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Abstract As a preliminary study to more complex situations of interest in small-scale 

technology, this paper envisages the elementary propagation properties of elastic waves in 

one-spatial dimension when some of the properties (mass density, elasticity) may vary 

suddenly in space or in time, the second case being of course more original. Combination of 

the two may be of even greater interest. Towards this goal a critical examination of what 

happens to solutions at the crossing of pure space-like and time-like material discontinuities is 

given together with simple solutions for smooth transitions and numerical simulations in the 

discontinuous case. The effects on amplitude, speed of propagation, frequency changes and 

the appearance of a Doppler like effect are demonstrated although the whole physical system 

remains linear. 
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1. Introduction 
 

We are interested in so-called dynamic materials. By these we understand materials whose 

characteristic properties (in the simplest case of elastic bodies, mass density and elasticity) 

may be made to vary in space or in time, or both, by an appropriate arrangement or control. 

Of course materially inhomogeneous materials are known in various forms, polycrystals, 

composites of the stratified type or so-called graded materials (with a more or less smooth 

gradient in their properties). We consciously ignore here inhomogeneous materials with 

stochastic properties. Materials inhomogeneous in time are not so frequent or are practically 

nonexistent in everyday conditions (room temperature, time scale in minutes or hours). We 

may conceive of some artificial means of causing these controlled changes in time, for 

instance, by the application of an external (non-mechanical) field, or through a phase 

transition. To avoid any misunderstanding, we specify that this should be realized in an 

infinitesimally short duration and over a sufficiently large material region if not over the 

whole specimen under consideration. Difficulties of realization cannot be overlooked. For 

instance, the following question may be raised: how can we change instantaneously 

everywhere the elasticity coefficients of an extended specimen? 

 

     This contribution of modest ambition presents the first steps towards building a general but 

difficult field of material dynamics as seen from the engineering viewpoint, noting, however, 

a strong influence of some previous works in physics and applied mathematics. In particular, 

the idea of dynamic materials was formulated by Blekhman and Lurie [1] who identified two 

kinds of dynamic materials: activated dynamic materials obtained by changing the material 



coefficients of the wave carrier medium in the absence of relative motion – the subject matter 

of the present work - and kinetic dynamic materials obtained by endowing the whole system 

or some of its regions with some prescribed relative motion. The book of Lurie [2] concerns 

the first type with applications mostly to electromagnetic materials. The second type in 

mechanics is best illustrated by the review of Vesnitskii and Metrikine [3] (and the many 

works of the Nizhny-Novgorod school referred to in that lengthy and detailed paper). That 

latter work emphasizes the interest to study so-called transition radiation in mechanical 

systems such as elastic waves generated by mechanical objects travelling in locally or 

periodically inhomogeneous elastic systems (e.g., train travelling on a railroad track supported 

by a more or less elastic ground) while recalling the relationship and differences with 

transition radiation in some electromagnetic systems previously studied in detail by Ginzburg 

et al. (e.g., [4]) although Vesnitski and Metrikine do not consider wave phenomena such as 

Cherenkov or bremsstrahlung radiation. The whole problem, however, presents analytical 

difficulties that cannot be overlooked. From the mathematical side, we note a few works on 

the existence of special solutions of wave systems that are inhomogeneous in space and time 

(e.g., Nadin [5] and other works by the same author). This obviously relates to some facets of 

our problem. Note also that the phenomenon of trapped modes of oscillations also partake of 

the same class of dynamical phenomena (see, e.g., Indeitsev and Osipova [6]). 

 

     Here, with a much lower ambition but envisioning small experimental elastic systems that 

could be realized in the laboratory, we first set forth in Section 2 the standard formulation of 

balance and conservation laws for elasticity with space and time inhomogneities. This helps 

one to classify the various dynamical behaviours in particular with the consideration of the 

conservation of energy, canonical momentum and action. Section 3 introduces the case of 

one-dimension in space on which the paper focuses. Here the origin of spatial 

inhomogeneities and explicit time dependence is specialized for the sake of simplicity, 

considering spatial dependence of the matter density only and time dependence of the 

elasticity properties only, favoring thus some kind of separation of space and time effects. 

Simple examples of smooth space-time variations of material properties are presented in 

Section 4 yielding exemplary analytical solutions that are of interest for further developments. 

The case of piecewise variations considered in Section 5 is of greater interest in that it allows 

us to critically examine what happens at junctions and accompanying jump conditions at pure 

space-like or pure time-like discontinuities that are typical of dynamic materials. If what 

happens at fixed or moving space-like discontinuities is well known, what happens at time-

like layers across which properties  change very rapidly (theoretically instantaneously) in time 

is much more original, yielding effects seldom envisaged in wave propagation in mechanical 

engineering, e.g., Doppler effect with a capture of energy and effects akin to transition  

radiation and the Cherenkov effect. Simple numerical simulations are reported in Section 6 

first with regard to changes in amplitude and speed of propagation for various cases, and then 

relating to frequency variations and the associated Doppler effect. With this we pave the way 

for more extensive analytical and simulation works. 

 

2. General problem 

 

We are concerned with materials in bodies where the local balance of linear momentum at 

regular material points is written, in Piola-Kirchhoff format, in the form (no body force for the 

sake of simplicity) 

0



Tp
X

Rdiv
t

                                                                    (1) 

 



where we used the following notation. The placement function   t,Xxx  represents the direct 

deformation mapping between some reference configuration KR and the actual configuration 

Kt at Newtonian time t. It is assumed to be sufficiently smooth.  The material gradient R  and 

the material divergence operator Rdiv  are understood as acting from the left on, respectively, 

vectors and tensors or geometric objects considered as such for these operations. We have (T 

= transpose) 

  Fx
X

x
F

x
v

X

detJ
t F

T

R

t







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 :,:,:                                                 (2) 

 

respectively the physical velocity, the direct deformation gradient, and the Jacobian 

determinant of F.  The symbol 1
F stands for the inverse of F. the object T is a two-point 

tensor field called the first Piola-Kirchhoff stress that is not a tensor in the usual sense. In 

(1), p is the physical linear momentum - a vector in the actual configuration – and the object 

T is a two-point tensor field called the first Piola-Kirchhoff stress that is not a tensor in the 

usual sense. These two quantities are defined by   

 

 1
0 ,  FTvp FJ          ,                                                   (3) 

 

where σ is the (here) supposedly symmetric Cauchy stress and 0 is the matter density at 

material point X in KR. The latter has to satisfy the continuity equation. For T we may have 

the decomposition 
disse TTT                                                                 (4) 

 

where Te may be thought of as an «elastic» (i.e., energy derivable) quantity while Tdiss is 

typically dissipative, i.e., we can write 

 

    T

R
dissdisssdise trtr

W
vTFT

F
T 




 ,                                                   (5) 

 

where the former defines the constitutive law, per se, while the second represents the 

dissipation per unit material volume due to Tdiss. Leaving this last part outside our scope but 

noting that Te may itself dissipate in certain material schemes (e.g., plasticity), we now need 

to specify the functional dependence of 0  and W. Since here we contemplate no thermal 

effects, W simply stands for the specific potential energy (no mention of free or internal 

energy). We can distinguish between the following three main cases. 

 

(i) In spatially and temporally homogeneous materials, we simply have 

 

 FWWconst  .,0                                                              (6) 

 

(ii) In materials that are inhomogeneous from both inertial and elastic points of view, 

we have  

 

   XFX ;,00 WW                                                          (7) 

 

In both cases (6) and (7) the mass conservation in the Piola-Kirchhoff format reads 



 

00 



X
t


                                                                    (8) 

Equation (7)2 means that W depends explicitly on the material point X. In particular, if proved 

useful we can define a material co-vector finh by 

 

 
expl

R
inh W

X
vf




 0
2 2/:                                                          (9) 

 

where the last expression means the material gradient keeping the field F  fixed.  

 

(iii) In materials that are simultaneously inhomogeneous in space and time, we would a priori 

write 

   tWWt ,;
~

,,~
00 XFX                                                        (10) 

 

although this is seldom done. The explicit dependence on time in the first expression opens up 

new horizons related to, e.g., the theory of material growth - more material of the same type is 

pushed into a material point X in the configuration KR; cf. Epstein and Maugin [7]. The form 

(8) of the continuity equation is not longer valid. There exists a non-vanishing right-hand side.  

The system becomes thermodynamically open. The explicit dependence on time of the second 

expression in (10) leads to an evolution in time of, say, elasticity coefficients.  This may 

represent the phenomenon of ageing [8] of which creep is an example. This, of course, does 

not conserve energy (see below). In view of the very structure of the strict conservation law 

that the balance law of physical linear momentum (1) achieves in the present paragraph, an 

interesting sub-case of (10) is 

   tWW ;ˆ,ˆ00 FX    .                                                   (11) 

 

     This holds when there exists a purely inertial material inhomogeneity - i.e., 

inhomogeneous distribution of mass in KR - and only a time evolution of the elasticity 

coefficients. This situation may be more easily realized experimentally than the general case 

(10). The time dependence in (11)2 can only be through a relative time since the balance law 

has to comply with Galilean invariance (cf. Epstein and Maugin [9]). Also, the factors will not 

be affected by the differentiation in (1). Thus, when a single elasticity coefficient  tÊ  appears 

- case of linear isotropic bodies in small strains, and after application of the Helmholtz 

decomposition - equation (1) will yield for both the longitudinal and transverse components of 

the displacement an equation of the type (  2ˆ E  for Lu and Ê  for Tu ) 
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u
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0                                                (12) 

or 
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
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
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   .                              (13) 

 

    This introduces an interesting type of linear wave equation with a space-time dependent 

characteristic velocity. The apparent simplicity of linearity is superseded by the complexity 

brought in by space-time inhomogenity and pregnant of exotic wave-like effects (Cherenkov 



effect, Doppler-like effect, transition radiation; cf. Ginzburg and Tsytovich [4]). This is the 

essential subject matter of this contribution.  

 

 

3. Conservation laws 

 

Although written mathematically as a strict conservation law, equation (1) essentially 

represents three components of a field equation to be solved for the three components of the 

elastic displacement u with appropriate boundary and initial conditions, and perhaps 

additional jump relations at discontinuity surfaces. In addition there exist conservation laws 

that concern the whole physical system under study.  When a variational formulation in the 

manner of Hamilton-Lagrange is used the field equations are none other than the Euler-

Lagrange equations ((1) is an example of these) whereas it is the application of the celebrated 

Noether theorem (cf. Maugin [10]) that yields the conservation laws. In the presence of 

general dissipative processes, it is a direct manipulation of the field equations which allows 

one to deduce the expression of these conservation laws [10] with source terms appearing 

necessarily in these laws. The case (10) is amenable through a variational principle although 

not respecting energy conservation.  We shall not repeat the detailed proof of this, but simply 

state the results. The three quantities  whose conservation plays an important role in the 

present context are energy, canonical momentum because of their relation to invariance or 

lack of invariance under transformations of material coordinates and, because of its close 

relationship with wave-like processes and wave-mechanics formalism [11]-[12], action. 

In agreement with (1) and (10), the Lagrangian density per unit reference volume to be 

considered reads 

     tWtKtL ,;ˆ,;,;, XFXvXFv                                                 (14) 

 

with kinetic energy 

    2
0 ,ˆ

2
1,; vXXv ttK                                                         (15) 

 

     Systems described by (14) are called rheonomic (here inhomogeneous) systems because of 

the explicit dependency on time (cf. Lanczos [13], following Boltzmann). 

 

     The Euler-Lagrange field equations at any regular material point deduced from the 

Lagrangian (14) are none other than (1). The conservation laws of energy and canonical 

momentum deduced from the application of Noether’s theorem for time and material-space 

translations read  

hH
t R 



Q
X

.                                                            (16) 

and 

inh
Rdiv

t
fbP

X





                                                        (17) 

 

where 
inh

f has been defined in (9) and the energy (Hamiltonian) H, the material energy flux 

Q,  the canonical (material) momentum P, the Eshelby (material) stress b, and the heat source 

h are given by 

 

H K W  , .Q T v                                                            (18) 



 

 P v F b 1 T F: . , .    0 L R                                                   (19) 
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explXexpl

t

W

t
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t

L
h









 ˆˆ

/: 0
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     Accordingly, energy and canonical momentum are not strictly conserved in rheonomic 

materially inhomogeneous systems. The loss of energy conservation is due to the explicit time 

dependence while the loss of conservation of material momentum is due to material 

inhomogeneities. In materials which exhibit dissipation of mechanical and thermal types, 

these two quantities are of course not conserved (as shown in Maugin [14]). Here the notation 

“expl” refers to the explicit derivative with respect to the variable, keeping the field fixed. 

 

Conservation of action 

In continuum mechanics the density of canonical action per unit reference volume will be 

defined by 

HtA  XP.:                                                             (21) 

 

If we remember that a phase for plane travelling waves is usually defined by  

 

t  XK .                                                            (22) 

 

where K is a material wave vector and  is a circular frequency,  then the analogy between 

(21) and (22) is made crystal-clear. We recall that in elementary wave mechanics (Max 

Planck and Louis de Broglie), we have for a particle KP   ,H ,  with denoting the  

reduced Planck constant or action quantum, and thus A . From this we deduce [11]-[12] 

that the action (21) will play a prevailing role in wave studies in dynamic (bulky) materials. 

Indeed, on taking the scalar product of (17) by X in material space, and the product of (16) by 

t and subtracting the latter result from the former and performing a few manipulations, we 

will establish the following non-strict conservation law for the continuum action: 

 

    .... bXfQXb

X

trHthtA
t

inh

R 



   (23) 

 

    In the proof of this result we have accounted for the fact that X and t are independent of one 

another in the present space-time parametrization  t,X . Equation (23) becomes a strict 

conservation law (no source in the right-hand side) in the following circumstances. First, for a 

scleronomic (contrary of rheonomic) and homogeneous system, the first two terms in the 

right-hand side of this equation vanish. Second, as shown below (equation (29)) the last term 

within parentheses vanishes identically in the case of one space dimension – for 

which Hbtr b .  Otherwise (23) never is a strict conservation law. Furthermore, even in 

quasi statics, this equation with nonzero right-hand side plays a role in some mathematical 

proof. Indeed, the resulting identity for homogeneous materials then reads  

 

     FT1bbXb .,0..  RR WtrW . 

 



The integrated form of this over a material body is of interest (see Knops et al [15]).  

 

Case of one space dimension 
From here we shall consider the case of propagation in one space dimension with small strains 

only. Accordingly, we shall work in two-dimensional Euclidean space-time  tx, . This case 

which is the only manageable one is nonetheless misleading in many instances that we shall 

pinpoint to the reader. 

 

With a standard notation (u = elastic displacement; derivatives indicated by a subscript x or t), 

the Lagrangian density (14) reduces to 

 

     22
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Equation (1) takes the form 
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The canonical quantities Q, P, and b become scalars such that  

 

     22

0 ,ˆ
2
1,ˆ

2
1

xt utxEutxH                                                      (26) 

 

xtxt uuEuLuQ ˆ/                                                        (27) 

 

xttx uuuLuP 0ˆ/                                                       (28) 

 

  HuLuLb xx  /                                                        (29) 

 

The latter result is a peculiarity due to the one-dimensionality of the problem in space. 

Equations (16) and (17) then read 
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and 
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
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
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We have voluntarily reinstated the canonical definitions in eqs.(27) through (31). But the 

special forms of h and f are immediately read off from (9) and (20). 

 

Remark 3.1 For a scleronomic materially homogeneous system, both h and f vanish, 0   and 

E are mere constants, and with 0
2
0 /Ec  , we have that not only (2) reduces to the linear 

homogeneous wave equation  

02
0  xxtt ucu                                                               (32) 



 

but, simultaneously, eqns.(30) and (31) take on the following remarkable form 
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and by elimination, it is shown that both P and H satisfy the same equation  

 

0,0 2
0

2
0  xxttxxtt HcHPcP                                              (34) 

 

This, interesting as it is, is however misleading for it is, like (29), an artifact of the one-

dimensional formulation. In effect, the energy equation is normally a scalar one, while the 

balance of momentum is co-vectorial. The misleading symmetry induced by the one-

dimensional nature between eqns. (33) was noticed by Hayes [16] (pp.23-24) when he wrote 

down these two equations as two quadratic-invariant equations deduced from (1) (without the 

present Eshelbian framework and its consequences (33)2 in view). Hayes simply comments 

that the “freedom of generating new solutions by differentiation or integration must be kept in 

mind, as these generate new conservation laws”. This is what happens in the theory of 

solitonic structures. 

 

Remark 3.2 If the special case (11) of dependency holds good, then the source terms in (30) 

and (31) take on the special form  

 

xt

K
fE

E

W
h 0

0

ˆ
ˆ

,ˆ
ˆ




                                                      (35) 

 

while (13) is valid in the form 

  0,ˆ2  xxtt utxcu                                                              (36) 

 

an equation that would lend itself to some type of space-time homogenization if periodicity is 

assumed in Euclidean space-time. However, in view of quantities that should be conserved 

across space-like and time-like discontinuities (see below) and the symmetry built in eq.(25), 

it might be preferable to rewrite the latter as two compatible first-order partial differential 

equations by introducing the auxiliary scalar field ν so that 

 

txxt upuE 0ˆ:,ˆ:                                                   (37) 

 

equations that are valid in the general case (25). Lurie [2] has studied the homogenisation of 

system (36) and some asymptotic expansion of the u solution for long times compared to the 

period of the repeated motif (e.g., a checkerboard) in Euclidean 2D space-time. 

 

Remark 3.3 Systems such as (25), (24) and (37) are symmetric in the interchange 

tx and E . This symmetry is an artefact of the one-dimensionality in space (and the 

quadratic form of the energy of linear elasticity that compares exactly to the quadratic nature 

of the kinetic energy). If we want to avoid this pitfall we need to consider  two spatial 

dimensions at least  in order to highlight the difference between scalar and vectorial-like 

quantities (see, e.g., in the problem of reflection and refraction). 

 



Remark 3.4 Another way to look at the wave problem for the system (25) is as follows.  We 

could envisage solution  uu  where  tx,  is a general phase function such that wave 

number and frequency are defined by [11]-[12] 
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Let a prime denote the derivative of u  with respect to  . Then one shows that (25) yields the 

equation 
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with      txtxEtxc ,/,,2  . If the phase function itself satisfies the wave equation with 

wave velocity  txc , , then the last term in the left-hand side of (39) vanishes. In addition, if 

the special case (11) holds true, then the second term in (39) vanishes also identically and we 

are left with 

 

   0'', 222  uktxc                                                          (40) 

 

from which we deduce that the phase velocity is such that 

 

         2/1
/,,, xtEtxctxcc                                              (41) 

 

Thus, contrary to the nonlinear case where the phase velocity would typically depend on the 

amplitude of the signal, here the phase velocity varies from point to point in space-time while 

being independent of this amplitude (the theory remains “linear”). 

 

4. Smooth space-time variation of material properties 

 

Didenkulova et al [17] offer a nice discussion of the possibility to construct exact travelling 

wave solutions in the simpler case where c in (41) depends only on x (material inhomogeneity 

only). This case is already involved. One may first think of solutions of the type    tuxuu 21  

of which a special case is  

 

          x)txAxAtxu tx   iexpee, i-i
                            (42) 

 

which is not a priori a plane travelling harmonic wave, but where the amplitude A  and phase 

ψ may be assumed to vary slowly  and approximate solutions can be obtained  via asymptotic 

WKB solutions. However, it is proved [17] that all existing solutions of the type (42) are 

actually travelling waves, but obviously not necessarily monochromatic ones. For   2xxc  , 

an example of such solution is given by   xxA   and   xx /1 . The situation is 

obviously more involved with (25). But again, if the space-time inhomogeneities are such that  

 

           tExEtxEtxtx 2121 ,,,                                                (43) 



 

we are tempted to look for solutions of the  product type    tuxuu 21 . In which case a simple 

calculation allows one to show that  xu1  and  tu2  are given by the differential equations 
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where 2 is the separation constant. For simple expressions of the data and initial and 

boundary conditions, these can be integrated in theory. For instance, 

 

Example 1: 

We consider the simpler case where 

 

       texpEtE Kxexpx  000
ˆ,ˆ                                               (46) 

 

A simple algebra shows that u2 and u1 satisfy Bessel equations, hence the solutions 

 

        TYBTJATUtu 0022                                         (47) 

                              

and 

        XYDXJCXUxu 0011         (48) 

  

where A, B, C, and D are real quantities, we have set 00
2
0 /Ec  and 000 kc , and  J0  and Y0 

are Bessel functions of order zero  with arguments  
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Remark 4.1 With c decreasing along x and increasing in time, we have a situation that favors 

the capture of energy and the convergence of space-time trajectories. For instance, 

 

Example 2: 

We consider the case where 
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with nn ttxlx  0,0 . Space point l corresponds to the convergence of characteristic 

lines, hence a better concentration of the emitted acoustic energy. The wave solution is looked 

for by means of separate variables. Some lengthy calculations lead to the following solution 
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with real coefficients ai and bi. With 
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the exponentials in (51) are real, while they are complex for nt2/10 . 

 

 

5. Piece-wise variations of material properties - What is conserved during propagation 

in dynamic materials 

 

The question naturally occurs of what happens in general not only at regular points but also at 

the crossing of discontinuity lines of which special cases are purely space-like or purely time-

like discontinuities or interfaces. An interface is called a discontinuity surface if it has no 

thickness. Here, it is said to be purely space-like when material properties vary only spatially 

across it. Similarly, it is said to be purely time-like if the material properties vary only 

timewise across it. In practice a mathematically zero-thickness space-like discontinuity x  

often is an interface or transition layer xT across which properties vary smoothly, albeit 

rapidly, in space rather than abruptly. Similarly, as it is difficult to conceive a possible 

instantaneous change of properties solely in time across a purely time-like discontinuity t , 

such a change must practically occupy a short time duration, small but not nil, during which 

the change occurs smoothly. This transition time τ across a thin time-like layer tT may be that 

required for the switching of a rapid phase transition.  Brutal spatial or temporal changes 

without length scale or characteristic time duration should yield the consideration of 

generalized functions (distributions) of the Dirac and Heaviside types. We shall avoid this. 

But there remains the question of what are the conditions imposed on the field quantities 

(here, those derived from the particle motion) across x  or t . The situation is quite different 

for an interface x and a time line t . 

 

     If we examine the question for piecewise constant variations in space and time with 1D 

space dimension and a space-time diagram, then discontinuities x are represented by straight 

lines parallel to the t-axis while discontinuities t are straight lines parallel to the x-axis (see 

Figure 1). Of course the 1D spatial situation here also may be misleading because what 

happens in space is essentially typically multidimensional with a co-vectorial connotation.  In 

effect the dual of position is the canonical momentum according to the phase definition (21) 



and in terms of the wave vector a vector direction is involved with possible change of 

orientation across a two-dimensional interface surface x  - e.g., in Snell-Descartes law - or 

across Tx ). Quite differently, it is a scalar quantity, energy or frequency as shown by the 

duality present in (21), which is the essential evolving quantity at a time-like interface t  or 

across tT . 

     If numerical simulations are more easily carried with a wave front of a certain profile (see 

Section 6 below), the modelling of the perturbation by harmonic plane waves allows a certain 

physical understanding. 

 

Case of a fixed material interface x  or a transition layer Tx  

This is represented by a point at x0 in Figure 1(Part b). There is no matter transfer at that point 

although both density and elasticity may change abruptly across x . There is continuity of the 

normal surface traction. Both P and K are not kept unchanged at x . The only quantity that 

evolves is the gradient of displacement, as frequency is kept fixed and wave vector evolves 

(in 2D we obtain the Snell-Descartes laws). For a transition layer Tx where only the density ρ 

varies and does it slowly enough, application of the WKB method yields with a constant 

frequency ω a variable wave number    xcxk /  with, in 2D, a curvature of rays - described 

by a relation of the form         xccsinxsin 0/0   -  and a concentration of energy. If both 

density and elasticity vary across Tx, then we obtain an inhomogeneous wave equation, a case 

not envisaged here. 

 

Case of a time line t or a thin time-like layer tT  

In this case we consider only the possibility of an evolving elasticity (an evolving density 

would yield not only no mass conservation but also an inhomogeneous wave equation). This 

is represented by a point at t0 in Figure1 (Part c). But here, analogous to the mass-flux 

condition and continuity of normal traction at x , we have continuity of the displacement 

gradient and of the displacement itself, respectively. The wave vector does not evolve but the 

velocity varies. For a “transition layer” Tt with a typical time scale τ much larger than the 

acoustic period, the equivalent of the WKB method in time yields    tckt   with k fixed and 

thus 
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hence a Doppler effect with capture of energy. That is what distinguishes the two types of 

transitions. As a partial conclusion, spatial inhomogeneity allows the convergence or 

divergence of wave by conservation of the momentum, while a dynamic medium with time 

inhomogeneity allows capture of energy from the outside with a resulting change in 

frequency. The combination of the two in a true dynamic material may yield a concentration 

of energy although the system is fully linear. 

 

     Back to the 1D case where eqns.(25) and (37) hold, applying Remark 3.3, we will know 

what to do at t once we know the condition at x . In the latter case for a fixed x we have 

continuity of the mechanical traction, i.e., in terms of jumps,  

 

xx atuE  0]ˆ[                                                        (54) 

hence 



tt atu 0]ˆ[ 0                                                        (55) 

 

In the special case (11), these two conditions reduce to 

 

ttxx atuatu  0][,0][                                              (56) 

 

where square brackets denote the usual jump. 

 

      For illustrative purpose we consider the case of (54) and (55). For a spatial interface x  , 

we must check at, say 00xx , and for all values of t, 

xx uuuu 2121 ,                                                             (57) 

with RI uuu 1  and Tuu 2  (Figure 1, Part b) since in general there is one incoming wave (on 

side 1), one transmitted wave (on side 2) and a reflected wave (on side 1). Then we deduce 

immediately that, since
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The transmission and reflection coefficients are then given by 
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Let iii cz  be the impedances. Then, 

 

  1/ 1212
2
21  TzzR                                                               (60) 

 

which stands for energy conservation. If we tune the impedances, reflection effects disappear 

and the whole of energy is transmitted. 

 

     For a time-like interface t  situated, say, at 00  tt , we must check, for all values of x, 

(compare to (57); 2121 , EE  ) that  

tt uuuu 2121 ,                                                           (61) 

 

where region 1 is below t  in space-time and region 2 is above. Here we should pay attention 

to the wording because we are no longer speaking of propagating waves since the transition 

across t occurs in the ideal case parodying the case (57)-(61) at zero propagation velocity 

(vertical lines crossing t ). Nonetheless, a solution will exit at t  (cf. Lurie [2], Ginzburg. 

and Tsytovich [4]) only if we have one “signal” A1 coming from region 1 toward region 2, 

one signal 
2A  continuing in region 2 and, what is more surprising, one signal 

2A  in region 2,  

oriented from region 2 to region 1 (as if it were coming from the future). That is, we have (cf. 

Figure 1, Part c):   uuuu 21 and . A simple estimate yields (with 212121 ,, ccEE  ) 
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Then at t , we have (since 21 cc  ) 
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together with the local balance at t  ( 1212 // cczz  ) 

 

     21212

2

1212 //1   TzzTzz                                                   (64) 

 

With perfect tuning of the impedance tatz 0][ , 012 
T  and 112 T , but this case is trivial. 

 

Moving material interface 

The problem becomes more involved when, although still one-dimensional in space (and 

therefore in fact still reduced to a point along the x-axis), the spatial interface moves in time 

in the material. The natural approach then is to consider the wave problem as seen by an 

observer moving with the material interface, i.e., to consider an instantaneous Galilean 

transformation such that the new space-time coordinates be 

 

  ttxx   ,ˆ                                                                   (65) 

 

where the interface instantaneous position is given by  tx̂ . With constant velocity V starting 

from 0x  we have   Vttx ˆ . This velocity must be compared to the characteristic velocity 

of the material on its two faces (in principle at each instant of time) with the constraint that 

the considered mathematical system is hyperbolic.  This matter is examined by Lurie [2] - 

Chapter 2 - who concludes that a necessary condition for the existence of a required solution 

at tx,  is that 
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where c1 and c2 are the characteristic phase velocities on the two sides of the interface. 

Moving interfaces in 1D corresponding to phase changes are dealt with by Ericksen [18].We 

shall return to this in further work. For the time being, we shall enforce the conditions (54) 

through (56) in numerical examples. 

 

6. Some numerical simulations  

 

The goal of these numerical simulations is to check a possible concentration of acoustic 

energy in dynamic materials. The manifestation of this energy concentration is expected to be 

a signal localization and an amplification of signal amplitudes. 

 

6.1. Amplitude and speed of propagation 

Only the cases where matter density ρ depends only on x and elasticity coefficient E depends 

only on time are considered. This corresponds to the special case (11). Accordingly, the wave 

equation (36) 

  0,ˆ2  xxtt utxcu                                                           (67) 

 

is represented in the form of the hyperbolic system of the first-order equations 

 

  0,ˆ2  xt txcv                                                             (68) 



0 xt v                                                                   (69) 

 

where v = ut, ε= ux  and      xtEtxc /,ˆ 2  . 

The energy and canonical momentum balances take the form given in (30) and (31), that is, 

more explicitly  
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and 
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where we recognize the total energy density of the elastic body at time t and the energy flux 

txuutEQ )(   , i.e., vQ  , where xEu   is the elastic stress in 1D, and b is the reduced 

form of the Eshelby stress in 1D. The right-hand sides of (70) and (71) are, respectively, the 

explicit time derivative of the elastic energy (i.e., keeping the strain field ux fixed) and the 

explicit space derivative of the kinetic energy (i.e., the gradient taken at fixed field ut). This 

right-hand side is also positive for an increasing density with space, while with an increase in 

time of E the right-hand side of eq. (70) is also positive.  

Here the (scalar) Eshelby stress is calculated as in eq.(29) with the peculiarity to be equal to 

minus the energy density. Keeping this in mind, we solve the system of equations (68) - (69) 

numerically by means of the conservative wave-propagation algorithm [19], [20]. This 

numerical scheme is stable up to the value of the Courant number equal to 1 and second-order 

accurate on smooth solutions. 

 

In order to place in evidence the effects of the space and time inhomogeneities on the 

amplitude and speed of propagation in the one-dimensional setting, we examine the 

propagation of a bell-shaped pulse excited at the left boundary of the computational domain 

by non-zero strain for a limited time interval 0 < t < 180Δt, such that 
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The initial stress pulse amplitude is equal to 0.9 and the width of the pulse is 180 space steps. 

The space step is chosen so as to have a Courant number equal to one. The velocity of 

propagation is dictated by the medium. The input is such that only a wave propagating to the 

right is initiated. 

  

  

 

Case 1: Increasing density with traveled space with fixed elasticity coefficient 
We start calculations with the fixed value of the dimensionless stiffness E = 0.9. The 

dimensionless density increases in space from the initial value ρ = 0.9 for 10% every 100 

space steps. Results of computations of the stress pulse shape after 1600 time steps are shown 

in Fig. 2. The shape of the actual pulse is compared with the reference pulse shown by a 

dashed curve. The reference pulse shape was calculated in the pure homogeneous medium 

with values ρ = 0.9 and E = 0.9 that provides the dissipationless propagation of the initial 

pulse. Here we have only spatial inhomogeneity and this does not lead to a gain or loss of 



energy.  As to the energy which must be conserved, we have checked the energy contained in 

the reference signal and the one obtained by adding the energy in the travelling signal plus the 

energy contained in the small ripples (that are due to the space discretization of density).  The 

calculated ratio of actual and reference energies is equal to 0.9655.  This is due to loss of the 

second-order accuracy in the numerical scheme at discontinuities each 100 space steps. For 

the bell-shaped signal, one can observe a retardation and a clear localisation of the signal 

accompanied by its amplification because of reflections at boundaries between computational 

cells with different densities. In the considered case with increasing density, each increase in 

density leads to the corresponding increase in impedance. Consequently, the transmission 

coefficient is always more than 1 at boundaries between computational cells with different 

densities. 

 

 
 

 

Figure 2: Pulse propagation in medium with increasing density. 

 

Case 2: Increasing elasticity coefficient in time while keeping fixed density 
Next, we calculate the propagation of the same pulse in another case. Here the density has the 

constant values ρ = 0.9, but the non-dimensional stiffness increases every 100 time steps by 

1% starting from the initial value E= 0.9. After 1600 time steps its value is equal to 1.055.The 

increase in the stiffness leads to the corresponding increase in the characteristic velocity. 

Accordingly, the Courant number is equal to 0.93 to provide the stability of computations. 

The continuity of velocity is provided each time of the stiffness increase. Results of numerical 

calculations of the pulse shape after 1600 time steps are shown in Fig. 3. Here we see no 

ripples since the discretization of the varying quantity (stiffness) is not in space but in time. 

The actual signal travels faster than the reference signal calculated with the same Courant 

number. The energy is increased since we have to input energy to make the elasticity 

coefficient grow. The calculated ratio of actual and reference energies is equal to 1.0846. This 



additional energy manifests itself in an amplification of the pulse amplitude together with its 

acceleration. The width of the pulse does not change. 

 

 

 
 

Figure 3: Pulse propagation in medium with increasing stiffness. 



Case 3: Increasing elasticity coefficient in time and density in space 
 

(a) Increasing in stiffness is slower than increasing in density 

Now we combine cases 1 and 2 for different growth rates. First we simply apply the growth 

rates both for density and stiffness used in the cases 1 and 2. The result of calculations with 

the Courant number equal to 0.93 presented in Fig. 4 shows the superposition of the foregoing 

two pictures. 

 

 
Figure 4: Pulse propagation in medium with increasing stiffness and density (increasing in 

stiffness is slower than increasing in density). 

 

 

The energy is still increased in this case reflecting in the increased amplification and 

decreased retardation of the pulse. The calculated ratio of actual and reference energies is 

equal to 1.0812. 



(b) Increasing in stiffness is the same as increasing in density 

If we decrease the growth rate for the density from 10 % to 1% for every 100 space steps, we 

obtain a faster pulse comparing to the previous case (Fig. 5). The calculated ratio of actual 

and reference energies is again equal to 1.0846, which reflects in the amplification of the 

amplitude. In this case of identical same growth rates for both density and stiffness, the 

retardation and acceleration of the pulse practically compensate each other. 

 

 
Figure 5: Pulse propagation in medium with increasing stiffness and density (increasing in 

stiffness is the same as increasing in density). 



(c) Increasing in stiffness is faster than increasing in density 

At last, we examine a slightly higher growth rate for the stiffness than for the density. 

Namely, we apply 2% increase in the stiffness every 100 time steps, keeping 1% increase for 

the density every 100 space steps. The Courant number here is equal to 0.877 due to the 

stiffness increase. The reference pulse is calculated with the same Courant number. The result 

is shown in Fig. 6. It looks like the one in Case 2, because of the leading role of the stiffness 

variation. 

 

 
Figure 6: Pulse propagation in medium with increasing stiffness and density (increasing in 

stiffness is faster than increasing in density). 

 

Thus, numerical calculations confirm theoretical predictions for the concentration of acoustic 

energy in dynamic materials. Increasing of the density in space leads to retardation and 

localisation (see Figure 4 the main part of the signal) of the pulse whereas the increase in 

stiffness results in its acceleration and an increase in the energy content of the signal while the 

other changes, if any, are not markedly visible. Variation of the rates of these factors can be 

used to obtain a desired shape and localization of the signal. 

 

6.2. Frequency variations and Doppler effect 

In order to demonstrate numerically the pure effect of time variation of the elasticity, we 

observe at a fixed spatial point the signal that passes by after alteration by successive 

increases of elasticity. At the left boundary one applies a sinusoidal load such 

as    /64 9.0,0 t sint   . The dimensionless density is also taken as 9.0  , so that the 

initial characteristic velocity is 10 c . Symbols with an over bar are dimensionless. With the 

prescribed initial signal the initial circular frequency clearly is 64/0   . The corresponding 

frequency is 128/12/00  f . This provides the scaling of period 0T and frequency 0f such 

that tT 1280  and tf  128/10 . The recording point is chosen as xx 1024   for real time 



tt 4096  or nondimensional space 1024/  xxx  for nondimensional time 4096t . t  

and x are the time and space increments in the numerical scheme. With Courant number 

8197.0CN  to guarantee the finite-difference convergence, 3072/1t or 13072 t  

and 8197.03072/1 x .  

 

Accordingly, 24128/3072128/10  tf , as indicated by the central value of the reference 

spectrum in Figure 9. The arrival time of the first signal at the observation point is 

8197.0/10248197.0/  xti  or nondimensional time 23.1249it  (see Figure 7). But this 

signal has already been altered 12 times with an elasticity increased by 1% every 100 time 

steps, and after the total time duration of observation, i.e., 284012494096  , it has been 

altered 40 times and the observed period is of the order of 22-23. Of course, an increase in the 

measured stress is observed (Figure 8). An FFT analysis of the observed signal effected by a 

standard MATLAB procedure shows that we obtain a shift in normalized frequency spectrum 

in accord with the Doppler effect formula for an observer in motion (but here it is the velocity 

of the signal that is observed). This differs from the more well known Doppler effect where 

the source is moving. Indeed, we have the standard formula 
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For the initial signal we had 240 f . After one increase in stiffness we have  04.01241 nf . 

When the first signal reaches the observation point this corresponds to 64.2506.12412 nf , 

and after 40 increases, we have 80.2820.12440 nf . Of course this variation is in fact 

continuous from 24 to 28.80, but the three relevant values are evidenced in Figure 9 (they 

have no equivalent to the left of )240 f . Here we must account for the fact that even the 

initial reference signal cannot be represented by a single spectral line. We conclude that our 

simple-minded approach corroborates the predicted effect. 

 

7. More general schemes and conclusion  

 

Lurie, in a series of papers [21], [22] and a book [2], has advocated the consideration of a 

checkerboard of space-time variations of material parameters. But he also provided an 

interesting result obtained by homogenisation for long time (and space) propagation where 

both material coefficients are fast periodic functions of the characteristic right-running 

variable. In our notation (Equations 30-31), the substance of his result (Equations 2.92 on 

p.44 in Lurie [2]) is that after homogenisation, we obtain the balance of energy and canonical 

momentum in the source-free form (superimposed tilde corresponds to the zeroth-order 

asymptotic homogenized solution) 
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which is tantamount to saying that the looked for effects disappear altogether by successive 

increases and decreases that compensate each other since the inequalities requested in 

Sections 4 and 5 above  must be satisfied (cf. Figure 10).  In general, however, in order to 

realize practically the phenomenon, it remains to find a way to cause a sufficiently rapid and 

sizeable change in time of the elasticity properties by action of an external field causing, e.g.,  



a fast phase transition. As a preparation for this, in the light of simple analytical solutions and 

a critical examination of what occurs at space-like and time-like discontinuities, we have here 

established the general tendencies of the acceleration  and slow down of propagating pulses as 

well as their possible increase in amplitude due to the propagation through a series of material 

interfaces and a succession of periodic increases in energy input in a one-dimensional (in 

space) model characteristic of dynamic materials where some minimum separation of space 

and time effects can be expected. 
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Figure 1: Space-like and time-like discontinuities in dynamic materials 
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Figure 7: Reference signal 



 

 

 
 

Figure. 8: Sinusoidal signal in material with increasing stiffness 



 
 

 

 

Figure 9: Frequency shift for dynamic material 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: A typical unit cell in a space-time checkerboard dynamic material 
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