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Abstract

Accurate and timely flight delay prediction cannot be overemphasized because of the ever-increasing
demand for air travel and its importance in deploying intelligent transportation systems. Nonetheless,
there has not been a universal solution to the problem, as more intelligent flight decision systems are
required for the aviation industry’s future growth. Existing flight delay classification and prediction
approaches are mainly shallow traffic models and do not satisfy many applications in the real world.
Our motivation to rethink the deep architecture model for predicting flight delays emanates from the
problem. In this research, we proposed a technique that modified stacked autoencoder architecture
parameters for training the network and understanding the link between space, time and information
gained from the flight on-time data. We developed three different types of autoencoders based on the
architecture of the modified stacked autoencoder. The models learn the generic flight delay features,
and it’s trained greedily in a layer-wise fashion. To the best of our knowledge, this is the first time
these performances of vanilla autoencoder, logistic regression autoencoder and Multilayer perceptron
for classification were evaluated based on the developed modified stacked autoencoder architecture.
Moreover, our experiment demonstrates that the models achieved varying levels of accuracy in
the flight delay classifications task. The deep vanilla autoencoder shows superior accuracy, recall
and precision performance compared to logistic regression autoencoder and Multilayer perceptron
autoencoders at different parameter settings.

Keywords: Autoencoder, Deep Learning, Flight Delay Prediction, Machine Learning, Flight On-

Time Dataset

Introduction

Recently, air transportation has become a more ac-
ceptable means of travel by humans. Precise flight delay
categorization is profitable but challenging due to the un-
certainties and breakdowns inside the procedures. Even
though people can travel by car or boat, air travel is supe-
rior for most passengers due to its efficiency and reliability
(Tan et al., 2018). Airlines, airports, and passengers lose
when flights are delayed. All actors in the commercial
aviation industry rely on their predictions when making
decisions.

The complexity of the air transport industry and
the vast collection of flight data make predicting flight
delays challenging. Delays, defined as deviations from
scheduled arrival/departure times, are key performance
indicators in aviation. In 2013, flight delays affected 36%
of flights in Europe, 31.1% in the US, and led to over
30-minute delays or cancellations for 16.3% of flights in
Brazil (Carvalho et al., 2021). Factors contributing to
delays include extreme weather, late-arriving aircraft, air
carrier issues, the National Aviation System, and security,
with respective impacts reported in 2017 by the Bureau
of Transportation Statistics (BTS) USA (Q. Li & Jing,
2022; Mofokeng & Marnewick, 2017; Muros Anguita &
Diaz Olariaga, 2023; Yazdi et al., 2020)

Flight delays negatively impact passengers, airlines,
and airports economically. Passengers incur higher travel
costs due to the need for early arrival, while airlines face
fines and increased operational expenses. Environmental
concerns arise from increased fuel consumption and emis-
sions. Delays also affect airline marketing by undermining
customer loyalty and influencing consumer choice, linked
to factors like flight frequency and service complaints
(Balakrishna, Ganesan, & Sherry, 2008; Balakrishna et al.,
2009; Bisandu & Moulitsas, 2023, 2024; Bisandu et al.,
2022; Dhanawade et al., 2019; Hondet et al., 2018; Mizu-
fune & Katsumata, 2019; Rebollo & Balakrishnan, 2014).
Predicting delays aids in better management decisions for
airports and airlines and allows passengers to adjust plans
(Balakrishna, Ganesan, Sherry, & Levy, 2008; Ganesan
et al., 2010). The analysis of extensive aviation data, en-
hanced by data scientists’ computational skills, supports
understanding and improving the flight environment (Guo
etal., 2021, 2022; B. Yu et al., 2019; Y. Yu et al., 2021).

This study contributes to the commercial air trans-
port industry by analysing flight delay predictions through
machine learning and data science, focusing on non-
weather-related delays. It reviews current trends in de-
lay prediction, evaluates various modelling strategies, and
highlights the ongoing challenge of developing sustain-
able solutions amid industry growth. We introduce a
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method to predict non-weather delays for US flights using
a dataset of on-time flights, employing a deep autoencoder
with adjusted parameters. We assess the effectiveness of
three models: Multilayer Perceptron Autoencoder, Vanilla
Autoencoder, and Logistic Regression, utilizing a deep-
stacked autoencoder architecture with re-scaled hidden
layers. The models’ performances were evaluated based
on accuracy, precision, and recall.

The rest of the paper is organized as follows: Sec-
tion 2 presents the related work; Section 3 discusses the
methodology approach, while in Section 4, the results and
discussion are presented, and Section 5 has the conclusion
and future direction.

Related Work

For several decades, accurate flight delay prediction
has become a challenging issue for practitioners and re-
searchers. However, the advent of high computational
methods and algorithms has improved the performance of
deep learning methods demonstrating state-of-the-art re-
sults compared to statistical or classical machine learning
techniques evaluated on their prediction accuracy, preci-
sion, and recall.

Gupta (2018) introduced a deep learning approach
using a stacked autoencoder to predict airport delay times,
contributing to deep learning applications in aviation and
civil aviation management. The study accounted for the
complex temporal and spatial relationships of airline de-
lays and used FAA data from January 2016 to December
2017, including details like date, time, and delays. Hondet
et al. (2018) developed an optimized forecasting model
employing the Levenberg-Marquart algorithm for flight
delay predictions, aiming to reduce data dimensions for
deep learning networks. They tested the model’s effective-
ness without the denoising autoencoder and without the
LM algorithm, using under-sampling and over-sampling
for data balance. Their findings indicate that combining a
stack denoising autoencoder with the LM algorithm and
balancing the dataset enhances forecasting accuracy and
precision.

Pejovic et al. (2009) developed a two-stage model
employing supervised machine learning to predict on-time
flight performance, initially using binary classification for
delay occurrence and then regression for delay duration.
Gradient Boosting Classifier excelled in classification,
whereas Extra-Trees Regressor led in regression. Bhadra
(2009) modelled airports as network nodes and flights as
links, using an agent-based methodology to simulate delay
propagation, which closely mirrored real-world patterns
and highlighted busy airport clusters. Shabanpour et al.,
(2022) combined Bayesian Networks and Gaussian mix-
ture models to predict downstream flight delays based on

upstream conditions, achieving high accuracy and reliabil-
ity in their real-time analysis.

Shabanpour et al. (2022) explored deep learning,
specifically using RNN and LSTM architectures, to pre-
dict air traffic delays. They improved daily delay sta-
tus prediction by integrating historical performance and
weather data, leading to precise flight delay forecasts.
Campanelli et al. (2014) and Ciruelos et al. (2015) ad-
dressed optimizing flight routes and scheduling to mini-
mize congestion and delays within an air traffic network.
Ogunsina and Okolo (2021) applied subgroup detection
in data mining to identify characteristics of flight delays,
revealing that factors like the day of the week and month
could highlight flights prone to significant delays.

Chen et al. (2016) and Saadat and Moniruzzman
(2019) evaluated a machine learning-based regression
model for flight delay predictions, achieving high Co-
efficient of Determination scores for both arrivals and
departures. Yazdi et al. (2020) proposed a method using
neural networks and deep learning to predict airline ar-
rival delays, considering factors from weather to distance.
The study found neural networks with a single hidden
layer of three neurons achieved 92% accuracy, while deep
networks with two layers of four neurons each reached
77% accuracy. They aimed to assess when Deep Feedfor-
ward Neural Networks surpass Support Vector Machines
and simpler Neural Networks, discovering that increasing
epochs significantly enhances prediction accuracy.

Ciruelos et al. (2015) aimed to develop classifiers
for predicting flight delays with a focus on cost sensi-
tivity. Rong et al. (2009) introduced a classification
strategy that selects the most accurate single-rule predic-
tion based on minimal error, highlighting patterns distin-
guishing delayed from on-time flights and incorporating
weather forecast data. Kim et al. (2016) sought to pre-
dict departure delays at specific airports or links using
Random Forest, noting the algorithm’s robustness over a
24-hour prediction horizon and its adaptability to network
status variability. Cai et al. (2017) applied the Reinforce-
ment Learning (RL) algorithm to predict taxi-out times
at airports with improved accuracy using surface surveil-
lance data and a Markov decision process for dynamic
system state analysis. Mofokeng and Marnewick (2017)
utilized a nonparametric RL approach within a stochastic
dynamic programming framework for taxi-out time predic-
tion, demonstrating its effectiveness even at challenging
airports.

Proenca et al. (2019) introduced a machine learn-
ing technique for identifying large-scale aircraft delays
using a two-step process involving unsupervised learn-
ing for standard setting and supervised learning for alert
model creation. Manna et al. (2018) developed a multi-
level input layer ANN to handle nominal variables and
provide interpretable connections between inputs and out-
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puts, showing superior performance to traditional gradient
descent backpropagation in terms of prediction error and
training time. Venkatesh et al. (2017) compared differ-
ent forecasting methods for air traffic delays, finding that
ANN excelled in Origin-Destination delay classification,
while the Markov Jump Linear System was most effective
for delay regression, noting the varying relevance of time
of day and network characteristics in delay prediction.

Leveraging Deep Learning’s success in predictive
tasks, particularly for flight delays, this study introduces
a method to enhance delay predictions by adjusting au-
toencoder parameters, specifically through nested multi-
plication of hidden layers and employing dropout before
the output layer. This approach is tested across three au-
toencoder types. Unlike previous research focusing on
data pre-processing and conventional deep autoencoders,
this paper uniquely explores parameter re-scaling within
a stacked autoencoder framework. The goal is to assess
the effectiveness of re-scaled parameters on different au-
toencoders for predicting flight punctuality, aiming to
contribute insights for accurately forecasting delays in
aviation.

Materials and Methods

There are many interesting applications of autoen-
coders in different fields, such as visualization, dimen-
sionality reduction and data compression. Recently, it has
been discovered to have the capability of training neural
networks because of its difference in the gradient mag-
nitudes of the lower and higher layers and the lack of
generalization of deep networks due to many parameters
in the deep neural network. Also, the objective function
curvature is difficult to find a good local minimum. Pre-
training the network helps divide the entire deep network
into a sequence of steps. Pretraining the deep network is
intended to address the difficulties mentioned above, and
the training process of the deep network is divided into
steps, such as the pretraining step, where shallow autoen-
coders sequence use unsupervised data one layer greedily
at a time. Training the last layer with a supervised dataset
and finally fine-tuning the entire network with supervised
data and backpropagation.

The autoencoder can learn data features and repre-
sent the statistical characteristics of training samples. The
input of the model is its target output (Ye et al., 2020).
The autoencoder contains an encoder and a decoder. The
encoder shrinks the input while the decoder tries to re-
construct the input from the encoder’s compressed form.
The encoder model is saved after training, whereas the
decoder is deleted. The encoder can then be used as a data
preparation approach to extract features from raw data so
that a new machine learning model (Bisandu & Moulitsas,
2022; Bisandu et al., 2021; Ma et al., 2015; Xiao et al.,

2014). An autoencoder with a hidden layer and an output
layer is shown in Figure 1 (Ye et al., 2020).

Figure 1

Structure of Autoencoders

Input
layers
0000
|
Encode: f
- Hidden
O O O layers
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The reconstruction process of an input x of an au-
toencoder can be explained using Equation 1, Equation 2,
Equation 3, Equation 4, and Equation 5, respectively.

Assume we have a set of data x(;) belonging to the
set of real numbers at points {x(1), Z(2y, - - - , T(s) } With
many dimensions. Mapping the set of the input to another
data point set z(;) with points {z(1), 2(2), - - -, Z(m) } hav-
ing a lower dimension than ;) and can be reconstructed
back to x(;) effectively. Mapping the data back and forth
in a systematic manner can be achieved by encoding the
input layer x(;) into a hidden layer z(x(;) and Z(2;))
is the reconstructed result shown in Equations 1 and 2,
respectively.

i‘(Z(i)) = Waz@ + C2 2)

where W7 and C'1 are the weighted matrix and cod-
ing bias vector, W5 and C2 are the decoding matrix and
coding bias matrix, respectively. To minimize stochastic
gradient descent, the reconstruction error of approximat-
ing z(;) by T(;) we set an objective function which sums
the squared differences between x(;) and T(;:

n

LW1,C1,W,,C2) = Z(f(i) —z,)° 3

=1

- Z(WZ’Z(“ +C2 — 2(;y)? )
1=1

=Y Wa(Wizg +C1) + C2—x;)°  (5)
=1
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We are looking closely at how an autoencoder works.
It takes a high-dimensional input, such as a picture or a
vector, and runs it through a neural network that com-
presses the data into a shorter form with two principal
components. The first is the encoder, a collection of fully
connected or convolutional layers that compress the in-
put into a smaller representation with fewer dimensions
than the data, a process known as a bottleneck. It now re-
constructs the input using full connected or convolutional
layers from this bottleneck.

We employed the sigmoid activation function in the
deep neural network. It is a non-linear AF that outputs a
continuous value between 0 and 1, defined as shown in
Equation 6:

1
a=g(2)—— ©)

1+e*

The sigmoid function is like the step function in that
it is continuous and avoids the leap in output values; the
sigmoid function is a mathematical function that maps
any input value to a value between 0 and 1 (Balakrishna,
Ganesan, & Sherry, 2008; Balakrishna et al., 2009; Gane-
san et al., 2010; Gopalakrishnan & Balakrishnan, 2017;
Le Ny & Balakrishnan, 2011; Pfeil & Balakrishnan, 2012;
Pfeil et al., 2008; Rebollo & Balakrishnan, 2014). Figure
2 shows a plot of the sigmoid AF (Aigner et al., 2007;
Alkhayrat et al., 2020; Belcastro et al., 2016; Castaing
et al., 2016; Ciruelos et al., 2015; Orimoloye et al., 2020;
Osorio, 2019; Rodriguez-Sanz et al., 2022).

Figure 2

Sigmoid Activation Function
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Proposed Architecture

Using an autoencoder for flight delay classification
leverages its strength in feature learning and dimensional-
ity reduction to handle the complex and high-dimensional
nature of flight data. Our proposed architecture is based
on the stacked autoencoder framework, a form of deep

neural network characterized by layers of sparse autoen-
coders connected sequentially, where the output of each
hidden layer serves as the input to the subsequent one. We
enhanced this structure by embedding a single dropout
within all hidden layers and implementing a normalization
technique through multiplication of each layer’s output
with its predecessor’s before progressing to the next layer.
Additionally, we incorporated dropout in the final hid-
den layer specifically to mitigate potential overfitting or
underfitting, ensuring the model’s robustness and general-
izability. This is to ensure that models perform well not
just on the data they were trained on, but also on new,
unseen data during the classification or prediction. The
compressed features extracted by the encoder are then
used as input for a classification model. This model is
trained in a supervised manner to predict flight delays,
using labels that categorize flights based on their delay sta-
tus (e.g., on-time, minor delay, major delay). The reduced
dimensionality of the input data helps improve the training
efficiency and can lead to better model performance since
the model can focus on the most relevant features.

The hidden layers are trained using an unsupervised
technique and subsequently fine-tuned using a supervised
method, as shown in Figure 3.

Figure 3

The Proposed Architecture

)

Layer 1

Layer 2

Encoder

Layer 1

Layer 2

Decoder
output
layer

A regular predictor should be added to the top layer
of the network to use the deep autoencoder network for
flight delay prediction. The basic structure of a stacked
autoencoder is as follows:

¢ i. Train the autoencoder and acquire the taught
data using input data.
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* ii. The preceding layer’s learned data is utilized
as input for the next layer and works until the
training is finished.

* iii. Once all the hidden layers have been trained,
the cost function is minimized using the back-
propagation technique, and weights are adjusted
with the training data for fine-tuning.

Experimentation

We developed our proposed stacked autoencoder
network architecture on three approaches: Multilayer per-
ceptron, vanilla, and logistic regression.

Multilayer Perceptron Autoencoder

In this approach, rebuilding the model feature can
be neglected after fitting the model, and the model can
be used up to the bottleneck layer. The model produces a
fixed-length vector with a compressed version of the input
data at the bottleneck layer.

Figure 4 shows the entire process of the Multilayer
perceptron autoencoder.

It starts taking the input from the provided dataset
and filtering the data due to memory concerns. The data is
divided into 70% train and 30% test sets before designing
and fitting the model, and the input is scaled by normaliz-
ing the values range between 0-1. The encoder is defined
with various numbers of hidden layers. A similar structure
will determine the decoder but in a reverse manner. Sig-
moid activation and batch normalization ensure that the
model learns well. Since reconstruction is a multi-output
regression issue, the model will be trained using the Adam
version of stochastic gradient descent, which minimizes
the mean squared error. After training, it plots the loss
for the train and test sets to confirm the model learned the
classification problem, the precision-recall curve and the
precision and recall for different threshold values.

Logistic Regression Autoencoder

The approach takes the input from the dataset, as in
Figure 5.

The data is scaled and filtered to make it suitable
for the autoencoder. The model consists of an input layer,
with the size of the input variables taken from the dataset.
The encoder comprises several hidden layers to observe
and analyse the model’s behaviour when the number of
hidden layers is changed. The output layer takes the input
from the last hidden layer and is retained to decode and
visualize the encoded data. Data encoding can aid in
creating a linear classification border for the data. The
Logistic Regression model is used on the encoded data.
It continuously creates training and testing data from the

original and encoded data, makes the Logistic Regression
model, and assesses its effectiveness. After it builds the
Logistic Regression model, it plots the loss for the 70%
train and 30% test sets to confirm the model learned the
classification problem, the precision-recall curve and the
precision and recall for different threshold values.

Vanilla Autoencoder

In the vanilla autoencoder (see Figure 6), the input
and the output are the same, the first being reconstructed
using the Adam optimizer and the mean squared error loss
function.

As shown in Figure 6, it starts by reading the input
from the dataset, filtering and replacing the input names
with specific variables names used for the vanilla autoen-
coder, such as 1, 2,... In the pre-processing stage, the
normalization takes an important role in scaling down
the range of data before it is used in the next stage. The
data is again split into train and test sets, and the class
label is dropped since it is an unsupervised method. As in
the other two approaches, the autoencoder consists of an
encoder and a decoder; the encoder has multiple hidden
layers with a specific hidden size each. The decoder takes
the information from the last hidden layer and reproduces
the classification. After the model is trained, it plots the
loss for the train and test sets to confirm the model learned
the classification problem, the precision-recall curve and
the precision and recall for different threshold values. It
ends with the confusion matrix, which shows how the
results were classified.

Dataset Collection and Description

First and foremost, model inputs must be selected
at the start of the phase to learn and produce the final
structure based on them. The dataset used to evaluate the
model was compiled from historical data that includes
flight schedule information for three months, from Oc-
tober to December 2000. Table 1 lists the variables that
are utilized as inputs. There are 23 factors in the original
dataset. However, certain factors were eliminated since
they were irrelevant to the desired outcome. The data was
provided by a real-world source from the United States
(US) Bureau of Transportation Statistics.

Table 1

Dataset Features

S/No. Input Reference Type
3 letters format,

e.g. LAX -Los Angeles International Airport
3/4 digits format, e.g. 1520 — 03:20pm

4 digits format, 1451 Integer
3/4 digits format, e.g. 1520 — 03:20pm Integer
2/3 letters format, e.g. PS String
2 digits format, e.g. 94 Integer
2 digits format, e.g. 11 Integer

Origin/Destination airport String

Planned Departure and Arrival Time
Flight Number

Real Departure and Arrival Time
Unique Carrier

Elapse Time

Departure/Arrival Delay

Integer

B N T
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Figure 4

Multilayer Perceptron Autoencoder

Normalisation
Data filter and
Read dataset and
replacement .
preprocessing

Split data

Performance
evaluation

Multilayer

Train model
Preceptron

Figure 5

Logistic Regression Autoencoder

o

Build
Evaluate regression
Performance .
model

Dataset Pre-Processing

We cleaned the data by removing the “missing val-
ues” and replacing them with zeroes, while the inputs with
less than 15 minutes of delay time and other irrelevant
labels were dropped. The “Delayed” label was created to
track late flights for arrival and departure flights.

Software Settings for Experiment

The implementation was done in Jupyter Notebook
using Python programming language. It is a free web
programme that lets users create and share scripts with
live software, equations, visualizations, and texts. Data
cleaning and transformation, statistical modelling, numer-
ical simulation, data visualization, machine learning, and
other applications are just a few of the potential use of
the tool (Ayoubi et al., 2018; Bisandu et al., 2021; Borse
et al., 2020; Holguin-Veras et al., 2012; Loughran & El-
liott, 2022; Orimoloye et al., 2020; Petersen et al., 2008;
Shabanpour et al., 2022; Sharifzadeh et al., 2016; Wei et
al., 2014; Wu et al., 2022; Yap et al., 2019). The relevant
libraries used in the script can be found in Table 2.

Evaluation Metrics

Accuracy, precision, and recall are the most impor-
tant metrics for evaluating the performance of categoriza-
tion machine learning models. A variety of indicators
were used to examine the effectiveness of the outcomes.
Several notions must be introduced, such as True Positive
(TP), True Negative (TN), False Positive (FP) and False

o Define model
Train model )
architecture

Table 2

Libraries
S/No. Library Version
1 Keras 243
2 Numpy 1.19.2
3 Pandas 1.1.3
4 TensorFlow  2.5.0
5 Itertools 0.25.1
6 Matplotlib  3.3.2
7 Sklearn 0.23.2

Negative (FN) in computing the model performance. The
simplest intuitive performance metric is accuracy, the ratio
of accurately predicted observations to all observations as
shown in Equation 7.

TP+TN
TP+FP+TN+ FN

Accuracy =

)

The ratio of accurately predicted positive observa-
tions to total expected positive observations is precision,
as shown in Equation 8.

TP
Precision = ———— 8
recision TP+ FP ®)
The ratio of accurately predicted positive data to all
findings in the actual class is known as recall, as shown in
Equation 9.

https://commons.erau.edu/jaaer/vol33/iss4/9
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Figure 6

Vanilla Autoencoder

" Normalisation
Read dataset Detaisrisnd and
replacement .
preprocessing

Recall e 9
T TPYFEN ©)
Precision-Recall is a helpful metric of prediction
success when the classes are severely unbalanced. Preci-
sion measures result from usefulness in data collection,
while recall indicates how many properly relevant results
are retrieved.

For various thresholds, the precision-recall curve
depicts the trade-off between them. A large area below
the curve indicates good recall and precision, with high
precision indicating a low false-positive rate and high
recall indicating a low false-negative rate. Both indicate
that the classification produces precise results (Y. Chen
et al., 2017; Guo et al., 2021; Y. Li et al., 2018; Ma et al.,
2015; Piao et al., 2023; Xiao et al., 2014).

Results and Discussion

The program is written in Python Programming lan-
guage, running on local machines or Crescent HPC Clus-
ter. On Crescent, it operates on GPU nodes, which have
two Intel E5-2698 v3 CPUs with 32 CPU cores, having a
total of 256GB of shared memory.

The experiments were repeated with varied input set-
tings to see how the accuracy and loss changed and get the
best prediction possible. We evaluated the performance
of Multilayer perceptron autoencoder, logistic regression
autoencoder and vanilla autoencoder in classifying and
predicting flight delays to determine which strategy per-
forms best in these situations. A Precision-Recall graph
was used to evaluate and determine the quality of the
results, as the classes are imbalanced. When analysing
probabilistic predictions, plots from the charts are gen-
erated and used to analyse the performance trade-off for
various threshold values.

Vanilla Autoencoder

Table 3 compares the performance of the flight de-
lay classification and prediction based on different input
settings in terms of area under the precision-recall curve,
accuracy, precision, and recall. The characteristics were
analysed at various levels of model development with the

Split data Vanilla Train model
evaluation

different amount of input dimensions. The first experiment
was evaluated with 3 hidden layers, 33 input dimensions,
and 100 epochs, resulting in 42.07% accuracy and 19.99%
precision. The hidden layers varied from 3 to 10, with
an input dimension from 33 to 500 and epochs from 100
to 300. Increasing the number of epochs and adding one
layer led to almost the same results, giving an accuracy of
55.00%, precision of 27.03% and a recall of 63.57%. It
leads to a recall of 55.92%, showing that half of the rele-
vant data were considered. However, there is no mention
of how many unnecessary data were recovered, as seen in
the accuracy and precision results.

Table 3

Performance Comparison of Vanilla Autoencoder

Hidden Layers  Input Dimensions Epochs  Area Accuracy  Precision Recall

10 40 300 0.9773  0.8036 0.5246 0.9878
10 100 300 0.9462 0.6712 0.3883 0.9037
5 40 200 0.9846  0.5651 0.3320 0.9990
5 500 200 0.9527  0.7652 0.4691 0.6485
4 33 200 0.8527  0.5500 0.2703 0.6357
3 33 100 0.7475  0.4207 0.1999 0.5592

Figure 7 represents the precision-recall curve, a plot
of precision and recall for different thresholds.

Figure 7

Precision-Recall Curve for 10 Layers and 300 Epochs
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The output for the model is constructed with one
input layer, 10 hidden layers, 40 input dimensions for each
layer, an output layer, which is also the decoder of the
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autoencoder, and 300 epochs. The activation function used
for each hidden layer was Sigmoid. The curve produces
the expected form. Precision is high at thresholds with
poor recall and begins to diminish at thresholds with high
recall. The high area under the curve shows high recall
and precision, highlighting the low false-negative and high
false-positive rates, as seen in Figure 8. The average score
for precision demonstrates that the classifier produces
almost accurate results, while the high recall illustrates
that the most positive results had been returned.

Figure 8
Confusion Matrix for 10 Layers and 300 Epochs

Confusion Matrix

300000
5 117206 2441 250000
©
-5
T “‘ 200000
L]
u 150000
=
N 106185 100000
\’4’6
e 50000
&
o

Predicted label

Figure 8 shows how the model accurately classifies
97.95% of delayed flights and 75.50% of non-delayed
aircraft. There are almost 600,000 flight records in this
classification. The model accurately identifies 117,206
delayed flights and 327,298 non-delayed flights, which
is impressive for the delay prediction software. Figure
9 represents the precision and recall resulting from the
previous model. The black line represents the precision,
while recall can be seen in blue.

According to the precision equation, reducing the
classifier’s threshold raises the denominator by expanding
the number of outcomes returned. The threshold was set
to 0.5 as too high; the outputs may all be true-positive,
increasing precision. If the prior threshold were too low,
reducing it further would have generated false positives,
reducing precision.

Logistic Regression Autoencoder

Table 4 compares the performance of the autoen-
coder that assembles a logistic regression model built on
different input settings in terms of area under precision-
recall curve, accuracy, precision, and recall.

Figure 9

Precision and Recall for Different Thresholds
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Table 4

Performance Comparison for Logistic Regression

Hidden Layer Input Dimension Epochs Area Accuracy Precision Recall

17 100/50/25 300 0.4184 0.7477 0.7030 0.9784
11 100/50/25/12/6 30 0.6384  0.7669 0.7805 0.5536
11 100/50/25/12/6 300 0.4229  0.7851 0.7318 0.9936

The characteristics were analysed at various levels
of model development with the different amount of input
dimensions. The hidden layers used to implement the
autoencoders are 10 to 17, an input dimension of 6 to
100 and epochs of 30 to 300. This implementation uses
the same number of hidden layers in the decoder as in
the encoder, the last being the output layer, making it an
asymmetric structure. The first experiment was evaluated
with 11 hidden layers and 30 epochs, resulting in 76.69%
accuracy and 78.05% precision. The recall of 55.36%
shows that half of the relevant data were considered. How-
ever, there is no mention of how many unnecessary data
were recovered. The precision and recall graph area were
the highest for this implementation.

Increasing the number of epochs by 10 times and
adding 6 more layers led to a recall of 97.84%, giving an
accuracy of 74.77% and precision of 70.30%. The best
result was achieved with 6 hidden layers for the encoder
and 5 for the decoder. Inputting a total of 300 epochs, a
recall of 99.36% was gained, with an accuracy of 78.51%
and a precision of 73.18%.

Figure 10 shows how the model accurately classifies
99.36% of delayed flights and 49.74% of non-delayed air-
craft. This classification has almost 200,000 flight records,
and the model accurately identifies 118,762 delayed flights
and 43,086 non-delayed flights.

Figure 11 depicts the logistic regression model’s
training and test loss. It was found that the model works
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Figure 10

Confusion Matrix for 11 Layers and 300

Confusion Matrix

100000
» 754
E}qﬂ 80000
o
=]
= 60000
L]
=
40000
» 43522 43086
5 20000
S
&
T
b >
2 &
P &
S
&

Predicted label

well during the training and test phases, with consistently
great results over the whole training set, which is a major

benefit when designing a flight delay classification model.

Figure 11

Model Loss for 17 Layers and 300 Epochs
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Multilayer Perceptron Autoencoder

Table 5 compares the performance of the autoen-
coder Multilayer perceptron autoencoder. Here, after fit-
ting the model, the rebuilding component of the model
can be neglected, and the model can be used up until the
bottleneck. The model produces a fixed-length vector
with a compressed version of the input data at the bottle-
neck. The characteristics were analysed at various levels
of model development with the different amount of input
dimensions. The hidden layers used to implement the

autoencoders are 5 to 10, with an input dimension of 11,
with epochs from 30 to 100. The best result for this case
was achieved with 3 hidden layers for the encoder, one
hidden layer for the bottleneck and a decoder. Inputting
a total of 30 epochs, a recall of 96.19% was gained, with
an accuracy of 60.27% and a precision of 59.79%. In this
implementation, it can be observed that if the number of
epochs increases, the recall begins to drop significantly.

Table 5

Performance Comparison for Multilayer Perceptron

Hidden Layers Input Dimensions Epochs  Area Accuracy Precision Recall
6 11 30 0.4841  0.5239 0.5778 0.6662
7 11 30 0.5121  0.6027 0.5979 0.9619
7 11 100 0.4905  0.5641 0.6320 0.5951
5 11 100 0.4857  0.5800 0.5558 0.1821

Figure 12 represents the precision-recall curve for
the model above. The activation function used for each
hidden layer was Sigmoid, while the activation function
called ’linear’ was used for the output layer. The curve
produces the expected form. The area under the curve
shows high recall and average precision, highlighting the
low false-negative and high false-positive rates. Preci-
sion is high at thresholds with poor recall and begins to
diminish at thresholds with high recall.

Figure 12

Precision-Recall Curve For 7 Layers And 30 Epochs
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Figure 13 shows how the model accurately classifies
96.19% of delayed flights and 10.65% of non-delayed air-
craft. This classification has almost 350,000 flight records,
and the model accurately identifies 189,788 delayed flights
and 15,222 non-delayed flights.

Comparative Discussion

In this research, the accuracy, precision and recall
for the measures of the Vanilla autoencoder are 80.36%,
52.46% and 98.78%. The output for the logistic regression
autoencoder is 78.51% accuracy, 73.18% precision and
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Figure 13

Confusion Matrix for 7 Layers and 30 Epochs
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99.36% recall, while the Multilayer perceptron autoen-
coder is 60.27%, 59.79%, 96.19%, as shown in Table 6.
Therefore, the Vanilla autoencoder outperformed the other
autoencoders. The main interest is in the autoencoder’s
output, so the focus was on the other three methods. The
Multilayer perceptron for the classification method did
not perform as expected.

The advantage of the vanilla autoencoder implemen-
tation is that almost 600,000 flight records were analysed
in the classification, from which 97.95% of delayed flights
and 75.50% of non-delayed flights were classified accu-
rately. The implementation reveals a massive improve-
ment when using a deep autoencoder, such as vanilla,
having at least 200,000 more flight records analysed in
the classification and successfully classifying over 25% of
non-delayed aircraft compared to the logistic regression
model. A method with numerous parameters to fit during
training can produce different outcomes in classification
tasks than other methods. The area gives another aspect
where the vanilla autoencoder outperforms the other meth-
ods under the precision-recall curve. The wide area of
0.9773 below the curve denotes good recall and precision,
with high precision implying a low false-positive rate and
high recall indicating a low false-negative rate, compared
to 0.4229 for logistic regression and 0.5121 for Multilayer
perceptron.

Logistic regression autoencoder comes into an ad-
vantage with the loss function analysis. The experiment
revealed a massive improvement from the precision point
of view, having at least 20% compared to the other meth-
ods. It was found that the model works well during the
training and test phases, with consistently great results
over the whole training set, which is a major benefit when
designing a flight delay classification model.

Table 6

Performance Comparisons of the Different Autoencoders

Model Accuracy Precision Recall
Vanilla 0.8036 0.5246 0.9878
Logistic regression 0.7851 0.7318 0.9936
Multilayer perceptron  0.6027 0.5979 0.9619

Conclusion and Future Direction

Predicting flight delays is a fascinating study issue
that has gotten considerable attention recently. Most stud-
ies have attempted to create and expand their models to
improve the accuracy and precision of flight delay pre-
diction. Because on-time flights are critical, flight delay
prediction algorithms must be exact and accurate. In this
study, we proposed implementing three approaches to an
autoencoder: vanilla autoencoder, logistic regression au-
toencoder, and multilayer perceptron autoencoder. We
compared the predicted accuracy, precision and recall
of the deep feedforward neural network with the autoen-
coder approaches at different variable tunings and epochs.
Our primary aim was to classify and predict flight de-
lays using an autoencoder and re-scale its parameters.
Our experimental results show that the deep vanilla au-
toencoder outperformed the other two implementations
at different parameter adjustments. Comparing the three
autoencoder models shows that the vanilla autoencoder’s
accuracy is greater by 1.85% than the logistic regression
autoencoder and by 20.09% than the Multilayer percep-
tron for classification. At the same time, the area under
the precision-recall curve is higher by 0.5744 and 0.4852;
using the vanilla autoencoder to optimize the results pos-
itively affects classifying and predicting the delay fore-
casting. Flight delays are a popular issue because of their
economic and environmental consequences. They may
raise customer costs as well as airline operating costs.
Aside from direct passenger effects, delay prediction is
critical for every stakeholder in the air transport industry
during the decision-making phase. This work will assist
the aviation industry, especially the air transportation sec-
tor, enhance passenger experiences by improving flight
delay decision support. The next step would be to test the
correctness of this method on different datasets or sample
data.

The practical implications of accurate flight delay
prediction extend well beyond academic interest, touching
the very core of air transportation logistics, customer sat-
isfaction, and operational efficiency. In the real world, the
ability to predict flight delays with high precision enables
airlines and airports to optimize their schedules, manage
resources more effectively, and improve overall service
quality. It also allows passengers to make informed deci-
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sions regarding their travel plans, potentially minimizing
the inconvenience caused by delays. By offering a method
that surpasses others in accuracy and precision, our ap-
proach to using a vanilla autoencoder for delay prediction
provides a significant advantage. This advantage is cru-
cial for developing responsive and flexible operational
strategies that can adapt to the unpredictable nature of air
travel, thereby reducing economic losses and enhancing
passenger experiences.

Moreover, our methodology stands out because it
not only focuses on the predictive accuracy but also em-
phasizes the importance of model adaptability to vari-
ous data environments. The improved performance of
our vanilla autoencoder model, as demonstrated through
rigorous testing across different parameter adjustments,
showcases its robustness and reliability in predicting flight
delays under diverse conditions. This reliability is vital
for real-world applications, where the stakes of accurate
predictions are high, and the cost of errors can be substan-
tial. Our research paves the way for further advancements
in flight delay prediction technologies, encouraging the
adoption of more sophisticated Machine Learning tech-
niques in the aviation industry. Future investigations could
explore the integration of additional data sources, such
as social media sentiment analysis or real-time weather
updates, to further refine the accuracy of delay predictions.
Ultimately, our work contributes to a broader understand-
ing of how Machine Learning can be harnessed to address
complex challenges in aviation, setting a new benchmark
for excellence in the field.
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