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Abstract
Sea turtle populations continue to diminish around the globe due to various reasons. Therefore, the
need for innovative solutions to monitor sea turtles has been increasing. This research paper focuses
on an innovative application of artificial intelligence (AI) and machine learning (ML) together with
unmanned aerial vehicles (UAV) to improve sea turtle conservation efforts. We outline the design,
implementation, and evaluation of a system that deploys UAV equipped with high-resolution cameras,
which, coupled with a purpose-built neural network to recognize, and monitor sea turtles. This project
thus serves as a platform for understanding the wider applicability and limitations of this technology
in the realm of wildlife conservation, while placing particular emphasis on the protection of sea
turtles.

Keywords: Unmanned Aerial Vehicles, Environmental Monitoring, Image Processing, Machine
Learning

Introduction

The increasing urgency to protect our vulnerable
marine species has prompted a change towards technol-
ogy, particularly in the area of wildlife monitoring and
conservation. As sea turtle populations continue to di-
minish due to human activities, poaching, habitat loss,
and climate change (Coston-Clements et al., 2009), the
need for innovative solutions has never been greater. This
research paper focuses on an innovative application of
artificial intelligence (AI) and its various sub-disciplines,
such as machine learning (ML) and neural networks to-
gether with unmanned aerial vehicles (UAVs) to improve
sea turtle conservation efforts.

Sea turtles, globally recognized and cherished for
their beauty and longevity, are integral to the balance of
marine ecosystems. Despite their importance, they are
currently under threat due to various factors including
pollution, climate change, human activities, and illegal
hunting, leading to declining population numbers, and
raising concerns among conservationists (Donlan et al.,
2010). Accurate and efficient monitoring and estimates
of sea turtle populations is pivotal to their conservation
(Cohen et al., 2003), but the manual monitoring methods
traditionally employed are labor-intensive, unreliable in
the long run, and can even pose a danger to the turtle
(Anuntachai & Pantuwong, 2019). Leveraging the power
of neural networks and image recognition software, we
have embarked on a novel journey to automate the pro-
cess of identifying and tracking sea turtles in their natural
habitats. The benefits of such an approach are many, in-
cluding non-intrusive surveillance, increased surveillance

scope, real-time data collection, and potential reduction
in human-induced stress to the animals.

In this paper, we outline the design, implemen-
tation, and evaluation of a system that deploys UAVs
equipped with high-resolution cameras, which, coupled
with a purpose-built neural network, will recognize, clas-
sify, and monitor sea turtle species in real time. This
research will thus serve as a platform for understanding
the wider applicability and limitations of this technology
in the realm of wildlife conservation, while placing partic-
ular emphasis on the protection of sea turtles.

By developing and refining these tools, we hope to
facilitate more informed decision-making, improve con-
servation policies, and ultimately, contribute to the long-
term survival of sea turtles. As we usher in a new era
of technology-enabled conservation, it is critical that we
continue to push the boundaries of what is possible, lever-
aging every tool at our disposal to ensure the ongoing
vitality of our marine ecosystems.

The main goal of our research is to cultivate and
refine an object detection neural network that provides
immediate insights regarding the presence of sea turtles
within specified geographic zones. We hope to integrate
this neural network technology into aerial autonomous ve-
hicles, thus enhancing the efficacy of sea turtle monitoring
and eliminating the necessity for ground-based operations.
The visual data procured via this methodology will serve
to enrich a comprehensive sea turtle database, removing
the need for physically capturing them and affixing track-
ing devices onto them which can sometimes cause health
issues for the turtles (Cohen et al., 2003). This innovative
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approach aspires to create a more sustainable and less
intrusive method for monitoring sea turtle populations.

Background and Related Work

The ongoing advancement and broader availability
of diverse UAVs has fostered their incorporation into many
domains (Neubauer & Akbas, 2022), such as aerial wire-
less sensor (Akbas & Turgut, 2011), weather observation,
urban air mobility (Adkins et al., 2020, 2021) and many
others (Muna et al., 2021). A growing body of research in
recent years has started to explore the potential of these
drones to bolster conservation efforts and facilitate com-
prehensive surveys of marine fauna (Hensel et al., 2018;
Hodgson et al., 2013; Landeo-Yauri et al., 2020). These
studies have largely depended upon the UAVs’ capability
to acquire an abundant number of images, which could be
analyzed to discern unique features of marine creatures,
thereby enabling their identification.

Photo-identification presents a non-intrusive
methodology that allows researchers to conduct seamless
monitoring of marine species, eliminating any potential
disruption or harm to these creatures (Gope et al., 2005).
However, the efficacy of manual identification starts to
suffer when dealing with smaller species or those which
rarely surface above the water, as their distinct markers
are often harder to discern. Moreover, this approach
necessitates a labor-intensive process of sifting through a
massive array of images to isolate those that contain signs
of marine life (Sykora-Bodie et al., 2017).

These impediments have propelled researchers to
seek the utilization of neural networks for assistance. In a
study by Gray et al. (2019), drone imagery was combined
with neural networks to facilitate the identification of sea
turtles along the coast of Costa Rica. Their model out-
performed manual counts by detecting 8% more turtles,
concurrently diminishing the amount of labor required for
the process (Gray et al., 2019). Another study by Badawy
and Direkoglu (2019) presented a system for sea turtle
detection that uses a Faster Region-based Convolutional
Neural Network (R-CNN) algorithm that performs detec-
tion on a cloud. Their model was able to achieve good
results with a precision of 95.7% and a recall of 77.6%,
where recall refers to the model’s ability to identify all
relevant instances (Badawy & Direkoglu, 2019). Both
of these studies underscored the viability of using neural
networks and drones in tandem to accelerate and enhance
the identification process, setting the stage for future en-
deavors in this direction. These constraints encourage
research into the application of neural networks to aid in
the process.

Challenges

Nowadays, executing and testing a neural network
for object detection is often regarded as a standard proce-
dure, readily accomplished given the volume of research
and studies dedicated to this topic. However, the success
of these models heavily relies on ample computational
resources and large datasets, as they enable the network
to learn complex patterns more effectively. Unfortunately,
we faced challenges with limited data and computational
constraints, which impacted our implementation.

The foremost challenge faced during this research
was a lack of suitable data to adequately train the neural
network. While photographs of sea turtles are relatively
accessible, they predominantly depict lateral views and are
captured at close range. The scarcity of aerial imagery of
sea turtles, particularly at altitudes suitable for our project
(300 feet as required by our flight permit), presents a con-
siderable hurdle. The few available images are typically
captured by low-flying drones. However, these images
often contain a higher level of detail than would be achiev-
able at the intended flight altitude of our project, leading
to initial difficulties in sea turtle identification. While this
issue can be mitigated over time by collecting images at
the necessary altitude and using these to further train the
image recognition software, this presents another chal-
lenge. Photographing wild sea turtles is a challenging
task due to the seasonal and unpredictable nature of their
appearance along coastlines, and planning UAV flights
for data collection accordingly is complex and resource
intensive. For the neural network’s initial training phase,
to mitigate the issue of a lack of available images we used
a combination of pictures taken from low flying drones
obtained online, images used in the previously mentioned
studies from Gray et al. (2019), Badawy and Direkoglu
(Badawy & Direkoglu, 2019), which are publicly avail-
able and some lower quality screenshots taken from public
online videos. This allowed us to create a decently sized
database of around 500 images that would work during
the initial stages of the project while we collect our own
images.

The second major challenge revolves around hard-
ware limitations of the UAVs. Given the relatively small
payload capacity of most drones, the addition of any
substantial device could adversely impact the drone’s
flight time. Therefore, hardware selection was highly
constrained. Our selection was the Nvidia Jetson Xavier
from Leopard Imaging, a compact device capable of cap-
turing images and running the neural network without
significantly affecting the UAV’s weight or size. However,
this device’s limited internal storage necessitated the cre-
ation of lightweight image recognition software, further
complicating the implementation process.
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Methodology

The combination of Unmanned Aerial Vehicle
(UAV) technology and object detection methodology is
poised to become an instrumental facet in conservation
and rescue endeavors across a diverse array of habitats.
Thus, the primary objective of this paper is the imple-
mentation and evaluation of a neural network dedicated
to object recognition, designed to enable the real-time
detection and categorization of sea turtles. This techno-
logical approach is pursued with the goal of bolstering
the preservation and sustainability of these marine species.
The following section shows our overarching research
goal and elaborates upon the intricate challenges associ-
ated with the concurrent deployment of object detection
technology and UAVs. Additionally, it provides an ac-
count of the current initiatives in this realm and delineates
prospective objectives.

Development Process

Hardware

The device supporting the software must adhere to
the weight and size constraints associated with UAV pay-
loads. In light of this requirement, our choice has been
the Nvidia Jetson device series, known for their potent
yet compact configurations designed specifically for run-
ning AI software. More precisely, we utilized an Nvidia
Jetson Xavier from Leopard Imaging, model LI-XNX-CB-
6CAM, equipped with the capability to operate a neural
network and simultaneously support up to six MIPI CSI
cameras. This device, weighing 68 grams and measuring
100 mm x 79 mm, comfortably aligns with drone payload
specifications. Nonetheless, as previously acknowledged,
the Jetson device is constrained by a relatively small inter-
nal storage capacity, which dictated the maximum size of
the image recognition software.

Software

Figure 1

Overview of Object Detection Model Training

Image Processing

In the context of this paper, our main focus is image
processing and the training of the neural network to enable
swift and accurate detection of sea turtles from images
taken at an altitude of 300 feet, the flight altitude allowed
by our flight permit. Image processing encapsulates the
alteration of digital images via computer algorithms, typ-
ically executed to enhance image quality or to extract
specific information. For the purpose of this study, this
procedure was employed to delineate and annotate the por-
tions of images where sea turtles were discernible. This
procedure is carried out in order to provide data about the
object shown in the image to the computer vision model.
Labeling the image greatly improves the training process
of the model as well as its overall accuracy and precision
by removing unnecessary information from the image, al-
lowing the model to focus on relevant features and patterns
of the main object.

The labeling process was done by using an open-
source program called LabelImg. This program is one of
the most popular annotation tools, it was a great option to
quickly label objects in multiple images and minimize the
time required for this process. LabelImg is no longer being
developed; it’s now part of an improved version called
“Label Studio” which contains multiple new features and
allows the user to annotate text, audio, and videos. Figure
2 illustrates an example of the labeling process. The data
procured from this exercise was then used in the training
of our neural network, allowing the object detection model
to independently identify the defined data features.

Figure 2

Examples of Annotation Process

Object Detection Model

For the creation and training of the machine learn-
ing module, we utilized TensorFlow (Abadi et al., 2016),
a complimentary and open-source software library de-
veloped by Google. The primary aim of this library is
to facilitate the development and application of machine
learning models in a streamlined and efficient manner,
extending its functionality to tasks such as image and
speech recognition, and processing of language, numbers,
and sound. TensorFlow is structured on data flow graphs,
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where mathematical operations are represented as nodes,
facilitating the flow of data, or tensors. The potency of
TensorFlow lies in its capacity to effectively distribute
computations across multiple CPUs or GPUs, rendering
it an optimal tool for the management of extensive neural
networks.

Employing TensorFlow’s Detection Model Zoo, we
were able to expedite the model’s training phase. The
Detection Model Zoo offers an assortment of pre-trained
models, each with unique detection speeds and mean av-
erage precisions, providing users with a wide spectrum
of options. The model Single Shot Detector (SSD) Mo-
bileNet v2 FPNLite 320x320 was selected for this project
due to its balance between speed and precision, achieving
22 ms per detection with a precision of 22.2 mAP. This
makes it well-suited for devices with limited computa-
tional resources. The architectural model, SSD MobileNet
v2, is a composite model, encompassing a MobileNet v2
network and an SSD layer, characterized by linear bottle-
necks and shortcut connections. The SSD layer detects
the object of interest using features derived from the Mo-
bileNet base network.

MobileNetV2 is a convolutional neural network ar-
chitecture designed for mobile and embedded vision ap-
plications, characterized by its efficiency and lightweight
design. The foundation of MobileNets is a streamlined
architecture that creates lightweight deep neural networks
using depth-wise separable convolutions. To cut down on
computation time and parameters, MobileNet employs a
Depthwise separable convolution rather than the standard
convolution. It operates by first applying convolution to
each channel of the image rather than as a block n times,
and then obtaining n filters via 1x1 convolution.

Finetuning a pre-trained model like SSD MobileNet
v2 offers numerous advantages compared to training a
model from scratch. Firstly, it drastically reduces the de-
mand for extensive datasets and training time, saving valu-
able resources. Secondly, it enhances model performance
by leveraging the knowledge gained during pretraining.

After the training phase of the object detection
model, it was integrated with the Jetson device using
TensorFlow Lite. TensorFlow Lite enables on-device ma-
chine learning, offering a toolkit that assists developers in
deploying their models on mobile, embedded, and edge
devices. It aids users in converting and optimizing ma-
chine learning models to ensure efficient performance on
limited-resource platforms, such as the Jetson device. As
stated in the Challenges section, one of the issues faced
during the integration of the object detection model with
the Jetson device was the limited memory capacity. How-
ever, TensorFlow Lite allowed us to curtail the memory
requirement of our model without compromising on per-
formance or accuracy.

Results and Discussion

This section discusses the results acquired from the
trained object detection model. Our initial dataset encom-
passed 300 images, all captured from a UAV’s perspective.
The code created for the training of this model separates
the images into two sets: a training set that comprised
85% of the images, and a testing set that encompassed the
remaining 15% of the images. While the most common
practice when training a model is to follow the 70/30 or
80/20 rule, where 70% or 80% of the images are used for
training and the remaining 30% or 20% of the images for
testing, given the small size of our dataset we opted for an
85/15 split to obtain the best results. As delineated in the
Development Process section, the object detection model
was trained using TensorFlow and subsequently integrated
and tested on a Jetson Nano. To ensure no turtle sight-
ing would be missed during real-time processing, we set
the minimum confidence threshold for our model at 50%.
This value represents the lowest certainty level the model
allows in its predictions, with any detection below this
threshold being disregarded. This approach was essential
for promptly identifying areas where turtles could poten-
tially be found. When the neural network was run outside
of real-time conditions, the threshold was increased to 75

Figure 3 presents three instances of the results de-
rived after operating the object detection model. The
images in Figure 3 (a) demonstrate the model’s capabil-
ity to detect turtles on the water’s surface and in various
positions. Figure 3 (b) showcases the model’s ability to
identify turtles at greater depths, while Figure 3 (c) depicts
a similar detection scenario in a different habitat with an
alternate color scheme.

Out of the 60 images set aside for testing, 49 were
accurately identified, leading to an overall accuracy of
approximately 81.67%, a F1-score of 81.77%, (which bal-
ances precision and recall), and a recall of 82.03% for
our object detection model. Figure 4 exhibits a few exam-
ples of images that were incorrectly interpreted. Figure
4 (a) and (b) display images where turtles were entirely
overlooked, while Figure 4 (c) presents a shark that was
erroneously identified as a turtle.
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Figure 3

Object Detection Results: Correct Detections

Figure 4

Object Detection Results: Sea Turtles Not Detected
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Despite the successful implementation and testing
of our neural network with existing images, a significant
limitation was the absence of sufficient original image
data collected by our team. This was due to the inher-
ent difficulties in locating and photographing sea turtles
in their natural habitats. Despite numerous UAV flights
aimed at collecting these images, we only managed to
spot sea turtles on one occasion. Further intensifying this
challenge was our inability to capture high-quality images
due to constraints related to the camera equipment and
other external factors. Consequently, the testing of the
neural network was constrained mostly to images that we
did not capture ourselves, which placed certain limitations
on our ability to fine-tune and validate the model with
in-the-field data.

As we continue our efforts and begin to amass a
more substantial collection of original image data, we
anticipate that the effectiveness and precision of our object
detection model will be considerably improved. Looking
forward, our intentions extend beyond just detecting the
presence of sea turtles. We aspire to evolve our model to
differentiate between sea turtle species and, optimistically,
even identify individual turtles. This objective will further
advance our understanding of sea turtle behaviors and
distributions, contributing invaluable knowledge to the
broader field of marine conservation.

Conclusion

Our research was able to uncover both significant
opportunities and notable constraints. As highlighted in
our discussions, the limited dataset that we used in this
research significantly influenced the performance of our
model. A comprehensive representation of the diverse
habitats of sea turtles and the variations in their appear-
ance due to lighting, shadows, and water reflections, un-
fortunately, fell short in our current dataset. This resulted
in challenges regarding the model’s consistency and reli-
ability in turtle detection under varying conditions. It is
important to recognize that these obstacles are not insur-
mountable. The nature of machine learning and neural
networks is such that the accumulation of more images
captured in various conditions and settings will substan-
tially augment the training of our object detection model.
This continued learning, driven by increasing volumes of
high-quality data, will improve the model’s robustness and
predictive accuracy, thereby overcoming the limitations
observed in the current study.

Looking ahead, our roadmap for the development
of this project is to perform targeted enhancements and an
expanded application scope. Foremost among these is the
intent to further refine and optimize our detection model
on the Jetson Xavier platform. By improving the efficiency
of our algorithms and optimizing their interaction with

the hardware, we aim to significantly reduce the overall
processing time. This step is pivotal in increasing the
model’s operational feasibility in real-time applications,
ultimately accelerating the pace at which conservation
efforts can be informed and actioned.

Beyond this technical improvement, our ambitions
also encompass broadening the horizons of our model’s
functionality. Our long-term goal is to expand the model’s
detection capability to include a diverse array of other
aquatic and terrestrial species. By doing so, we aim to
evolve our model from a focused tool for sea turtle conser-
vation into a versatile asset for global wildlife conservation
efforts. This extension would dramatically amplify the
positive impact of our work, contributing invaluable in-
sights to the protection and preservation of biodiversity
across multiple ecosystems.

In conclusion, our research has laid the groundwork
for a potentially transformative tool in wildlife conserva-
tion. While challenges remain, the possibilities for im-
provement and extension of this work are significant. As
we continue to refine our model and widen its applica-
tions, we believe that our research will play a pivotal role
in shaping innovative and effective conservation strategies
for the future.
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