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Dispersive Wave Equations for Solids
with Microstructure

Arkadi Berezovski, Jüri Engelbrecht and Mihhail Berezovski

Tallinn University of Technology, Estonia, e-mail: Arkadi.Berezovski@cs.ioc.ee

Abstract The dispersive wave motion in solids with microstructure is consid-
ered in the one-dimensional setting in order to understand better the mech-
anism of dispersion. It is shown that the variety of dispersive wave propaga-
tion models derived by homogenization, continualization, and generalization
of continuum mechanics can be unified in the framework of dual internal
variables theory.
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1 Introduction

Several modifications of wave equation are proposed to describe wave prop-
agation in heterogeneous materials reflecting dispersion effects, such as the
linear version of the Boussinesq equation for elastic crystals [1, 2, 3, 4, 5], the
Love-Rayleigh equation for rods accounting for lateral inertia [6, 7, 8, 9, 10],
the Maxwell-Rayleigh equation of anomalous dispersion [1], the causal model
for the dispersive wave propagation [11], and the Mindlin-type model [12].

All the equations listed above are based either on homogenization [2, 3,
9], or on continualisation [4, 8, 11], or on generalized continuum theories
[5, 12]. There is a clear need in understanding their structure from a unified
viewpoint. In what follows, the description of the non-dissipative dispersive
wave propagation is unified by the dual internal variable approach [13].

2 Thermomechanics in one dimension

In the case of thermoelastic conductors of heat, the one-dimensional motion
is governed by local balance laws for linear momentum and energy (no body
forces)

(ρv)t − σx = 0, (1)(
ρv2

2
+ E

)
t

− (σv −Q)x = 0, (2)
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and by the second law of thermodynamics

St +

(
Q

θ
+K

)
x

≥ 0. (3)

Here t is time, subscripts denote derivatives with respect time and space,
respectively, ρ is the matter density, v = ut is the physical velocity, σ is the
Cauchy stress, E is the internal energy per unit volume, S is the entropy per
unit volume, θ is temperature, Q is the material heat flux, the ”extra entropy
flux” K vanishes in most cases, but this is not a basic requirement.

3 Internal variables

In the framework of the phenomenological continuum theory it is assumed
that the influence of the microstructure on the overall macroscopic behav-
ior can be taken into account by the introduction of an internal variable φ
which is associated with the distributed effect of the microstructure. In the
dual internal variable theory [13], an auxiliary internal variable ψ is used
additionally. Then the free energy W is specified as the general sufficiently
regular function of the strain, temperature, internal variables φ,ψ and their
space derivatives

W =W (ux, θ, φ, φx, ψ, ψx). (4)

The corresponding equations of state are given by

σ :=
∂W

∂ux
, S := −∂W

∂θ
, τ := −∂W

∂φ
, η := −∂W

∂φx
,

ξ := −∂W
∂ψ

, ζ := −∂W
∂ψx

.

(5)

The dissipation inequality (3) can be rewritten as

(τ − ηx)φt + (ξ − ζx)ψt − (Q/θ +K)θx + (ηφt + ζψt + θK)x ≥ 0. (6)

Following [14], we chose the non-zero extra entropy flux K in the form

K = −θ−1ηφ t − θ−1ζψ t. (7)

Such a choice allows us to reduce the dissipation inequality (6) to

(τ − ηx)φt + (ξ − ζx)ψt −
(
Q− ηφt − ζψt

θ

)
θx ≥ 0. (8)

In this case, the dissipation is clearly decomposed into intrinsic and thermal
parts. The latter means that the dissipation inequality in the isothermal case



3

reduces to
(τ − ηx)φt + (ξ − ζx)ψt ≥ 0. (9)

In the case of zero dissipation, Eq. (9) yields that the evolution equations for
internal variables can be represented in the form [13]

φ t = R(ξ − ζx), ψt = −R(τ − ηx), (10)

where R is an arbitrary coefficient.

4 Constitutive model

Having the evolution equations for internal variables in the non-dissipative
case, we can derive a microstructure model. We start with the free energy
dependence in the form

W =
ρc2

2
u2x+Auxφ+Ãuxφx+aux

(
dF (u)

du

)
x

+
1

2
Bφ2+

1

2
Cφ2

x+
1

2
Dψ2, (11)

where c is the elastic wave speed, A, Ã,B,C, and D are material parameters,
F (u) is the nonlinear contribution at macroscale, a is a scaling coefficient. For
simplicity, we include only the contribution of the second internal variable
itself. In this case, stresses are calculated as follows:

σ =
∂W

∂ux
= ρc2ux +Aφ+ Ãφx + a

(
dF (u)

du

)
x

,

η = −∂W
∂φx

= −Ãux − Cφx, ζ = −∂W
∂ψx

= 0.

(12)

The interactive internal forces τ and ξ are, respectively,

τ = −∂W
∂φ

= −Aux −Bφ, ξ = −∂W
∂ψ

= −Dψ. (13)

The evolution equations (10) in the case of zero dissipation take the form

φ t = R(ξ − ζx) = −RDψ, (14)

ψt = −R(τ − ηx) = R(Aux +Bφ− Ãuxx − Cφxx). (15)

It follows immediately from Eqs. (14), (15) that the evolution equation for
the primary internal variable (14) can be rewritten as the hyperbolic equation

φ tt = R2D(τ − ηx). (16)
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Accordingly, the balance of linear momentum (1) results in

ρutt = ρc2uxx +Aφx + Ãφxx + a[F ′(u)]xx, (17)

and the evolution equation for the primary internal variable (16) gives

Iφtt = Cφxx + Ãuxx −Aux −Bφ, (18)

where I = 1/(R2D) is an internal inertia measure.

Single dispersive wave equation. To derive the single equation we make
following steps. We determine the first derivative of the internal variable from
Eq. (18)

Bφx = −Iφttx + Cφxxx + Ãuxxx −Auxx. (19)

The third mixed derivative φttx follows from Eq. (17)

Aφttx =
(
ρutt − ρc2uxx − a[F ′(u)]xx

)
tt
− Ãφttxx. (20)

The appeared fourth-order mixed derivative the internal variable is calculated
by means Eq. (18)

Iφttxx = Cφxxxx + Ãuxxxx −Auxxx −Bφxx, (21)

and, in its turn, the fourth-order space derivative is determined again from
Eq. (17)

Ãφxxxx =
(
ρutt − ρc2uxx − a[F ′(u)]xx

)
xx

−Aφxxx. (22)

Collecting all the results (19) - (22) and substituting them into the balance
of linear momentum (17) we arrive at the dispersive wave equation

ρutt − ρc2uxx − a[F ′(u)]xx =
C

B

(
ρutt − ρc2uxx − a[F ′(u)]xx

)
xx

− I

B

(
ρutt − ρc2uxx − a[F ′(u)]xx

)
tt
+
Ã2

B
uxxxx − A2

B
uxx.

(23)

5 Examples of dispersive wave equations

5.1 Linear dispersive wave equations

Mindlin-type model. The Mindlin-type model [12] corresponds to a = 0
(no nonlinearity) and Ã = 0 (no coupling between gradients) in Eq. (23):

utt = c2uxx +
C

B

(
utt − c2uxx

)
xx

− I

B

(
utt − c2uxx

)
tt
− A2

ρB
uxx. (24)
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The Maxwell-Rayleigh model of anomalous dispersion [1] corresponds to a
special case of the latter equation with C = 0.

Causal model.Keeping the absence of nonlinearity in Eq. (23) and assuming
A = 0 (no coupling between strain and internal variable; only gradients are
coupled), we arrive at the causal model [11]:

utt = c2uxx +
C

B

(
utt − c2uxx

)
xx

− I

B

(
utt − c2uxx

)
tt
+
A′2

ρB
uxxxx. (25)

The higher-order dispersive wave equations (24) and (25) differ from each
other only by the last term in the right hand side. However, this difference is
essential, because the second-order space derivative in Eq. (24) exhibits the
slowing down the velocity of propagation, whereas the fourth-order derivative
in Eq. (25) does not. At the same time, derivatives of the wave operator in
Eq. (24) cannot be rearranged, whereas it is possible in Eq. (25) due to the
additional fourth-order space derivative.

Unified model. The unified model includes both couplings mentioned above

utt = c2uxx +
C

B

(
utt − c2uxx

)
xx

− I

B

(
utt − c2uxx

)
tt
+
A′2

ρB
uxxxx − A2

ρB
uxx,

(26)
which generalizes both approaches [15].

5.2 Nonlinear dispersive wave: Boussinesq equation

The obtained dispersive wave equation (23) can be reduced to the Boussinesq
equation under following assumptions:

1. I = 0, which means zero microinertia;
2. G = 0 that corresponds to the absence of nonlinearity in microstructure;
3. A = 0 (no coupling between strain and internal variable; only gradients

are coupled);

As a result, Eq. (23) reduces to

ρutt − ρc2uxx − a[F ′(u)]xx =
C

B
(ρutt − a[F ′(u)]xx)xx +

Ã2

B
uxxxx. (27)

This equation belongs to the class of the dispersive wave equations which are
characterized by the so-called ”Boussinesq paradigm” [16], which means: i)
bidirectionality of waves; ii) nonlinearity (of any order); iii) dispersion (of any
order modelled by space and time derivatives of the fourth order at least).

This paradigm has its roots in the classical Boussinesq equation for waves
in shallow water, to which Eq. (27) can be reduced by the choice of the
nonlinearity function F (u) = u3 [16] and C = 0
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utt − c2uxx =

(
3au2

ρ
+
Ã2

ρB
uxx

)
xx

. (28)

6 Conclusions

As it was shown on the example of one-dimensional wave propagation, non-
linear terms can be easily introduced in the framework of the dual internal
variables approach resulting in a generalized nonlinear dispersive wave equa-
tion. A cubic macroscopic nonlinearity leads to the Boussinesq equation.

Acknowledgements Support of the Estonian Science Foundation is gratefully acknowl-
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