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Numerical Simulation of Energy L ocalization in
Dynamic Materials

Mihhail Berezovski and Arkadi Berezovski

Abstract Dynamic materials are artificially constructed in such a wlagt they
may vary their characteristic properties in space or in tioreboth, by an appro-
priate arrangement or control. These controlled changisacan be provided by
the application of an external (non-mechanical) field, ootigh a phase transition.
In principle, all materials change their properties witmei, but very slowly and
smoothly. Changes in properties of dynamic materials shbelrealized in a short
or quasi-nil time lapse and over a sufficiently large mateggion. Wave propa-
gation is a characteristic feature for dynamic materiatabse it is also space and
time dependent. As a simple example of the complex beha¥idyrtamic materi-
als, the one-dimensional elastic wave propagation isstldiimerically in periodic
structures whose properties (mass density, elasticity)beaswitched suddenly in
space and in time. It is shown that dynamic materials havealtiéy to dynami-
cally amplify, tune, and compress initial signals. The thedynamically consistent
high-resolution finite-volume numerical method is appliedhe study of the wave
propagation in dynamic materials. The extended analysieeofnfluence of inner
reflections on the energy localization in the dynamic matsiis presented.

1 Introduction

The wave energy redistribution in materials may result gttseing [1] or harvest-
ing of energy [10]. Such a redistribution can be controlledtkie interaction of me-
chanical waves with a materials microstructure [5]. Fotdnse, unique dynamic
properties of phononic crystals can be used to guide andsfetastic waves for
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wave-based energy harvesting and/or to design materipébhéaof energy absorb-
ing [4]. Phononic crystals are normally static in the sefse their properties are
fixed in advance by their design parameters, which can lingirtfunctionality to
very specific arrangements [3]. These constraints appdianitdhe usefulness and
versatility of phononic crystals to predesigned narrovebaperating conditions.
Varying the material parameters of the scatterers in theseoof time like in dy-
namic materials (see [6] ) will modify the propagation of waxthrough a phononic
crystal. This may enable time-dependent phononic crystaisive more robust or
multiple operating regimes as compared to their static tarparts.

The localization of energy during wave propagation is thestimtriguing prop-
erty of dynamic materials [6, 9, 11]. Theoretical analysighis phenomenon is
possible only for zero impedance mismatch [6, 7], which islgghappens in prac-
tice. It is worth, therefore, to study numerically a more gi@h case with non-zero
impedance mismatch.

Wave propagation in heterogeneous solids has been a sabjeonsiderable
research for many years. However, micro-structural deta# rarely taken into ac-
count in large-scale structural dynamics or dynamic impamtilations. The reason
is the enormous complexity of wave phenomenain highly logemeous media. The
diversity of possible responses of materials with mictagtrre to dynamic loading
has been recently underlined [12]. This is why the one-dsimal (in space) case
is considered.

2 One-dimensional elasticity in small-strain approximation

In general, dynamic materials are characterized by mafgasimmeters varying in
space and time. In the framework of one-dimensional elastibis reflects in the
space and time dependence of dengitgnd Young's modulug&. With a standard
notation (1 is the elastic displacement; derivatives indicated by stijpis), the cor-
responding Lagrangian density has the form [11]

1 1
L= Ep(xat)(ut)z_EE(th)(uX)Z' (1)
The local balance of linear momentum is then written as (rdylforce for the sake
of simplicity)

(P(xt)); — (E(Xt)us), =O. ®)

We will consider a situation that may be easier to realizecerpentally than the
general case, namely, a purely inertial material inhomeggo = p(x)) and only
a time evolution of the elasticity coefficiertf,= E(t). In this case, we arrive at the
wave equation

Ut — C2(X,t)Uyxx = O, (3)

which can be also represented in the form of the hyperbotitesy of the first-order
equations
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vt = C2(X, )&, (4)
& =V, 5)

wherev = u, € = Uy, andc?(x,t) = E(t)/p(X).

We will examine the piecewise constant variations in spaddiane where, in the
single space dimension, discontinuitiBsare represented by straight lines parallel
to thet-axis while discontinuities; are straight lines parallel to theaxis (see
Figure 1). At the space-like discontinuity surfaEg the continuity of the traction

t A
X
L
Pi P:
E, E,
“Transmitted wave”’ “Reflected wave”
L
Z,
“Incident wave”
Incident wave _ | Transmitted wave
Reflected wave’ i
Pi P
E, E,
X, X, X
Fig. 1 Propagation diagram (adopted from [8])
is represented as
[w] =0 at 2, (6)

and at the time-like discontinuity surfagg the continuity of momentum is reduced
to[11]
[w]=0 at X, 7)

where double square brackets denote the usual jump.

The system of equations (4) - (5) with the use of conditions- (&) at fixed
discontinuity surfaces is solved numerically by means ef ¢bnservative wave-
propagation algorithm [2].
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3 Numerical simulation of dynamic material behavior

Our goal is to investigate the influence of impedance mismaig to 30%, upon the
energy localization within the checkerboard structure.alge provide the analysis
of the performance of the checkerboard structure for indisturbance of differ-
ent lengths (fromh = 100Ax to A = 100 x). The propagation occurs along 1D
medium which can be viewed as an elastic rod. The rod is asbtim@ogeneous
except a region of the length= 100 x, where dynamic material with a checker-
board structure is maintained (Fig 2.). The homogeneous péthe rod are used
for the better observation of initial and transmitted sigrzes well as all reflections.

Space
period, P,
~
Y —
£3
S
v
[
Initial signal Transmitted signal
at 1=, at 1=t,
< / N

Fig. 2 Geometry of the problem

The checkerboard part consists of a finite number of equdiadeeriods with
total length off = 100 x. We consider the case of the checkerboard structure with
equal number of steps in time and space periods. The numbiereperiods is not
limited. All the properties are normalized for better comgan of the results, i.e.,
the elastic velocity; for the fast material is set equal to 1. Through all numerical
experiments, we calculate the amplitude of the initialdisance at time;. The
amplitude of transmitted signal is measured at ttmie the second homogeneous
part.

The performance of the checkerboard structure is studied fange of values
of its material parameters, i.e., the elastic velocitieend the impedances= pic;.

We also consider the influence of the lengtlof the initial disturbance.

All numerical simulations are performed by means of the eorative wave
propagation algorithm [2]. This numerical scheme is staif¢o the value of the
Courant number equal to 1, and second-order accurate ontlsreoloitions. The
typical computational domain is presented in Fig. 3.

Here, the checkerboard structure consists of five spacedseadfP; = 250Ax
each and time period3 = 250At. The light blue color represents the fast material
with elastic wave velocitg; = 1. The dark blue represents the slow material, with
elastic wave velocityc, = 0.7. The impedance ratin= z,/7 is set to 1 in this
example.
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Fig. 3 Computational domain with wave route® (= 250x,R = 250t,cy/cp = 0.7,A =
1004 x)

The black dashed lines represent wave routes for the méaumrigce traveling
with no reflections (impedance match). We can observe thedtion of five limit
cycles. It should be noted that this simulation assumes xieel fength and finite
numbers of space periods. The corresponding wave field septed in Fig.4.

The wave field evolution repeats the wave routes behavi@rtrBmsformation of
the initial pulse into five peaks with higher amplitudes aggelue to the limit cycles
formation. In this ideal case with equal wave impedancesgthis no reflection of
waves from the material interfaces.

Our study is focused on the influence produced by a weak immuedaismatch
on the energy localization. During the wave propagatioauggh layers with differ-
ent impedances we expect reflections at the material ictesfa he corresponding
wave field history is presented in Fig. 5.

The main peaks of the transmitted signal almost repeat tad @hse with equal
impedances (Fig.4). The multiple waves reflected from apatid temporal inter-
faces are clearly observed.

4 Amplitude of transmitted pulses

4.1 Amplitude of transmitted pulses vs. velocity ratio

Now we perform simulations varying the elastic wave velpoitthe slow material
from 0.5 to 1. The length of the initial step pulse is B30with amplitude equal to
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Fig. 4 Wave field time historyRs = 2504, R = 250At, ¢y /¢ = 0.7,A = 1000AX)
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unity. We repeated these simulations for the impedance magmatch up to 30%.
The results are presented in Fig. 6.
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Fig. 6 Amplitude of transmitted pulse vs. elastic velocity ratw flifferent impedance ratias
(Ps=250Ax, R = 250At, A = 5004X)

The normalized amplitude of transmitted pulses is arourid 8@ case when the
elastic wave velocity in the slow material is two times ldgatin the fast one for this
particular setting. It reaches its maximum for the velocétjo equal approximately
to 0.57. As the elastic wave velocity in slow material becemieser to that in fast
material, the amplitude of transmitted pulses becomeslsmahd approaches to
that in the initial dispurbance.

These results show that the impedance mismatch up to 30%ehadittle in-
fluence on the amplitude of transmitted pulses. The noredkmplitude plots for
different impedance ratios are overlapping each other.

4.2 Amplitude of transmitted pulses vs.wave length

To study the behavior of a checkerboard structure for difielengths of the initial
disturbance, we choose the elastic wave velocity ratio leigud. 7. The length of
initial pulse varies from 100x to 100Q\x. The numerical simulations was repeated
for impedance ratios z=0.7, 0.8, 0.9, 1.0 and 1.1. The cporeding results are
shown in Fig. 7.
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Fig. 7 Amplitude of transmitted pulse vs. wave length for differémpedance ratioz (Ps =
250Ax, R = 250At,c,/c1 = 0.7)

It is clearly seen that the amplitude of transmitted pulsesrfitial signals that
are shorter than the length of the space period is increaseatly with the initial
wave length. Here the initial disturbance has not enougk tisndevelop into the
limit cycles due to the finite number of space periods. As thration of initial dis-
turbance increases, the amplitude of transmitted pulsesnbes constant, because
there is a sufficient time to generate well developed limdey with the energy lo-
calization (see Fig. 3). The average amplitude of transehipiulses is up to 22. As
before, the influence of the impedance mismatch is about 5%.

5 Conclusions

Application of the improved finite volume wave-propagataigorithm [2] allows

to implement jump relations both at space-like and time-tliscontinuities to sim-
ulate wave propagation in dynamic materials. It is shown tly@amic materials
demonstrate a very specific transmission of signals. Indbedtep-wise initial dis-
turbance transforms into a train of localized pulses. Thelaade of such pulses
depends on the way of switching material properties of laywhich is external in

relation to the wave propagation process. This means teaantplitude of trans-
mitted pulses can be determined only qualitatively. Ndwadess, the influence of
parameters of the checkerboard structure on the amplitutdensmitted pulses can
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be simulated. As it is shown, the effect of a weak impedansamaich is small, but
the variation of elastic wave velocity ratio is significafihe influence of the length
of the initial signal depends on the its ratio to the size ef¢checkerboard structure.

Acknowledgements Authors appreciate discussions with Prof. G.A.Mauginf.R¢dA.Lurie, and
Prof. S.Weekes. The first author acknowledges the support Worcester Polytechnic Institute.
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