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Abstract
In the field of aviation, safety is a critical cornerstone, and the operation of the Unmanned Aerial
Vehicle (UAV) systems is deeply connected with this principle. A thorough analysis and rigorous
simulation and testing of aircraft systems are essential to avoid severe safety hazards. This paper
delves into the safety issue in UAV operations, specifically regarding maintaining minimum safety
distances under fluctuating wind conditions. The study introduces a novel solution based on a Deep
Deterministic Policy Gradient (DDPG) model, a reinforcement learning method. The DDPG model
was trained using a simulated environment created through the Gazebo simulator, with values for
wind and gust conditions derived from historical records at the KLAF airport at Purdue University.
The model’s performance was evaluated regarding maintaining safe distances under these conditions.
The results indicate that the DDPG model can accurately predict safety distances with relatively low
error rates when predicting under different weather conditions. The findings significantly contribute to
UAV safety operations, suggesting the potential future utilization of reinforcement learning methods
to study enhancing airspace efficiency and obstruction avoidance in UAVs.

Keywords: Unmanned Aerial Vehicle, UAV, Safety Distance, Reinforcement Learning, Deep Deter-
ministic Policy Gradient, Flight Safety, Airspace Efficiency, UAV Fleet Operation

Introduction

To effectively mitigate safety risks, it is crucial to
conduct thorough analyses and tests on UAV systems.
Safety risks threaten lives, cargo integrity, and properties
both onboard and along UAV flight paths. A critical avia-
tion safety measure is maintaining a minimum safety dis-
tance, mandated by the Federal Aviation Administration
(FAA) for all aircraft (Federal Aviation Administration,
2023). Ensuring UAVs keep safe distances from each
other, and obstacles is essential, especially given the risks
of collisions, which can damage property and endanger
lives, particularly in urban areas. Environmental factors
like wind add complexity, emphasizing the need for meth-
ods to maintain safe UAV separations. Despite the practice
of setting safe UAV formations (Browne et al., 2022; Man-
athara & Ghose, 2011), this doesn’t fully address safety
distance maintenance in varying conditions, underlining
the need for innovative solutions.

This study aims to fill this gap by introducing a
novel approach based on reinforcement learning. While
this machine learning approach does not guarantee abso-
lute accuracy, it provides an estimated value with a low
error rate. It offers a viable solution to the complex prob-
lem of maintaining minimal safety distances in UAV fleet
operations. This study has the potential to unlock new
possibilities in UAV formation control, offering an alterna-
tive way to prevent crashes and collisions. The approach

could be implemented in UAV fleets that operate at lower
altitudes, enabling them to navigate tunnel-like paths with
more information and potentially easier path planning.
This could significantly enhance airspace efficiency, such
as shrinking the convoy size, so more UAVs could be fitted
in the path, contributing to the broader goal of optimizing
UAV operations.

The subsequent sections will delve into the specifics
of the proposed approach, its implementation, and its po-
tential impact on the future of UAV fleet management.
First, the study’s background is presented, providing con-
text for the research question and its significance. The
literature review evaluates existing research in the field,
identifying gaps and justifying the need for the current
study. Subsequently, the methodology is detailed, eluci-
dating the techniques and processes used to gather and
analyze data. The results highlight the findings and their
potential implications. Then, the paper discusses ways
to improve the current work. The paper concludes with
a summary of the research, its contributions, limitations,
and suggestions for future research.

Background

In this section, we will explore the multifaceted
aspects of safety distance management in UAV fleet opera-
tions. We will delve into the critical role of wind and gust
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conditions, the potential of machine learning approaches
to addressing this issue, and the broader implications for
airspace efficiency. In doing so, we aim to build upon the
existing body of knowledge while simultaneously address-
ing the gaps this study seeks to fill.

The advent of UAVs has precipitated a paradigm
shift in the aviation industry, ushering in an era of un-
precedented possibilities for efficient airspace utilization.
However, this technological revolution’s promise is not
without its challenges. One of the most pressing pertains
to the assurance of safety in UAV fleet operations, par-
ticularly in the context of maintaining a minimum safety
distance.

This domain’s prevailing state of knowledge and
practice is predominantly reactive. It focuses on collision
avoidance strategies that necessitate course adjustments
when a potential collision is imminent (Browne et al.,
2022; Manathara & Ghose, 2011). While this approach
has proven effective in scenarios characterized by rela-
tively sparse airspace, it may not suffice as UAV opera-
tions become increasingly prevalent and the complexity
of their interactions escalates.

The following work proposes a more proactive, an-
ticipatory method to safety distance management in UAV
fleet, particularly considering the dynamic and often un-
predictable nature of wind conditions. We will then exam
the impact of wind and gust conditions on UAV fleet oper-
ations, elucidating how these environmental factors can
exert a profound influence on safety distance and discuss
the inherent challenges in managing these effects. Subse-
quently, we will study the potential of machine learning ap-
proaches in predicting and managing safety distance under
varying wind conditions. We will also discuss the broader
implications for airspace efficiency, positing that a proac-
tive, anticipatory approach to safety distance management
can significantly enhance the utilization of airspace in
UAV fleet operations.

The importance of studying minimum safety dis-
tance in UAV fleet operations, particularly in the context
of changing wind conditions was addressed later. It high-
lights the need for innovative approaches, such as the
machine learning method proposed in this study, to ad-
dress this issue and enhance airspace efficiency. Despite
the conspicuous absence of significant research in this
area, this study aims to make a substantial contribution
to the field by providing a novel perspective on safety
distance management in UAV fleet operations.

Literature Review

The field of UAVs development, simulation, inte-
gration has seen significant advancements in recent years,
particularly in the areas of deep learning with reinforce-

ment learning (Cai et al., 2023; Cheng et al., 2021; Khairy
et al., 2021), flight simulators (FlightGear, 2023; Gazebo,
2023; Microsoft Research, 2021), and machine learning-
based minimum safety distance methods (Xu et al., 2023).
This literature review aims to evaluate the existing body
of knowledge in these areas, identify strengths and weak-
nesses, and argue for the necessity of the present study in
filling a gap or building on a tradition.

Deep learning with reinforcement learning has
emerged as a powerful approach in various domains, in-
cluding UAV operations. Several deep learning methods
have been explored, each with their unique strengths and
limitations. For instance, Q-Learning, a model-free rein-
forcement learning algorithm, has been widely used due to
its ability to learn from an environment without a model of
the environment’s dynamics. However, not all Q-Learning
methods are suitable for all scenarios. Deep Q-Network
(DQN) for example, does not support continuous action
spaces (Arulkumaran et al., 2017), which are crucial for
maintaining safety distance in UAV operations. Therefore,
the Deep Deterministic Policy Gradient (DDPG) method,
which supports continuous action spaces (Lillicrap et al.,
2016), stands out as the most suitable option. DDPG, a
model-free, off-policy algorithm, has proven effective in
learning optimal policies in complex, continuous action
spaces, making it an ideal choice for the present study.

Regarding flight simulators, numerous options are
available, each offering unique capabilities within spe-
cific domains. FlightGear, for instance, excels in simulat-
ing various weather conditions, including rain and snow
(FlightGear, 2023). AirSim, a multi-platform-based sim-
ulator, provides outstanding visualizations for vehicles
and environments during simulation (Microsoft Research,
2021). However, these simulators lack the wide range of
plugins and community support that Gazebo offers. For
this study, the Gazebo simulator was chosen due to its
realistic physics engine, support for multiple vehicles, cus-
tomizable weather conditions, and the ability to import
maps and modify models (Gazebo, 2023). Its compatibil-
ity with the Robot Operating System (ROS) (ROS, 2023)
and the ease with which it can simulate varying wind
conditions further underscore its suitability for this study
(Mavlink, 2023). Despite these advantages, it is essential
to note that Gazebo cannot simulate turbulence generated
by other aircraft. This limitation must be considered when
designing the training.

The literature on machine learning-based minimum
safety distance methods for UAVs is sparse. The mod-
els for such computations are complex, and the industry
norm has been to pre-set the formation or change the
course before a collision occurs (Browne et al., 2022; Fed-
eral Aviation Administration, 2023; Manathara & Ghose,
2011). This approach, while effective, does not address
the core issue of determining the minimum safety distance

2

Submission to Journal of Aviation/Aerospace Education & Research

https://commons.erau.edu/jaaer
DOI: 10.58940/2329-258X.2045



under various wind conditions. The present study aims to
fill this gap by focusing on this core issue.

In conclusion, by employing DDPG in a Gazebo
simulation environment to address the problem of mini-
mum safety distance in UAV operations, the present study
seeks to fill a gap in the existing literature. By building on
the strengths of deep learning with reinforcement learning
and leveraging the capabilities of advanced flight simu-
lators, this study aims to contribute to the field of UAV
operations. This study’s findings can enhance our un-
derstanding of safety distance management in UAV fleet
operations and pave the way for future research in this
rapidly evolving field.

Methodology

The primary objective is to devise a methodology
capable of analyzing and maintaining the safety distance
between fleet UAVs and proximate obstacles while fly-
ing. To address this research question, we employed a
comprehensive and systematic methodology grounded in
reinforcement learning, implemented through a series of
designed simulation experiments.

The first step was to establish a robust and versatile
simulation framework. This foundational stage was cru-
cial in setting the stage for our subsequent experiments.
To ensure the reliability and relevance of our framework,
we referenced the structures used in previous works. This
framework comprised three key components: the Gazebo
simulation environment, the ROS communication net-
work, and the PX4 autopilot flight control software. The
Gazebo simulation environment provided a realistic and
dynamic platform for our experiments. It allowed us to
create a variety of scenarios and conditions, thereby en-
hancing the scope and applicability of our research. The
ROS communication network facilitated efficient and reli-
able communication between different parts of our system,
ensuring seamless integration and coordination. The PX4
autopilot flight control software, a highly advanced and
widely used software in UAV research, provided reliable
and precise control over the UAVs in our simulation (PX4,
2021). In this work, we will be focusing on the quad-rotors
high quality and high-resolution Iris drone model.

The second phase of the methodology involved the
creation of a DDPG training script. This script was instru-
mental in implementing the DDPG algorithm within the
training loop. The script commenced with two identical
models: the target and training networks. While similar at
the onset, these networks played distinct roles in the train-
ing process. The target network essentially functioned as
a delayed version of the training network. This delay was
introduced to enhance the stability and efficiency of the
training process. The rationale behind this approach is
rooted in the minimization of the Mean Squared Bellman

Error (MSBE), a key objective in reinforcement learning
(Silver et al., 2014). By maintaining a delayed version
of the training network, the target network provided a
stable benchmark against which the training network’s
predictions could be compared. The target network was
updated to match the training network whenever the latter
underwent a significant update. This update was triggered
when the training network exceeded a threshold defined
by the Polyak averaging, a technique used to stabilize
the learning process. Polyak averaging in the update pro-
cess ensured that the target network remained a slightly
outdated version of the training network, maintaining the
stability of the training process. The process of updating
the target network based on the Polyak averaging is shown
as:

ϕtarget ← ρϕtarget + (1− ρ)ϕtrain,

where ρ is a hyperparameter from 0 to 1 and ϕ is the
model network. We can see two models, both target and
training, were contributed to the new target model. This
will keep the experience learnt previously while adding
new experience into the target model.

In the methodology employed for this study, the
script was designed to feed the model with wind data gen-
erated randomly. This input data comprised five elements:
wind speed, gust speed, and the force vectors in the x, y,
and z-axis. To ensure compatibility with the model, these
values were scaled down to hyperparameters ranging from
0 to 1. This normalization process facilitated the data
processing by the model, enhancing the efficiency and
accuracy of the predictions from previous work. Then the
target network evaluated the inputs and generated predic-
tions. These predictions consisted of three hyperparameter
outputs ranging from 0 to 1. These outputs represented
the maximum displacement of the UAV’s origin and the
maximum displacement towards the left and right of the
UAV. These displacement predictions were based on the
maximum action Q values in the training network, a vital
component of the reinforcement learning process. These
predictions were carried out using the minimization of
MSBE loss with stochastic gradient descent. This func-
tion, a variant of the Mean Squared Error (MSE) used
in regression analysis, quantifies the average squared dif-
ference between the estimated and actual values in the
context of the Bellman equation, a fundamental equation
in reinforcement learning. The use of the MSBE func-
tion in the evaluation process is illustrated below. It first
retrieved the Q values from the future state, applied a dis-
count and learning rate to generate the expected return.
Then it used this expected return to merge with the training
model for learning. For instance,

where µθtarget is the target policy, Q∅(s, a) is the
action-value function to output the results, s is the state,
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s’ is the next state, a is the action, D is a set of transitions
(s,a,r,s’,d), in which d indicates whether s’ is terminal
(true means 1 and false means 0), r is the reward, γ is
the discount factor, and finally, E is the expected return.
The script then initiated the simulation using the randomly
generated wind conditions. This process facilitated the
observation of the UAV’s behavior within the simulator.
The UAV’s movements, along with other pertinent details
necessary for evaluating the accuracy of the prediction,
were meticulously recorded. This data collection was cru-
cial in generating a reward value for the algorithm, a key
component of the reinforcement learning process.

The evaluation process was straightforward, em-
ploying the MSE as the metric for comparing the pre-
dicted data with the actual measurements. The MSE, a
widely used measure in regression analysis, quantifies
the average squared difference between the estimated and
actual values, providing a robust measure of prediction
accuracy. Upon the generation of the reward, it was sub-
sequently added to the script buffer. This buffer served
as a repository for the collected data, storing it until a
sufficient amount had been accumulated to commence the
training of the network. This approach ensured that the
training was based on a comprehensive dataset, enhancing
the robustness of the learning process. The training of
the network was based on policy learning, a method well-
suited to the DDPG model used in this study. Given that
DDPG supports continuous action spaces, it was possible
to employ gradient ascent in the training process. This op-
timization technique, which seeks to maximize a function
by iteratively moving in the direction of steepest ascent,
was instrumental in refining the model’s predictions. The
use of gradient ascent in the training process is:

where µθtrain is the training policy, Qϕ(s, a) is the
action-value function to output the results, s is state and s’
is next state, E is the expected return.

While reinforcement learning has been successfully
applied in various domains using Q-learning, the need for
a compact model that can operate on a drone necessitated
the use of a deep network. Given that the safety distance
should be treated as a continuous action space, we opted
for DDPG over DQN. This choice was further justified by
the need to incorporate the distance to obstacles into the
training process, which would enhance vehicle passing
ability in tunnel-like environments. The entire workflow
was demonstrated in Figure 1.

The third step involved enhancing the realism and
complexity of our simulation environment. We modified
the environment to create a tunnel-like environment with
four walls. This setup was intended to mimic the chal-
lenges UAVs might encounter in real-world operations,
such as navigating confined spaces or avoiding obstacles.

Figure 1

The Workflow of the Integrated System

In the fourth step, we equipped the drone with a
lidar sensor for our simulation. This sensor measured the
distance from the UAV to each wall. By incorporating
this sensor data into our DDPG training script, we trained
our model to maintain a safe distance from the walls,
effectively simulating the task of avoiding obstacles in
flight.

Our methodology combines advanced simulation
techniques, reinforcement learning algorithms, and sensor
data to address the problem of safety distance management
in UAV fleet operations. Each step contributes to answer-
ing our research question, providing a comprehensive and
realistic exploration of this issue and a solid platform to
conduct our research.

Results

An extensive series of tests were meticulously con-
ducted to devise a methodology capable of analyzing and
maintaining the safety distance between UAVs in a fleet
and proximate obstacle while in transit. The data for these
tests were derived from the historical records of the Na-
tional Oceanic and Atmospheric Administration (NOAA)
at the KLAF airport (Aviation Weather Center, 2023).
This historical weather data, encompassing precise histor-
ical wind and gust information, was utilized to recreate
the weather conditions within the Gazebo simulator. This
facilitated testing the accuracy of the trained model using
the Iris drone model.

The model used for this study was a DDPG model
with 1k parameters. This model was trained for 10k
epochs using simulated wind and gust data. The model
has three outputs: maximum shifting displacement, max-
imum shifting displacement to the left (denoted as wall
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1), and maximum shifting displacement to the right (de-
noted as wall 2). The training process was designed to
optimize the model’s ability to predict the safety distance
under varying wind conditions, enhancing its applicability
to real-world UAV operations. 10k epochs will result in
different time consumption due to various equipment for
other users, but in our settings, the total training time for
this work was approximately 79 hours. For each predic-
tion, which includes all three values, the processing time
costs an average of 0.7 milliseconds.

Figure 2

Error Distribution in Verification

The tests were designed with a specific constraint:
the maximum displacement was restricted to 1.5 meters
or less. This constraint was imposed to ensure the rele-
vance and applicability of the results to real-world UAV
operations, where maintaining a minimum safety distance
is paramount. The respective errors for displacement pre-
diction were meticulously recorded for wall 1 and wall
2. The analysis of the results, as demonstrated in Figure
2, revealed some interesting findings. The average error
in predicting displacement for wall 1, wall 2, and overall
displacement was 11.95 cm, 3.90 cm, and 12.39 cm, re-
spectively. These figures represent the average deviation
from the predicted values, providing a quantitative mea-
sure of the accuracy of the trained model. To ensure the
highest level of safety and account for 99% of the error,
results suggest that the flight control system should incor-
porate a safety buffer to the prediction in displacement,
Wall 1, and Wall 2 when considering control, avoidance,
and path planning. Specifically, safety buffers of 12.08
cm, 11.85 cm, and 3.56 cm should be added to the predic-
tions for displacement, wall 1 and wall 2, respectively. By
maintaining the suggested safety buffers above in the path
planning algorithm, the vehicles can mitigate 99% of the
risk in a mid-air collision and ensure the safe operation of
the UAVs under varying wind conditions.

Discussion

The accuracy analysis of the trained DDPG model
provided insights into the safety distance of UAV opera-
tions under varying wind conditions. The average error
rates in the prediction demonstrated above were 8.269%,
7.971%, and 2.597% for displacement from waypoints and
distance to Wall 1 and 2, respectively. These figures indi-
cate that the model can provide a reliable estimate of the
drone’s reaction to the impulse of gust forces, thereby en-
hancing the safety and efficiency of UAV fleet operations.
The Gazebo simulator also contains other high-quality
UAV models, such as Typhoon HX480 and fixed-wing
aircraft. Researchers can adopt and use these models
to conduct their research or easily verify similar work.
However, since the aerodynamics for different models
are drastically different, the DDPG model trained on, for
example, the Iris model, cannot be used on the Typhoon
HX480 UAV model.

The accuracy of the DDPG model in predicting the
safety distance under varying wind conditions has sig-
nificant implications for real-world UAV operations. The
more information the flight control system has, the better it
can ensure safety. Therefore, understanding the minimum
safety distance between a UAV and its surrounding obsta-
cles is crucial in avoiding collisions. This information can
enhance the safety of UAV operations, particularly when
UAVs are traveling in a fleet or urban area. The model
can help make the airspace more efficient by accurately
predicting the safety distance. This is particularly relevant
in congested airspaces where the ability to predict and
maintain safety distances accurately can significantly re-
duce the risk of collisions and improve overall operational
efficiency.

The model-based DDPG’s suitability for path plan-
ning in tunnel-like environments is another significant
finding of this study. This model is easy to train and
deploy on real-world UAVs to handle wind and gust con-
ditions. Its small size, and the ease with which it can be
trained using only simulation data, makes it particularly
suitable for this task. The path planning algorithm can
enable the drone to travel in tighter tunnels by accurately
estimating the distance shifted from the left or right. This
represents a significant improvement over previous mod-
els, which only considered displacement, demonstrated in
Figure 3. The ability to accurately predict shifts in posi-
tion due to wind and gust forces can enable more precise
path planning, allowing UAVs to navigate through tighter
spaces and avoid obstacles more effectively.

In addition to enhancing safety, the DDPG model
could also improve the efficiency of airspace usage. The
model could enable a fleet of UAVs to maintain a dynamic
formation based on wind and gust conditions. This allows
for more efficient use of airspace, as the UAVs may adjust
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Figure 3

Visualization of Proposed Work Improvements Compared
to Previous Work

their formation in response to changing conditions. This
dynamic formation adjustment capability could lead to
more efficient airspace usage, allowing for closer spacing
of UAVs in a fleet without compromising safety. This
is particularly beneficial in congested airspaces, where
efficient use of space is crucial.

Future Work

While the Gazebo simulator was chosen for its real-
istic physics engine and compatibility with ROS, it cannot
simulate turbulence generated by other aircraft. This limi-
tation could potentially impact the accuracy of the model’s
predictions in real-world scenarios where such turbulence
is present. Additionally, while beneficial for testing the
model, the study’s reliance on historical data for recreating
weather conditions may not fully capture the variability
and unpredictability of real-world wind conditions.

Future research could aim to address these limita-
tions. For instance, incorporating turbulence generated
by other aircraft into the simulation could enhance the
model’s accuracy. Additionally, real-time wind data could
further improve the model’s predictions. Future studies
could also explore applying the DDPG model in other
areas of UAV operations, such as dynamic formation ad-
justment for more efficient airspace usage. Furthermore,
the potential of the DDPG model in path planning in
tunnel-like environments could be further explored, poten-
tially leading to more precise path planning and improved
obstacle avoidance.

Conclusion

The presented study holds significant implications
for the field of UAVs, particularly in the context of safety
distance prediction under varying wind conditions. The
research employed a DDPG model, demonstrating its effi-
cacy in maintaining safety distances between UAVs and
proximate obstacles. The model’s accuracy, as evidenced
by the relatively low error rates, underscores its potential
for real-world applications, contributing to the safety and
efficiency of UAV operations.

One of this study’s key strengths is its innovative
use of the DDPG model, which supports continuous action
spaces, making it particularly suitable for this task. The
model’s adaptability and ease of training using only simu-
lation data further enhance its applicability. Moreover, the
study’s rigorous testing approach, involving the recreation
of weather conditions within the Gazebo simulator using
historical data, adds to the robustness of the findings.

The study demonstrated the DDPG model’s poten-
tial in predicting safety distances under varying wind con-
ditions by establishing the system design and model usage
in a tunnel-like urban environment. Despite its limitations,
the study opens new avenues for future research, paving
the way for safer and more efficient UAV operations.
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