
Publications

2011

Forensic Analysis of Plug Computers Forensic Analysis of Plug Computers

Scott Conrad
University of Central Florida

Greg Dorn
University of Central Florida

Philip Craiger
Daytona State College, craigerj@erau.edu

Follow this and additional works at: https://commons.erau.edu/publication

 Part of the Forensic Science and Technology Commons, and the Information Security Commons

Scholarly Commons Citation Scholarly Commons Citation
Conrad, S., Dorn, G., & Craiger, P. (2011). Forensic Analysis of Plug Computers. Advances in Digital
Forensics VII, (). https://doi.org/10.1007/978-3-642-24212-0_21

This Book Chapter is brought to you for free and open access by Scholarly Commons. It has been accepted for
inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please
contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/publication
https://commons.erau.edu/publication?utm_source=commons.erau.edu%2Fpublication%2F1003&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fpublication%2F1003&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fpublication%2F1003&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-3-642-24212-0_21
mailto:commons@erau.edu

Chapter 21

FORENSIC ANALYSIS OF
PLUG COMPUTERS

Scott Conrad, Greg Dorn and Philip Craiger

Abstract A plug computer is essentially a cross between an embedded computer
and a traditional computer, and with many of the same capabilities.
However, the architecture of a plug computer makes it difficult to apply
commonly used digital forensic methods. This paper describes methods
for extracting and analyzing digital evidence from plug computers. Two
popular plug computer models are examined, the SheevaPlug and the
Pogoplug.

Keywords: Plug computers, forensic analysis, SheevaPlug, Pogoplug

1. Introduction

Personal digital devices are becoming smaller and cheaper, an exam-
ple of which is the plug computer. Plug computers are a cross between
an embedded device (e.g., smart phone) and a traditional computer (e.g.,
laptop or desktop). Plug computers have the same general architecture
as traditional computers (CPU, RAM, non-volatile memory, system bus,
etc.), but are considerably smaller and less powerful. However, the foren-
sic extraction and analysis of digital evidence from plug computers are
neither as straightforward nor as simple as for typical desktops and lap-
tops.

An example plug computer is the SheevaPlug [10] shown in Figure 1.
It is roughly the size of a large A/C power supply adapter. SheevaPlug’s
low power consumption and cost (around $65) makes it ideal for use as
a small-scale server, such as a home network attached storage (NAS)
server.

Since their debut in early 2009, plug computers have generated consid-
erable interest among developers and hobbyists, resulting in numerous
applications ranging from file serving to cloud computing. Like desktops

276 ADVANCES IN DIGITAL FORENSICS VII

Figure 1. SheevaPlug plug computer.

and laptops, plug computers have the potential to be used in nefarious
ways, all the while maintaining a low profile because of their small size.

Despite the increasing popularity of plug computers, there is no pub-
lished research on forensic procedures for extracting and analyzing dig-
ital evidence from these devices. This paper attempts to fill the void
by discussing digital forensic procedures for two widely distributed plug
computers, the SheevaPlug [10] by Marvell Semiconductor, and one of
its commercial successors, the Pogoplug by Cloud Engines [12].

2. Plug Computer Overview

This section provides an overview of the SheevaPlug and Pogoplug
plug computers, which are the focus of this paper.

The SheevaPlug uses a licensed version of ARMv5, an ARM architec-
ture that is commonly found in cell phones. Its Marvell 88F6000 CPU is
clocked at 1.2 GHz and has 16 KB of L1 cache and 265 KB of L2 cache,
connected via a 64-bit MBus (system bus) clocked at 166 MHz. The
SheevaPlug has 512 MB of DDR2 RAM and 512 MB of NAND flash
memory, which serves as non-volatile memory (storage). It incorporates
several external interfaces: a gigabit Ethernet port, a USB type A port,
a mini USB port (used as its JTAG [8] and serial interface), and a secure
digital input output (SDIO) flash card slot [10].

The Pogoplug has an almost identical architecture, except that it
has no mini USB port and no SDIO flash card slot. The absence of a
mini USB port makes it difficult to extract digital evidence from the
Pogoplug’s NAND flash memory.

Conrad, Dorn & Craiger 277

A plug computer can be loaded with any operating system that sup-
ports the ARM architecture. However, Linux is the most commonly
used operating system. Several pre-packaged Linux distributions are
available, including Ubuntu, Gentoo, Debian, FreeBSD and Fedora [11].

The primary challenge in performing a forensic analysis of a plug
computer is dealing with flash memory (non-volatile storage). Flash
memory does not behave in the same manner as more common types
of storage media such as a hard drive. For instance, writing to flash
memory is done in complete blocks – changing even a single byte requires
a complete block (typically 512 K) to be rewritten. This hinders the
ability to recover deleted and unallocated data because of the likelihood
that slack space will be overwritten; this also creates the need for a
special file system that supports the writing of complete blocks.

The two most common file systems used with the SheevaPlug and
Pogoplug are the Journaling Flash File System version 2 (JFFS2) and
its successor, the Unsorted Block Image File System (UBIFS) [20–22].
These two file systems, as well as most other flash memory specific file
systems, are log-structured systems that rely on the Memory Technology
Device (MTD) subsystem [17]. Interested readers are referred to [21] for
additional details.

3. Interfacing with Plug Computers

The Joint Test Action Group (JTAG) [8] interface is an important
mechanism for extracting the contents of plug computer memory. The
JTAG interface is a debugging tool that allows users to directly control
the circuits and chips on a memory board without accessing the operat-
ing system. In the case of plug computers, the JTAG interface is used
primarily for reloading the boot loader (U-Boot, which is described be-
low) and the operating system, although this can be accomplished over
a serial connection using removable memory or a network protocol.

In a forensic investigation, the JTAG interface may be used to di-
rectly access and extract the memory contents. This is accomplished
by directly controlling the CPU, having the CPU read the contents of a
memory bank (RAM or NAND), and forwarding the bits back through
the JTAG interface so that they can be captured and stored. The Open
On-Chip Debugger (OpenOCD) software may be used for this purpose
as it can control many different aspects of a plug computer through the
JTAG interface as well as copy data to and from memory [1, 14].

As mentioned above, the Pogoplug does not have a built-in JTAG
interface like the SheevaPlug. However, the Pogoplug does have an 8-pin
JTAG header on its motherboard, which makes it possible to use JTAG

278 ADVANCES IN DIGITAL FORENSICS VII

to acquire the memory contents. To accomplish this, a hardware JTAG
adapter must be manually interfaced with the Pogoplug – since the 8-pin
header has not been standardized – and then configured to work properly
with the ARMv5 processor. Subsequently, OpenOCD or other similar
software may be used to communicate with the processor. Although this
can be accomplished in theory, we were unable to implement the JTAG
interface during our research. Note that a serial interface can also be
created by modifying a cable and then attaching the cable to a 4-pin
header on the motherboard [13, 19].

The boot loader U-Boot [3, 5, 6] is used to initialize and load the oper-
ating system when a plug computer is powered on (assuming, of course,
that an operating system is already installed). Note that U-Boot has a
short timeout during which a user can manually abort the loading of the
operating system via a serial connection. The U-Boot shell works much
like the BASH shell in that it can run simple commands such as dis-
playing or altering the current environmental variables; also, it supports
simple shell scripts. In most cases, executing the printenv command
to display environmental variables reveals what the boot loader will do
when it attempts to boot the operating system. Interested readers are
referred to [6] for additional details about U-Boot.

4. Imaging Non-Volatile Memory

Acquiring a bit-for-bit copy of the non-volatile memory is one of the
first steps in a forensic investigation. This is a simple process in a typi-
cal desktop or laptop computer because the non-volatile memory (hard
drive) can be removed and attached to a physical write blocker to obtain
a forensic duplicate (image). However, this is difficult to do for a plug
computer because the NAND flash memory is soldered to the mother-
board. The most direct means of obtaining a copy of the memory is to
desolder the chip from the motherboard and move it to a device that is
capable of reading their contents. This is dangerous, however, because of
the likelihood of losing or corrupting the data on the chip. Additionally,
this method requires expensive, specialized equipment and training. For
these reasons, we suggest that a desoldering method be employed only
as a last resort.

Another method for creating an image is to boot the plug computer
and use Linux utilities to create a forensic image. This task is eas-
ily accomplished using dd to read data directly from the flash device
(/dev/mtd) and then stream the bits to a second target computer using
the netcat utility (which reads and writes a stream of bits). Because
there is no way to prevent writing to the NAND flash memory – for

Conrad, Dorn & Craiger 279

example, by inserting a write blocker – this is not a forensically-sound
method for creating an image. Furthermore, the act of booting a plug
computer (like any other computer) causes the data in memory to change
in some way. There is also the possibility that a sophisticated user could
use an anti-forensic measure or create daemons to automatically destroy
the data if the plug computer is not booted in a specific way.

We have discovered that accessing memory through the JTAG inter-
face is (arguably) forensically acceptable because it prevents nearly all
types of writes to the memory. As described above, the JTAG interface
allows for direct control over the plug computer via a USB port. This
means that memory dumps of the NAND flash memory and RAM can
be obtained directly from the plug computer without accessing the op-
erating system or any other software running on the device. Thus, the
only risk of unauthorized writes to plug computer memory comes from
the JTAG software (OpenOCD) and the boot loader (U-Boot).

Note that the U-Boot environment can directly copy areas of memory
to a target. Accordingly, we surmised that it should be possible to use a
serial connection to copy data from the internal flash memory to external
storage in order to obtain a forensic image, thus eliminating the need
to use a JTAG scheme. Unfortunately, our attempts were unsuccessful
because the copy command would not allow the target to serve as an
external memory device [5].

5. Obtaining a Flash Memory Dump

This section describes the process we used to obtain a dump of the
internal flash memory of the SheevaPlug. The acquisition computer was
an Intel-based desktop computer running Ubuntu 9.10 (Linux kernel
v2.6.31) and OpenOCD v0.2.0. We used a USB type A to mini USB
data cable to connect the JTAG interface from the SheevaPlug to the
acquisition computer.

5.1 Connecting to the SheevaPlug

Connecting the laboratory computer to the SheevaPlug plug computer
using OpenOCD involves the following steps:

Connect the laboratory computer to the SheevaPlug using the
JTAG interface (mini USB port).

Power on the SheevaPlug by plugging it into a power outlet.

Use a terminal emulator application (e.g., PuTTY) to connect to the
SheevaPlug via the serial port (usually /dev/ttyUSB1 in Linux).

280 ADVANCES IN DIGITAL FORENSICS VII

Figure 2. Stopping the operating system from booting.

This must be done quickly because the user only has a few seconds
to stop the operating system from booting.

Stop the operating system from booting by pressing any key at the
prompt (Figure 2).

Run OpenOCD on the laboratory computer (Figure 3). The Open-
OCD manual [15] describes how to point the software to the correct
SheevaPlug configuration file.

Conrad, Dorn & Craiger 281

Figure 3. Running OpenOCD.

Connect to OpenOCD via telnet by issuing the command telnet
localhost 4444.

Run the OpenOCD method sheevaplug init over the telnet
connection. This will reset the plug computer, but immediately
halt it and initialize the plug computer to allow control over the
NAND flash memory and RAM.

Locate the flash devices by issuing the command NAND list and
probe the devices using the command NAND probe num where num
is a number given by NAND list (Figure 4).

5.2 Obtaining a Dump

The next step is to obtain a memory dump. The following steps are
involved:

Execute the command NAND dump num filename beginning off
set length to copy the memory contents from a flash device to a
file on the laboratory computer. This action can take a consider-
able amount of time.

Execute the command dump image filename beginning offset
length to copy the contents of RAM to a file on the laboratory
computer, if desired.

Power off the plug computer when finished by pulling it out from
the power outlet.

282 ADVANCES IN DIGITAL FORENSICS VII

Figure 4. Locating and probing NAND flash memory.

This method does not allow the operating system to load, but it still
achieves the goal of creating a forensic duplicate of the memory contents.
Note, however, that a skilled programmer could alter U-Boot to corrupt
the memory of a plug computer if the correct steps are not performed
when powering on the device, but this is unlikely because the boot loader
is a very small program and it may not be possible to reconfigure it to
achieve such an effect.

In our experiments, it took more than a few hours to obtain a memory
dump of the RAM and more than a month to obtain a dump of the
NAND flash memory. The NAND flash memory dump has a transfer
rate of roughly 1 MB per hour and all attempts to accelerate this process
were unsuccessful. Writing to the NAND flash, on the other hand, is
much faster; writing all 512 MB of memory only took a few hours.

5.3 Creating a Serial Connection to Pogoplug

Constructing a cable to establish a serial connection to the Pogoplug
requires minimal soldering experience and inexpensive supplies. Infor-

Conrad, Dorn & Craiger 283

mation about the type of cable required is available at [13] and a de-
scription of wires in the cable is available at [10]. The resulting modified
cable can be used to connect to the 4-pin header on the Pogoplug’s
motherboard and establish a serial connection to the device.

6. Forensic Analysis of Flash Memory

After the NAND flash memory contents are extracted, there are only
a few options available for analysis. We know of no forensic tools, in-
cluding the most popular forensic suites, that have been developed to
specifically analyze the data. Research on the subject of recovering
deleted data from NAND flash memory [2, 16] focuses on the physical
memory level rather than the logical file system level. Thus, the only
reasonable option is physical analysis with a hex editor. The logical level
could be replicated by using a laboratory computer to mount the image
virtually or by writing the entire NAND flash memory image to another
identical plug computer.

We attempted to use the OpenOCD software to write the NAND
image to a second plug computer. The command NAND write num
filename offset copies the NAND image filename to the NAND de-
vice num starting at offset in the NAND device. After the copy process
is complete, the plug computer can be restarted and, in theory, should
boot up normally as with any cloned device. Unfortunately, our at-
tempts at using this method were unsuccessful.

The only successful method that we discovered for logical analysis is
to mount an image as a read only device in a Linux environment using
software tools that emulate NAND flash memory. The following steps
are involved in mounting a JFFS2 file system:

mknod /temp/mtdblock 0 b 31 0.

modprobe loop (may not be necessary).

losetup -f (returns a free loopback device, e.g., /dev/loop0).

modprobe mtdblock.

modprobe block2mtd.

echo /dev/loop0,128KB /sys/module/block2mtd/parameters
/block2mtd.

modprobe jffs2.

mount -t jffs2 /tmp/mtdblock0 (mount point).

284 ADVANCES IN DIGITAL FORENSICS VII

Note that this technique only works with the file system partition and
not with the U-Boot partition or with the entire NAND flash memory
image. If the entire NAND flash image is provided, the U-Boot partition,
which usually constitutes the first few megabytes, must be carved out.

7. External Storage Considerations

Plug computers were originally designed to serve as network attached
storage (NAS) servers, which require external storage media. The exter-
nal storage could be an external hard drive, USB flash drive or, in the
case of the SheevaPlug, a SDIO flash card. The external storage may be
formatted with a common file system (e.g., FAT, EXT 2/3/4 or NTFS)
or a less common file system (e.g., Minix, FUSE, HFS, HFS+, UFSD or
VFAT) [4]. Plug computers also have the ability to format the external
storage with most of these file systems, although this is typical of any
Linux operating system.

The SheevaPlug and Pogoplug handle external storage differently.
The SheevaPlug handles its external storage in the same way as any
Linux machine – storage devices are mounted for access and use. The
Pogoplug, on the other hand, automatically modifies external storage
connected to it by adding its own system files. The files created are
/ceid and /.cedata/cedb and the folder created is .cedata. File .ceid
is a text file that contains a 22-character diskid while file cedb is an
SQLite database file [7]. The database cedb contains an entry for every
non-hidden file on the external storage; each entry contains the name,
path, creation time and data type of the file. The creation time is in
the UNIX timestamp format with three additional digits appended to it.
Thus, the timestamp corresponding to the date 10 Oct 2010 09:08:07
is 1286701687XXX with XXX as the three additional digits.

Figure 5 shows the cedb database as viewed using an SQLite manager.
We observed that the cedb database contains entries for deleted files.
When a file is removed using the Pogoplug software (e.g., via the website
interface), the file entry is removed from the database. However, if the
file is manually deleted from storage, regardless of whether or not the
storage is connected to the Pogoplug or to another machine, the file
entry remains in the database.

In general, the forensic analysis of external storage should require lit-
tle or no special considerations because plug computers almost always
use widely available Linux distributions (e.g., Debian or Redhat). How-
ever, investigators should be mindful of the circumstances under which
external storage may be affected.

Conrad, Dorn & Craiger 285

Figure 5. View of a cedb database.

8. Conclusions

Extracting and analyzing digital evidence in a forensically sound man-
ner are becoming significantly more difficult for low form factor comput-
ers. Extracting data from a plug computer to create a forensic image
is challenging but, nevertheless, possible. However, analyzing the im-
age is difficult because the lack of automated tools necessitates manual
analysis.

Second generation versions of the SheevaPlug and Pogoplug have al-
ready been announced, and many new plug computer models are in
development. Meanwhile, manufacturers such as Seagate and Iomega
have integrated plug computer concepts in their own product lines (e.g.,
FreeAgent from Seagate [18] and iConnect from Iomega [9]). The digital
forensics research and vendor communities must intensify their efforts
to keep up with this growing segment of low form factor computers,
and develop forensically sound techniques and tools for extracting and
analyzing digital evidence from these devices.

References

[1] Amontec, Open On-Chip Debugger (OpenOCD), Vuippens, Swit-
zerland (www.amontec.com/openocd/doc/index.html).

[2] M. Breeuwsma, M. de Jongh, C. Klaver, R. van der Knijff and M.
Roeloffs, Forensic data recovery from flash memory, Small Scale
Digital Device Forensics Journal, vol. 1(1), 2007.

286 ADVANCES IN DIGITAL FORENSICS VII

[3] C. Brune, Lost art of computer programming, Das U-Boot: The
universal boot loader (www.cucy.net/lacp/archives/000022.html),
2004.

[4] Cloud Engines, Pogoplug, San Francisco, California (pogoplug
.com).

[5] DENX Software Engineering, Memory commands, DENX U-Boot
and Linux Guide, Groebenzell, Germany (www.denx.de/wiki/view
/DULG/UBootCmdGroupMemory#Section 5.9.2.4).

[6] DENX Software Engineering, U-Boot, Groebenzell, Germany (www
.denx.de/wiki/U-Boot).

[7] Hwaci Applied Software Research, SQLite (sqlite.org).

[8] IEEE Standards Association, 1149.1-1990 – IEEE Standard Test
Access Port and Boundary-Scan Architecture, Piscataway, New Jer-
sey, 1990.

[9] Iomega, Iomega iConnect wireless data station, San Diego, Califor-
nia (go.iomega.com/en-us/products/network-storage-desktop/wire
less-data-station/network-hard-drive-iconnect).

[10] Marvell Semiconductor, SheevaPlug Development Kit Reference
Design, Santa Clara, California (www.plugcomputer.org/index.php
/us/resources/downloads?func=startdown&id=90), 2010.

[11] plugcomputer.org, Plug Wiki (plugcomputer.org/plugwiki/index
.php/Main Page).

[12] Pogoplugged.com, Forums (www.pogoplugged.com/forums).

[13] Pogoplugged.com, How to find mkfs, jffs and other tools on Pogo-
plug (www.pogoplugged.com/forum/thread/11515/How-To-Find-
mkfs-jffs2-and-other-tools-on-Pogoplug/?highlight=find+mkfs).

[14] D. Rath, Open On-Chip Debugger (openocd.berlios.de/web).

[15] D. Rath, OpenOCD User’s Guide (openocd.berlios.de/doc/html
/index.html#Top).

[16] J. Regan, The Forensic Potential of Flash Memory, Master’s The-
sis, Department of Computer Science, Naval Postgraduate School,
Monterrey, California, 2009.

[17] M. Rosenbum and J. Ousterhout, The design and implementation
of a log-structured file system, Proceedings of the Thirteenth ACM
Symposium on Operating System Principles, pp. 1–15, 1991.

[18] Seagate Technology, FreeAgent DockStar, Scotts Valley, Califor-
nia (www.seagate.com/www/en-us/products/network storage/free
agent dockstar).

Conrad, Dorn & Craiger 287

[19] Sun Microelectronics, Introduction to JTAG Boundary Scan, White
Paper, Sun Microsystems, Santa Clara, California (www.johnloom
is.org/ece446/notes/jtag/wpr-0018-01.pdf), 1997.

[20] UBIfs Wiki (osl.sed.hu/wiki/ubifs/index.php/Main Page).

[21] D. Woodhouse, JFFS: The Journaling Flash File System (linux-
mtd.infradead.org/∼dwmw2/jffs2.pdf).

[22] D. Woodhouse, UBI – Unsorted Block Images (www.linux-mtd.infra
dead.org/doc/ubi.html).

	Forensic Analysis of Plug Computers
	Scholarly Commons Citation

	Forensic Analysis of Plug Computers.

