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Abstract: Dynamic response of inhomogeneous materials exhibits new effects, which often 

do not exist in homogeneous media. It is quite natural that most of studies of wave and front 

propagation in inhomogeneous materials are associated with numerical simulations. To 

develop a numerical algorithm and to perform the numerical simulations of moving fronts we 

need to formulate a kinetic law of progress relating the driving force and the velocity of the 

discontinuity. The velocity of discontinuity is determined by means of the non-equilibrium 

jump relations at the front. The obtained numerical method generalizes the wave-propagation 

algorithm to the case of moving discontinuities in thermoelastic solids. 
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1. Introduction 

The understanding of the behavior of materials under very high strain rate loading conditions 

is vital in many areas of civilian and military applications. So far, the most practical 

structures/materials to absorb impact energy and resist impact damage are designed in the 

form of layered composites. Other possibilities are provided by functionally graded materials 

and shape memory alloys. In order to characterize the dynamic behavior of materials under 

impact loading, diagnostic experiments are usually carried out using a plate impact test 

configuration under a one-dimensional strain state. The plate impact test serves the exact 

purpose of characterizing materials under high-pressure dynamic loading, analogous to that of 

uniaxial tensile tests under quasi-static loading conditions. 

Laminated composites. The major past work in studying wave profiles in alternating layered 

systems using specifically the plate impact test configuration are summarized recently in 

Chen and Chandra (2004); Chen, Chandra and Rajendran (2004). For almost all the 

experiments, stress (or velocity) response have shown an oscillatory behavior in the pulse 

duration segment. This behavior is conspicuously absent in homogeneous systems. The 

oscillatory behavior about a mean value in the periodically layered systems are consistently 

exhibited in the systematic experimental work by Zhuang, Ravichandran and Grady (2003). 

As  pointed out in Zhuang, Ravichandran and Grady (2003), stress wave propagation through 

layered media made of isotropic materials provides an ideal model to investigate the effect of 

heterogeneous materials under shock loading, because the length scales, e.g., thickness of 

individual layers, and other measures of heterogeneity, e.g., impedance mismatch, are well 

defined. The origin of the observed structure of the stress waves was attributed to material 

heterogeneity at the interfaces. For high velocity impact loading conditions, it was fully 

realized that material nonlinear effects may play a key role in altering the basic structure of 

the shock wave. 

Shape memory alloys. A polycrystalline shape memory alloy body subjected to external 

impact loading will experience deformations that will propagate along the SMA body as 
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stress waves. The experimental investigation concerning impact-induced austenite-martensite 

phase transformations was reported by Escobar and Clifton (1993). In their experiments, 

Escobar and Clifton used thin plate-like specimens of Cu-14.44Al-4.19Ni shape-memory 

alloy single crystal. One face of this austenitic specimen was subjected to an oblique impact 

loading, generating both shear and compression. As Escobar and Clifton noted, measured 

velocity profiles provide several indications of the existence of a propagating phase boundary, 

in particular, a difference between the measured particle velocity and the transverse 

component of the projectile velocity. This velocity difference, in the absence of any evidence 

of plastic deformation, is indicative of a stress induced phase transformation that propagates 

into the crystals from the impact face. The determination of this velocity difference is most 

difficult from the theoretical point of view, because it depends on the velocity of the moving 

phase boundary. 

In this paper, wave and front propagation is simulated numerically in a one-dimensional case. 

The propagation is modeled by the one-dimensional hyperbolic system of conservation laws 
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where ρ is the mass density, ε is the strain, and v the particle velocity. 

The densities of the materials may be different, and the materials response to compression is 

characterized by the distinct stress-strain relations σ(ε). To close the system of Eqs. (1), the 

stress-strain relation for each material can be chosen as linear 

,2 c                                                            (2) 

or weakly nonlinear 

 ,12  Ac                                                 (3) 

where c is the longitudinal wave velocity and A is a  parameter of nonlinearity, values and 

sign of which are supposed to be different for hard and soft materials. Due to rapidly-varying 

properties, we apply the finite-volume wave-propagation algorithm in its conservative form  

(Bale et al. (2003)) to solve the system of equations (1)-(2) (or (3)). At the moving phase 

boundary the algorithm is extended as described in Berezovski and Maugin (2005a).  

The paper is organized as follows. In the next Section we repeat the classical results for linear 

wave propagation in periodic media. Then we examine the effect of weak nonlinearity on the 

material response. The introduction of the nonlinearity allows us to reproduce the shock 

response in laminated composites observed experimentally. Linear and nonlinear wave 

propagation in functionally graded materials is considered in the Section 5. Another type of 

nonlinearity affects the front propagation in shape memory alloys under impact. This 

nonlinearity is connected to the motion of the phase front. 

 

2. One-dimensional linear waves in periodic media  
As the first example, we consider the propagation of a pulse in a periodic medium composed 

by alternating layers of dissimilar materials. The initial pulse shape is presented in Figure 1 

where the periodic variation in density (normalized by its maximal value) is also 

schematically shown by dashed lines. Clearly, the wavelength is much larger than the 

periodicity scale. For the test problem, materials are chosen as polycarbonate (ρ = 1190 

kg/m
3
, c = 4000 m/s) and Al 6061 (ρ = 2703 kg/m

3
, c = 6149 m/s). Calculations are 

performed with Courant-Friedrichs-Levy number equal to 1. The result of simulation for 4000 

time steps is shown in Figure 2. We observe a distortion of the pulse shape and a decrease in 

the velocity of the pulse propagation in comparison of the maximal longitudinal wave 

velocity in the materials. These results correspond to the prediction of the effective media 

theory by Santosa and Symes (1991) both qualitatively and quantitatively (Fogarthy and 

LeVeque (1999)). 
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Figure 1.  Initial pulse shape 
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Figure 2.  Pulse shape at 4700 time step. Linear case 

 

3. One-dimensional weakly nonlinear waves in periodic media  

In the next example, we will see the influence of material nonlinearity on the wave 

propagation. The approximate Riemann solver for the nonlinear elastic media (Eq. 3) is 

similar to that used in LeVeque (2002). This means that a modified longitudinal wave 

velocity, c1, following the nonlinear stress-strain relation (3) is applied at each time step 

Acc 211                          (4) 

instead of the piece-wise constant one corresponding to the linear case. We consider the same 

pulse shape and the same materials (polycarbonate and Al 6061) as in the case of the linear 

periodic medium. However, the nonlinear effects appear only for a sufficiently high 

magnitude of loading. The values of the parameter of nonlinearity A were chosen as 0.24 for 

Al 6061 and 0.8 for polycarbonate. The results of simulations corresponding to 5200 time 

steps are shown in Figure 3. 

We observe that an initial bell-shaped pulse is transformed in a train of soliton-like pulses 

propagating with amplitude-dependent speeds. Such kind of behavior was first reported in 

LeVeque (2002), who called these pulses as "stegotons" because their shape is influenced by 

the periodicity. 
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Figure 3.  Pulse shape at 5200 time step. Nonlinear case 

 

4. Nonlinear elastic wave in laminates under impact loading 

To analyze the influence of multiple reflections of internal interfaces on shock wave 

propagation in the layered composites, we consider the initial-boundary value problem of 

impact loading of a heterogeneous medium composed of alternating layers of two different 

materials (Berezovski et al. (2006)). The impact is provided by a planar flyer which has an 

initial velocity v0. A buffer of the same material as the soft component of the specimen is used 

to eliminate the effect of wave reflection at the stress-free surface. Both left and right 

boundaries are stress-free. As previously, we apply a nonlinear stress-strain relation σ(ε, x) for 

each material (3) (cf. Meurer, Qu and Jacobs (2002)). Results of numerical calculations 

depend crucially on the choice of the parameter of nonlinearity A.  We choose this parameter 

from the conditions to match the numerical simulations to experimental results (see discussion 

in Berezovski et al. (2006)). 
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Figure 4.  Comparison of shock stress time histories corresponding to 

the experiment 110501 by Zhuang, Ravichandran and Grady (2003) 
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Figure 4 shows the stress time histories in the composite, which consists of 16 units of 

polycarbonate, each 0.37 mm thick, and of 16 units of stainless steel, each 0.19 mm thick. The 

stress time histories correspond to the distance 3.44 mm from the impact face. Calculations 

are performed for the flyer velocity 1043 m/s and the flyer thickness 2.87 mm.  

The nonlinear parameter A is chosen here to be 2.80 for polycarbonate and zero for stainless 

steel. Additionally, the stress time history corresponding to the linear elastic solution (i.e., 

nonlinear parameter A is zero for both components) is shown. One can see that the stress time 

history computed by means of the considered nonlinear model is very close to the 

experimental one. It reproduces three main peaks and decreases with distortion, as it is 

observed in the experiment by Zhuang, Ravichandran and Grady (2003). As one can see, the 

agreement between results of calculations and experiments is achieved by the adjustment of 

the nonlinear parameter A. 

 

5. Waves in functionally graded materials 

Studies of the evolution of stresses and displacements in FGMs subjected to quasistatic 

loading (Suresh and Mortensen (1998)) show that the utilization of structures and geometry of 

a graded interface between two dissimilar layers can reduce stresses significantly. Such an 

effect is also important in the case of dynamical loading where energy-absorbing applications 

are of special interest. Following Chiu and Erdogan (1999), we consider the one-dimensional 

problem in elastodynamics for an FGM slab in which material properties vary only in the 

thickness direction.  
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Figure 5.  Variation of stress with time in the middle of the slab 

 

It is assumed that the slab is isotropic and inhomogeneous with the following fairly general 

properties: 
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where l is the thickness, a, m, and n are arbitrary real constants with a > -1, E0 and ρ0 are the 

elastic constant and density at x = 0. It is assumed that the slab is at rest for t < 0. Following 

Chiu and Erdogan (1999), we consider an FGM slab that consists of nickel and zirconia. The 

thickness of the slab is l = 5 mm, on one surface the medium is pure nickel, on the other 

surface pure zirconia, and the material  properties E(x) and ρ(x) vary smoothly in thickness 

direction. A pressure pulse defined by 



))()((),( 00 ttHtHtl               (6) 

is applied to the surface x = l and the boundary x = 0  is "fixed". Here H is the Heavyside 

function. The pulse duration is assumed to be t0 = 0.2 μs. The properties of the constituent 

materials used are given in Table 1 (Chiu and Erdogan (1999)). The material parameters for 

the FGMs used are (Chiu and Erdogan (1999)): a  = - 0.12354, m = - 1.8866, and  n  = - 

3.8866. The stress is calculated up to 12 μs (the propagation time of the plane wave through 

the thickness l = 5 mm is approximately 0.77 μs in pure ZrO2 and 0.88 μs in Ni). 

 

Table 1. Properties of materials 

Property Value Unit  Material 

Density 

 

5331 

8900 

kg/m
3 

 

ZrO2 

Ni 

Young modulus 

 

151 

207 

GPa 

 

ZrO2 

Ni 

Poisson’s ratio 0.33 

0.31 

 ZrO2 

Ni 

 

Numerical simulations were performed by means of the same algorithm as above. 

Comparison of the results of the numerical simulation and the analytical solution Chiu and 

Erdogan (1999) for the time dependence of the normalized stress σ/σ0 at the location x/l = 1/2 

is shown in Figure 5. As one can see, it is difficult to make a distinction between analytical 

and numerical results. 

Variation of stress in nonlinear case for same materials with the nonlinearity parameter A = 

0.19 is shown in Figure 6. The amplitude amplification and pulse shape distortion in 

comparison with linear case is clearly observed. In addition, velocity of a pulse in nonlinear 

material is increased.  
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Figure 6.  Variation of stress with time in the middle of the slab 

 

6. Phase-transition fronts 

In the case of phase-transition front propagation, we consider the boundary value problem of 

the tensile loading of a 1-D shape memory alloy bar that has uniform cross-sectional area and 

temperature. The bar occupies the interval  0 < x < L in a reference configuration and the 

boundary x = 0 is subjected to the tensile loading. The bar is assumed to be long compared to 
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its diameter so it is under a uniaxial stress state and the stress σ(x,t) depends only on the axial 

position and time. The density of the material ρ is assumed constant. All field variables are 

averaged over the cross-section of the bar. 

At each instant t during a process, the strain ε(x,t) varies smoothly within the bar except at 

phase boundaries; across a phase boundary, it suffers jump discontinuity. Away from a phase 

boundary, balance of linear momentum and kinematic compatibility require the satisfaction of 

equations (1). Suppose that at time t there is a moving discontinuity in strain or particle 

velocity at x = Σ(t). Then one also has the corresponding jump conditions (cf. Abeyaratne et 

al. (2001)) 

  ][         ,0][][  VvV [v] =0,     (7) 

where VΣ is the velocity of the phase-transition front and square brackets denote jumps. 

The entropy inequality and the corresponding jump relation read 
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where the driving traction fΣ(t) at the discontinuity is defined by (cf. Truskinovsky (1987); 

Abeyaratne and Knowles (1990)) 

],[][   Wf                           (9) 

W is the free energy per unit volume, θ is temperature, S is entropy, and q is heat flux. If fΣ is 

not zero, the sign of VΣ, and hence the direction of motion of discontinuity, is determined by 

the sign of fΣ. 

Applying the satisfaction of the non-equilibrium jump relation at the phase boundary we 

obtain the value of the stress jump at the phase boundary (Berezovski and Maugin (2005b)). 

Having the value of the stress jump, we can determine the material velocity at the moving 

phase boundary by means of the jump relation for linear momentum (7) rewritten in terms of 

averaged quantities because of the continuity of excess quantities at the phase boundary 

(Berezovski and Maugin (2005a)). 

To compare the results of modeling with experimental data by Escobar and Clifton (1993), 

the calculations of the particle velocity were performed for different impact velocities. The 

results of the comparison are given in Figure 7. As a result, we can see that the computed 

particle velocity is practically independent of the impact velocity. 
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Figure 7. Particle velocity versus impact velocity 

 

7. Conclusions 

As we have seen, linear and non-linear wave propagation in media with rapidly-varying 

properties as well as in functionally graded materials can be successfully simulated by means 

of the modified wave-propagation algorithm (Berezovski and Maugin (2001)). The applied 



algorithm is conservative, stable up to Courant number equal to 1, high-order accurate, and 

thermodynamically consistent. To apply the algorithm to moving singularities, we simply 

should change the non-equilibrium jump relation for true inhomogeneities to another non-

equilibrium jump relation valid for quasi-inhomogeneities. 
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