers can obtain the optimal knowledge and skills for
setting training targets. Then by modeling trainees and
comparing trainee models with expert models, researchers
can identify trainees’ knowledge and skill deficiencies in
each specific task and develop personalized training sce-
narios to target individual improvement towards licensing
standards.

Machine learning models and cognitive architecture
models are both computational models of human perfor-
mance, and they could be used together to support the
next generation of pilot training. World demand for com-
mercial pilots is estimated to grow significantly. Given
that demand is expected to exceed pilot training capac-
ity, the International Civil Aviation Organization (ICAO)
has designated retaining the next generation of aviation
professionals as a “global priority.” The limited number
of certified flight instructors is a bottleneck in training
capacity. As a result, objective flight training methods
using data and computational models are needed. Future
studies will need to collect pilot training data with flight
data recordings and instructor assessment. The data will
support the training of data-driven machine learning mod-
els and the validation of theory-driven cognitive models.
Combining the advantages of both modeling approaches,
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future models could support both objective assessment
and diagnosis of pilot performance.

Envisioning the future when computational models
are validated, we expect that computerized tools can be de-
veloped to facilitate training. A performance assessment
tool can take a student’s flight data and control action
data from a simulator or aircraft as the input and gener-
ate performance assessment as the output. For example,
landing performance can be graded by the tool on a 4-
point scale following a similar rubric as currently used
by instructors. A diagnostic tool can tell students why
performance is poor in certain aspects and which piece of
skill or knowledge is lacking. For example, the tool may
say that landing performance is poor because the round
out action is too late and the rate of yoke pulling is too fast.
The model knows this because many simulations are per-
formed to create a library of poor performance caused by
different types of skill deficits. A feedback tool can give
students suggestions about how to improve. The sugges-
tions will be based on human instructor recommendations
and verified via model simulation.

While the current work focused on performance
measures, such as altitude, airspeed, heading, control col-
umn input, and reaction time, it is possible for a cognitive
architecture model to simulate mental workload using the
concept of server utilization and predict situation aware-
ness using what the model sees and does not see. These
topics are beyond the scope of this paper. Currently, the
cognitive modelling of workload and situation awareness
is less developed than performance models. In contrast,
wearable physiological sensors such as heart rate moni-
tors and eye trackers may provide better data sources for
the prediction of workload and situation awareness using
machine learning models, which may support the design
of useful tools in the future.

Since the current study is an initial proof-of-concept
demonstration, there are many limitations that need to be
addressed in future work before cognitive models can be
applied to pilot training practice. First, we only tested two
simple tasks in ideal conditions, future studies will need
to expand the tasks and weather conditions. In addition
to standard operating procedures, emergency operating
procedures can also be tested and modeled using cognitive
architecture models. Second, the current models did not
consider individual difference factors such as visual acu-
ity, perceptual speed, risk tolerance, and motor response
accuracy and speed. These factors may be added into the
model in future work by identifying and confirming the
relationship between these factors and the corresponding
model parameter values. For example, motor speed may
be controlled by the motor execution duration parameter.
Regarding the outlier group in the current human results
(the five participants with longer task time), future studies
could explore alternative production rules and modified

model parameters as ways to model their difference. Third,
there are other human factors such as stress and fatigue
that can affect pilot performance. For these aspects, ex-
isting literature in cognitive modeling has accumulated
some methods to explain and simulate their effects on
performance (Khosroshahi et al., 2019). Future studies
could integrate these methods into the pilot model and val-
idate the model performance. Finally, there is an inherent
variability of human behavior that was not captured by
the current model. People’s visual scan pattern, decision
strategy, response speed, and manual control accuracy are
not perfectly consistent but vary sometimes. The same
person’s performance changes as they repeat the same
task multiple times. To capture this finer detail of human
behavior, future work may need to add a random offset
value to some model parameters or create some alternative
production rules that will have some probabilities to be
used for the same procedure.

In conclusion, we developed and validated two com-
putational cognitive models using a cognitive architec-
ture to simulate pilot flight performance and workload
in pre-flight and take-off tasks flying a Cessna 172SP
aircraft. This work demonstrated the capability and advan-
tage of this theory-driven glass-box modeling approach
for supporting general aviation pilot training. By col-
lecting more human data and further developing models
for other tasks and conditions, researchers can combine
the efforts to create a tool for pilot skill diagnosis and
support competency-based pilot training. We expect that
these types of cognitive models will be complementary
to data-driven machine learning models, and the current
work provides the foundation for future work to expand
the modeling capability and test practical applications in
general aviation.
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Schwaiger, F., Nunez, J. M., & Ruiz, J. M. (2019).
Flight data monitoring (fdm) unknown hazards
detection during approach phase using clustering
techniques and autoencoders. Proceedings of the
Ninth SESAR Innovation Days, 2–5.

Ferrin, T. E., Huang, C. C., Jarvis, L. E., & Langridge,
R. (1988). The midas display system. Journal of
Molecular Graphics, 6(1), 13–27. https://doi.org/
10.1016/0263-7855(88)80054-7

Flin, R., Martin, L., Goeters, K.-M., Hörmann, H.-J.,
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Tables

Table 1

Average Human Time Duration for Pre-Flight Steps

Checklist Item Average Time Duration (s)

Reading Checking Acting Subtotal

Ignition Switch 1.88 1.88 N/A 3.76
Avionics 0.60 1.06 N/A 1.66
Master Switch 1.07 1.00 1.04 3.11
Fuel Level 1.31 2.62 N/A 3.93
Flaps 1.32 1.49 1.25 4.06
Throttle 1.78 1.34 1.91 5.03
Mixture 1.26 0.94 N/A 2.20
Beacon Light 1.57 1.37 1.14 4.08
Auxiliary Fuel Pump 1.76 1.59 1.16 4.51
Rich Mixture, wait for 5 seconds
and then lean Mixture

1.75 1.19 6.47 9.41

Auxiliary Fuel Pump 0.86 0.84 0.74 2.44
Ignition Switch, Mixture, then
Ignition Switch check

1.74 5.38 3.34 10.49

Oil Pressure 1.85 3.87 N/A 5.72
Avionics 1.43 1.23 1.10 3.76

Total Time 64.13

Note: N/A means not applicable because in these cases, no action is needed.

Table 2

Average Human Flight Performance Measures for the Take-Off Task

Measure Airspeed (knots) Pitch (degree) Roll (degree) Heading (degree) Total Time (s)

Mean 72.4 9.1 0.3 74.5 231.9
SD 3.1 0.7 0.5 3.8 7.8
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Table 3

Parameters Estimated in the Pre-Flight Model

Parameters Value (s) Description

imaginal-delay 1.0 Duration needed to form a mental representation.
execution-duration 1.0 Duration needed to move the hand and press a button or switch.
finish-duration 1.0 Duration needed to move the hand back after pressing a button or switch.

Table 4

Average Model Time Duration for Pre-Flight Items

Checklist Item Average Time Duration (s)

Reading Checking Acting Subtotal

Ignition Switch 1.65 1.70 N/A 3.35
Avionics 1.65 1.70 N/A 3.35
Master Switch 1.65 1.65 1.15 4.45
Fuel Level 1.75 1.55 N/A 3.30
Flaps 1.65 1.70 1.20 4.55
Throttle 1.65 1.65 1.15 4.45
Mixture 1.70 1.65 N/A 3.35
Beacon Light 1.70 1.60 1.15 4.45
Auxiliary Fuel Pump 1.70 1.60 1.15 4.45
Rich Mixture, wait for 5 seconds
and then lean Mixture

1.65 1.49 7.60 10.74

Auxiliary Fuel Pump 1.65 1.65 1.15 4.45
Ignition Switch, Mixture, then
Ignition Switch check

1.70 4.85 4.85 11.40

Oil Pressure 1.65 1.55 N/A 3.20
Avionics 1.65 1.55 1.15 4.35

Total Time 69.84

Note: N/A means not applicable because in these cases, no action is needed.

Table 5

Average Human and Model Flight Performance Measures for the Take-Off Task

Measure Airspeed (knots) Pitch (degree) Roll (degree) Heading (degree) Total Time (s)

Human Mean 72.4 9.1 0.3 74.5 231.9
Model Mean 74.9 7.9 0.0 73.9 241.2
RMSE 2.5 1.2 0.3 0.6 9.3
MAPE 3.5% 13.2% 100%a 0.8% 4.0%

Note a: this value is an artifact as the average roll values from both human and model were very close to the target value
zero, so it should not be regarded as a sign of poor model fitness.
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Figures

Figure 1

Devices Used in Human Experiments

Figure 2

Takeoff And Climb Total Time Distribution from All Participants in Task 2
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Figure 3

Structure of QN-ACTR

Note. Adapted from “Queueing network-adaptive control of thought rational (QN-ACTR): An integrated cognitive
architecture for modelling complex cognitive and multi-task performance,” by S. Cao, & Y. Liu, Y., 2013b. International
Journal of Human Factors Modelling and Simulation 55, 4(1), 63–86. (https://doi.org/10.1504/IJHFMS.2013.055790).

Figure 4

High-Level Strategy Used in the General Pilot Model
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Figure 5

The Control Panel Displayed in Two-Dimensional Coordinate System
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A C172SP Checklist Used for Experiments
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B Production Rules and Detailed Descriptions

Overall, the entire procedure is divided into multiple steps, with each step representing processes for each checklist
item. Some production rules can be reused in all the steps, so these rules do not need to check the step number in their
condition part. Other productions rules are specific to each step, so they need to match the specific step number in their
condition part. The model starts from Step 1, Phase 1. For pre-flight part, there is a total of 14 steps, and each step has
up to 7 phases; for take-off part, there are 3 phases and they run in a continuous loop.

Table 6

Production Rules and Detailed Descriptions for the Pre-Flight Task (Task 1)

Production Rule Description

visually-attend-checklist IF goal step is any step, goal phase is 1, the visual module is free, and the imaginal
module is free,
THEN set target visual location to the checklist, and change goal phase to 2.
The model simulates pilots setting their gaze to the next checklist item.

visually-encode-checklist-item IF goal step is any step, goal phase is 2, a visual location is set, and the visual module
is free,
THEN move visual attention to the visual location to encode the information and
change goal phase to 3.
The model simulates pilots reading the checklist item.

form-checklist-item-representation-
X

IF goal step is X, goal phase is 3, the visual module has encoded the checklist item
information, and the imaginal module is free,
THEN create a chunk in the imaginal buffer representing the meaning of the checklist
item and change goal phase to 4.
The model simulates pilots’ understanding from what they read from the checklist item
#X. A unique production rule is made for each step. Here X refers to the specific step
number such as 1, 2, ..., 14.

visually-attend-aircraft-component-
X

IF goal step is X, goal phase is 4, and the imaginal module has prepared the meaning
of the checklist item,
THEN set target visual location to the specific aircraft component related to this
checklist item and change goal phase to 5.
The model simulates pilots setting their gaze to the aircraft component related to the
checklist item.

visually-encode-checklist-item IF goal phase is 5, a visual location is set, and the visual module is free,
THEN move visual attention to the visual location to encode the information and
change goal phase to 6.
The model simulates pilots reading the status of the aircraft component.

form-aircraft-component-status-
representation-X

IF goal step is X, goal phase is 6, the visual module has encoded the information, and
the imaginal module is free,
THEN create a chunk in the imaginal buffer representing the meaning of the aircraft
component status and change goal phase to 7.
The model simulates pilots’ understanding from what they read from the aircraft
component.

take-control-action-X IF goal step is X, goal phase is 7, the imaginal module has prepared the meaning of the
aircraft component status, action is needed, and the motor module is free,
THEN issue the corresponding control command following the requirement of each
checklist item (implemented by calling operation x-plane-button-action or x-plane-
continuous-action with corresponding parameters), and change goal step to X+1, goal
phase to 1.
The model simulates pilots’ control actions for each checklist item, such as turning
Master Switch on and setting Mixture to Full for 5 seconds.

no-action-needed IF goal step is X, goal phase is 7, the imaginal module has prepared the meaning of the
aircraft component status, and no action is needed,
THEN change goal step to X+1, goal phase to 1.
The model simulates pilots having no need for any action in this step. For example,
Fuel Level is checked to be fine. Move on to the next checklist item.

checklist-done IF goal step reaches 15,
THEN the checklist is done.

19

Xu et al.: Cognitive Modeling of Pilot Performance

Published by Scholarly Commons, 2024



Table 7

Production Rules and Detailed Descriptions for the Take-Off Task (Task 2)

Production Rule Description

pilot-control-attend-outside IF goal step is 1,
THEN set target visual location to the outside environment and change goal step to 2.
The model simulates pilots setting their gaze to the outside environment.

pilot-control-perceive-attitude IF goal step is 2, and a visual location is set,
THEN move visual attention to the visual location to encode the information and
change goal step to 3.
The model simulates pilots perceiving the aircraft’s current attitude including pitch,
roll, and yaw angles.

pilot-control-action IF goal step is 3, the information from the visual module has been encoded, and the
manual module is free,
THEN perform actions to control yoke push-pull, yoke rotating, and rudder pedal
following Equations 1-3.
The model simulates pilots controlling the aircraft’s attitude.
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