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On the stability of a microstructure model

Mihhail Berezovski, Arkadi Berezovski

Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of
Technology, 21 Akadeemia Rd., 12618 Tallinn, Estonia

Abstract

The asymptotic stability of solutions of the Mindlin-type microstructure
model for solids is analyzed in the paper. It is shown that short waves
are asymptotically stable even in the case of a weakly non-convex free energy
dependence on microdeformation.

Keywords: wave propagation, microstructured solids, asymptotic stability,
dispersion

1. Dispersive wave equation for microstructured solids

Equations of motion for a solid with a microstructure include both macro-
scopic and microscopic balances of linear momentum, which in the one-
dimensional case without body forces can be represented as follows [1]:

ρ0
∂2u

∂t2
=
∂σ

∂x
, (1)

I
∂2φ

∂t2
= −∂η

∂x
+ τ, (2)

where the macrostress σ, the microstress η, and the interactive force τ are
defined as derivatives of the free energy function W

σ =
∂W

∂ux
, η = −∂W

∂φx

, τ = −∂W
∂φ

. (3)

Here u is the displacement, ρ0 is the matter density, I represents microinertia,
φ is the microdeformation.
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For the Mindlin-type microstructure model the free energy function can
be chosen as quadratic [2]

W =
ρ0c

2

2
u2x + Aφux +

1

2
Bφ2 +

1

2
Cφ2

x +
1

2
Dψ2. (4)

Here c is the elastic wave speed, A,B,C, and D are material parameters,
ψ is the auxiliary internal variable [3]. Due to definitions (3), equations of
motion both for macroscale and for microstructure can be represented in the
form, which includes only displacement and microdeformation

utt = c2uxx +
A

ρ0
φx, (5)

Iφtt = Cφxx − Aux −Bφ, (6)

where I = 1/(R2D) and R is an appropriate constant.
The last system of equations yields the single dispersive wave equation

[2]

utt = c2uxx +
C

B

(
utt − c2uxx

)
xx

− I

B

(
utt − c2uxx

)
tt
− A2

ρ0B
uxx. (7)

More particular cases of the dispersive wave equation (7) can be found in
papers [4–9].

The comparison of results of direct computation of wave propagation
in periodic laminates with predictions of the Mindlin-type microstructure
model (5) - (6) [10] shows a good agreement for long waves, but it fails for
waves which length is comparable with the size of layers. It was also shown
[10, 11] that the discrepancy can be eliminated by a slight modification of
the Mindlin-type model of a microstructure. The modification consists in
the change of the sign in last two terms of right-hand side of Eq. (6) corre-
sponding to the contribution of the interactive internal force. However, this
may result in the lost of convexity in the free energy function (4). Convexity
is a desired property of the free energy, because it provides stable solutions
of corresponding mathematical problems. The stability for a non-convex free
energy function requires a special consideration. This is why the stability
of the Mindlin-type model of a microstructure (5) - (6) is analyzed in this
paper. More precisely, the asymptotic stability of the model is considered in
detail.

It should be noted that the similar problem with the choice of the sign
of higher-order terms is appeared in the context of strain-gradient elasticity
theories [12–15].
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2. Asymptotic stability

The characteristic property of the Mindlin-type microstructure model is
the quadratic form of the free energy function (4) which is assumed to be
convex by default. Convexity requires that the matrix corresponding to this
quadratic form

M =


ρ0c

2 A 0 0
A B 0 0
0 0 C 0
0 0 0 D

 (8)

must be positive definite. The requirement of the positive definiteness results
in conditions

ρ0 > 0, ρ0c
2B − A2 > 0, C > 0, D > 0. (9)

However, the free energy in a laminated composite used for the comparison
with a microstructured medium [10, 11] may be not necessarily convex, while
it is convex in each layer of the laminate. This may be a source of the dis-
crepancy in results of numerical simulations of wave propagation in laminates
performed by direct calculations and by the microstructure modeling [10].

In order to study a more general situation, let us assume that the condi-
tions of convexity for the free energy in the microstructure model (9) are not
fulfilled completely. Nevertheless, the microstructure model should produce
asymptotically stable solutions. To verify the asymptotic stability, we return
to the governing equations of the microstructure model (5) - (6) and consider
exponential plane-wave solutions of the form u = u0e

Γt+ikx, φ = φ0e
Γt+ikx,

where u0 and φ0 are constants (cf. [16]). The required asymptotic stability
will be reached if ReΓ is non-positive. This is equivalent to the non-positivity
for ImΓ2.

Introducing the exponential plane wave solutions into the system of equa-
tions (5), (6), we arrive at the system of linear equations for u0 and φ0{

ρ0u0Γ
2 + ρ0c

2u0k
2 − Aφ0ik = 0,

Iφ0Γ
2 + Cφ0k

2 + Au0ik +Bφ0 = 0.
(10)

The condition of the existence of a non-trivial solution is the vanishing of the
determinant of this system of equations

(ρ0Γ
2 + ρ0c

2k2)(IΓ2 + Ck2 +B)− A2k2 = 0. (11)
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Let Γ2 = v + iw. Then Eq. (11) can be represented as the sum of real and
imaginary parts

(ρ0v + ρ0c
2k2)(Iv + Ck2 +B) + iρ0w(Iv + Ck2 +B)+

+ iIw(ρ0v + ρ0c
2k2)− ρ0Iw

2 = A2k2.
(12)

The imaginary part of the left-hand side of Eq. (12) should be zero yielding

(Iv + Ck2 +B) + I(v + c2k2) = 0. (13)

This means that the real part of Γ2 satisfies

2Iv = −Ck2 −B − Ic2k2. (14)

Inserting the value of the real part of Γ2 into the real part of Eq. (12)

(ρ0v + ρ0c
2k2)(Iv + Ck2 +B)− ρ0Iw

2 = A2k2, (15)

we obtain the condition for determining of the imaginary part of Γ2

w2 = −(Ic2k2 + Ck2 +B)2/4I2 − A2k2/ρ0I. (16)

As it was mentioned, the imaginary part of Γ2 should be negative to provide
the asymptotic stability of the microstructure model. This may be achieved
by the choice of the negative sign in the square-root of the right hand side
of Eq. (16)

w = −
√
−(Ic2k2 + Ck2 +B)2/4I2 − A2k2/ρ0I. (17)

Moreover, the imaginary part of Γ2 is a real number. Therefore, the right
hand side of Eq. (16) must be non-negative

−(Ic2k2 + Ck2 +B)2/4I2 − A2k2/ρ0I ≥ 0. (18)

Rewriting Eq. (18) in the form

−A2k2/ρ0I ≥ (Ic2k2 + Ck2 +B)2/4I2, (19)

we see that the latter condition is satisfied only if I < 0. Since signs of
parameters I and D should coincide, we arrive at a non-convex free energy
function. The conservation of hyperbolicity of the equation of motion for the
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microstructure (6) yields in the simultaneous negative sign for the material
parameter C. It should be noted that the inequality (19) is violated for small
wave numbers, where the pure convex microstructure model is valid.

Summarizing, we conclude that asymptotically stable solutions are pro-
vided for sufficiently large wave numbers by a microstructure model with a
(non-convex) free energy function

W =
ρ0c

2

2
u2x + Aφux +

1

2
Bφ2 − 1

2
Cφ2

x −
1

2
Dψ2, (20)

with C > 0 and D > 0.
Keeping the definitions of stresses, we have in this case

σ =
∂W

∂ux
= ρ0c

2ux + Aφ, η = −∂W
∂φx

= Cφx. (21)

The expression for the interactive internal force τ is not changed

τ = −∂W
∂φ

= −Aux −Bφ. (22)

The derivative of the free energy with respect to the auxiliary internal vari-
able gives

ξ = −∂W
∂ψ

= Dψ. (23)

The evolution equations for the microdeformation φ and for the auxiliary
internal variable ψ can be rewritten as [17]

φt = RDψ, ψt = −R(τ − ηx). (24)

This leads to the hyperbolic equation for the microdeformation [17]

φtt = −R2D(τ − ηx), (25)

and allows us to represent the equations of motion both for macro- and
microstructure in the form

utt = c2uxx +
A

ρ0
φx, (26)

Iφtt = Cφxx + Aux +Bφ, (27)

where I = 1/(R2D).
It easy to see that the sign in last two terms of right-hand side of Eq. (27)

corresponding to the contribution of the interactive internal force is changed
in the comparison with Eq. (6), as well as it follows from results of numerical
simulations [10].
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3. Dispersion relations

To illustrate the difference in the original and modified microstructure
models, we analyze the corresponding dispersion relations. We will consider
the dispersive wave equations for both original and modified microstructure
models in parallel

utt = c2uxx +
C

B

(
utt − c2uxx

)
xx

− I

B

(
utt − c2uxx

)
tt
− A2

ρ0B
uxx. (28)

utt = c2uxx −
C

B

(
utt − c2uxx

)
xx

+
I

B

(
utt − c2uxx

)
tt
− A2

ρ0B
uxx. (29)

To simplify the matter, we introduce new coefficients following [2]

c21 =
C

I
, c2A =

A2

ρB
, p2 =

I

B
. (30)

The constants c1 and cA are velocities while p has the dimension of time.
Then Eqs. (28) and (29) are rewritten in the form

utt = (c2 − c2A)uxx + p2c21
(
utt − c2uxx

)
xx

− p2
(
utt − c2uxx

)
tt
, (31)

utt = (c2 − c2A)uxx − p2c21
(
utt − c2uxx

)
xx

+ p2
(
utt − c2uxx

)
tt
. (32)

We assume the solution of each equation above in the form

u(x, t) = û exp [i(kx− ωt)] , (33)

with wave number k and frequency ω. Introducing the latter into Eqs. (31)
and (32), the following dispersion relations are obtained

ω2 =
(
c2 − c2A

)
k2 + p2

(
ω2 − c2 k2

) (
ω2 − c21k

2
)
, (34)

ω2 =
(
c2 − c2A

)
k2 − p2

(
ω2 − c2 k2

) (
ω2 − c21k

2
)
. (35)

Introducing dimensionless quantities

ξ = pc0k, η = pω, (36)
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Figure 1: Dispersion curves for the original microstructure model (28) for γA = 0.6, γ1 =
0.5: 1 – optical branch, 2 – acoustical branch; dashed lines – asymptotes to dispersion
curves.

and dimensionless parameters

γ1 = c1/c, γA = cA/c, (37)

we can reduce Eqs. (34) and (35) to

η2 =
(
1− γ2A

)
ξ2 +

(
η2 − ξ2

) (
η2 − γ21ξ

2
)
, (38)

η2 =
(
1− γ2A

)
ξ2 −

(
η2 − ξ2

) (
η2 − γ21ξ

2
)
. (39)

In order to visualize the dispersion curves, the dispersion relations are rear-
ranged as follows(

η2 − ξ2
)2

+
(
η2 − ξ2

) (
ξ2 − γ21ξ

2 − 1
)
− γ2Aξ

2 = 0, (40)(
η2 − ξ2

)2
+
(
η2 − ξ2

) (
ξ2 − γ21ξ

2 + 1
)
+ γ2Aξ

2 = 0, (41)

respectively.
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Figure 2: Dispersion curves for the modified microstructure model (29) for γA = 0.6, γ1 =
0.5: 1 – optical branch, 2 – acoustical branch; dashed lines – asymptotes to dispersion
curves.

Solving quadratic equations (40) and (41), we will have

η2 = ξ2 − ξ2 − γ21ξ
2 − 1

2
±
√

(ξ2 − γ21ξ
2 − 1)2

4
+ γ2Aξ

2, (42)

η2 = ξ2 − ξ2 − γ21ξ
2 + 1

2
±
√

(ξ2 − γ21ξ
2 + 1)2

4
− γ2Aξ

2. (43)

The dispersion curves corresponding to relations (42) and (43) are presented
in Figs. 1 and 2.

Figure 1 is completely similar to that presented in [2] for other values
of dimensionless parameters. Figure 2 demonstrates a different behavior
of dispersion curves, especially for the acoustical branch: it exists only for
sufficiently large wave numbers and is placed below the asymptote.

4. Conclusions

It is clear that the convex Mindlin-type microstructure model (4) - (6)
(with positive values of parameters A,B,C and D) is stable for all wave
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numbers. This model is working well for waves which length is longer than
the size of inhomogeneity. However, the solution of Eqs. (5) - (6) is stable but
incorrect for a certain range of wave numbers. In particular, such solution
cannot reproduce correctly the results of direct numerical simulations of wave
propagation in periodic laminates [10] if the wavelength is comparable with
the size of layers. The slightly modified microstructure model (20), (26)- (27),
which provides much more good agreement with direct numerical simulations
[11], is not strictly convex but asymptotically stable for sufficiently large wave
numbers.

The convexity of the free energy is a natural requirement providing sta-
bility conditions in homogeneous solids. Inhomogeneous solids may have,
in principle, more weak requirements for the free energy convexity [18]. As
it is shown, the asymptotic stability of wave propagation in microstructured
solids can be provided for sufficiently large wave numbers by a microstructure
model with not necessary strictly convex free energy function.
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