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e H (D) : All Analytic functions on D

o Weighted Bergman space
AP — {f € H(D) / I (2)|P dAq (2) < oo}  where
D
dAq (2) = (a+1) (1-|2*) dA(z) , @ > —1

o A% = A% (Bergman Space)
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@ ¢ : Analytic from D — D

Definition
The composition operator with symbol ¢:

Co,:H(D) - HD), Co(f)=fop

@ u: Measurable from D — C

Definition

The weighted composition operator with weight v and symbol ¢:

uCy, : H(D) — All measurable functions on I, uC, (f) = u(f o ¢)
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Introduction

Question
When is uC, — vCy, compact? (Assume u and v are analytic)

It is known that:

Theorem (Z.Cuckovi¢ and R. Zhao, 2007)
e l<p<g<

Then uC, is compact from Af into Ag if and only if

(2+a)q

. 1-— |z‘2 P . -
IZIII—TL /11) (W) |u(w)|9 dAg(w) = 0.
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A theorem of Moorhouse

Question
When is C, — C;, compact?

Theorem (J. Moorhouse, 2005)
C, — Cy is compact on A2 if and only if both

. — |z
lim |0’(Z)|

A |<,o( =0 L @I TeE =

— p(2)=¥()
Here o(z) = T oG) eD

Note: |o| is often referred to as the Cancellation Factor.
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Connection between the Difference operator and Weighted

Composition operators

The next theorem links the two types of operators.

Theorem (E. Saukko, 2011)
0l<p<g<x

Then C, — Cy, is compact from Af, into Ag if and only if C, and 0 Cy, are
both compact from AP, into LY(Ag).
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Another Version of Saukko’s theorem

Theorem (Another Version)

C, — Cy is compact from Af into Ag if and only if each of the following
holds:

(a)

(2+a)q

. 1-— |z|2 P : B
|z|"31/D (m) [o(w)] dAs(w) = 0,

(2+a)q

. 1-— ’z|2 P : e
|||5"1/D (W) |o(w)|? dAg(w) =0
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Answering the Original Question

Question
When is uC, — vCy, compact? (Assume u and v are analytic)

Definition
For v € R, M(y) is defined as follows:

M(y) = {f : |f(2)(1 = |2]*)"| < oo}
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Compactness of uC, — vy

e 0<p<Lg<

o 2ta o 248
p — q

° u,veM(%—HTa)

Theorem (Acharyya and Wu, 2017)

uCy —vCy : AP — Ag is compact if and only if each of the following
holds:

(a)

i [o(2) <|u(z)“;”ﬂ_a+|v(z)|%> _o,
=1 (- [R5 (1 P>

222 LR
im (1—|a(z)|2>“7°'|u(z)—v<z>|< a-lzf) e, (-lzf) _> 0
1 @D a-pEnF)
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Compactness of uC, — vy

Theorem (Acharyya and Wu, 2017)

uCy —vCy : AP — Ag is compact if and only if each of the following
holds:

(a)
lim |o(2) <|u(z)“;”n_a+|v(z)|%> —o,
i1 (1 [e@)P) = 1 pEP)=
(b)

|z|';m1_<1—|a<z>|2>“7"|u(z>—v<z>|< e >=

24a 24+a 0
(I=le@)P) = (A-[(2)P) >
Proof: "=" Suppose uC, — vCy : A} — Ag is compact.
Let pa(z) = == Note that k,, p.ks — 0 weakly. Thus
i uCa(h) = vCu (k) s = 0. lim [uCo(iake) ~ vCuliake) g s = O
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Compactness of uC, — vy

Apply the lemma:
Lemma

Suppose 0 < p < 0o and 0 < r < 1. There is a constant C > 0 such that
for any z € D and f € AP

P < Tlaymrs o, FOPA)

Also, use the elementary facts that Cy(¢,(,))(z) =0 and
‘C¢(<p¢(z))(z)‘ = |o(z)|, and a chain of inequalities to obtain

7(2)]lu(2)] (1 | 2%

lim =0,
A1 1 je(2)2)
i 142 = v(2)|(1 - \U(+Z)| ) (1-1z)% =o.
|21 (1= |e(2)]?) »

S. Acharyya,, Z. Wu Difference of two weighted composition opera



Compactness of uC, — v

Similarly 24s
iy MU EDT
=1 (1= [y(2)2) e
i 2 VDO @D s
Izl =1- (L—1lp(2)?) »

<= (has root in Moorhouse and Saukko’s work:)

It is sufficient to show that for any sequence {f,} in AP, with ||f,||po <1

and f,(z) — 0 as n — oo uniformly on any compact set of I, we have

[(uCp = vCy)(fa)ll, 5 — 0 as n— oo.

Partition the disk into £ and £/, with E = {z € D : |o(2)| < 2523}
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Compactness of uC, — vy

We can write

(uCpo=vCy)(fn) = (uCo=vCy)(fa)xer+(u—v) Cy(fa)xe+u(Co—Cy)(fa) XE-
Therefore we need to establish the following three statements.

lim [|(uC, — vCo)(Fa)xerl 5 = 0.

Tim [|(s — V) o)l 5 = 0.

Tim [u(Cp — Co)(Fa)xelly s = 0.

The first two statements are true, due to the following lemma.
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Compactness of uC, — vy

Lemma
Suppose s, t > 0, w is a nonnegative locally bounded measurable function
on D, ¢ is a holomorphic self map of D, and

(1—|zP)

I T

(a) If B > s —1, then the measure p.(w, Ag) is a compact
(2+ B + t — s)-Carleson measure.
(b) If 3> —1 and w € M(v) with v < 1+ 3, then the measure
@«(w, Ag) is a compact (24  — v + €(y + t — s))-Carleson measure
o 1+8— 5 5
for any € € (0, min{==2,1}) ify <s, ore € (0,1) ify = s.
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Compactness of uC, — vy

To prove the third statement

n||_>m Ju(Cp — Cw)(fn)XEHq,g =0

we apply Fubini, the previous lemma, and the following lemma:
Lemma

Let 0 < p < g < co. There exists a constant C > 0, such that for all
aeD, ze Aa,2583), and f € AR, with ||f|pa < 1

lpa(2)|9
[f(z) — f(a)|7 < C(l_,a‘ )2+aCI/P/(

|F(w)|PdA,.
)
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The theorem of Moorhouse

Theorem (Acharyya and Wu, 2017)

uCy —vCy : AP — Ag is compact if and only if each of the following
holds:

(a)

248 248
im o (z) <|u(z)‘z')z+a+|v(z)|"z')"> —o,
i1 (1 - e(2)P) (1- @R+

252 12
lim (1 |o(2)P)* |u(z) - v(z)| ( (-2 — (1 —z[) M) -0
lzl=1— (1—le(2)?) (1= |¥(2)?) >

Corollary (J. Moorhouse, 2005)
C, — Cy is compact on A2 if and only if both

. 1— |z .
| -0, |
Lim lo()T—-r Sy prETE Ry o= e

—l2I°

|w(z)|2 =0
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Hilbert-Schmidt operator (definition)

@ X : Separable Hilbert space
o {e;} : Orthonormal basis

Definition
T is Hilbert-Schmidt if

1

0o 2
I Tl Hs(x) = {Z IITejll2} <0
j=0

Notational Simplicity: || T|ysx) = || T|lHs
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Hilbert - Schmidtness of C, — Cy,

Theorem (B.R. Choe, T. Hosokawa and H. Koo, 2010)
Let o > —1. Consider C, — Cy, acting on A(21. Then

, [ 1R@IAE) | [ 1@ )
I = Glbs= [ i e bR

Here oo = —1 corresponds to H?, and the comparability constants depend
only on .
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Hilbert - Schmidtness of uC, — v,

Theorem (Acharyya and Wu, 2017)
e E:DorT

@ u,v : Measurable
o uC, — vCy acting from A2 — L?(p)
Then

oo —vColfis = [L1of? (et + e Yo
A\ e e o

_ 2\2+al,, _ |2 1 1
+/E(1 |o]%)=*u — v| <(1 " p[)Fre + 1- W,|2)2+a> du
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Hilbert - Schmidtness of uC, — v,

A Key Lemma:

Lemma (Acharyya and Wu, 2017)
@ Forz,w €D, define p = Z=2

1-zw

e o> —2
Then
ARKE (2) + | BRKS) (w) + 20 (ABKSY(2)) =

o2 (IARKE(2) + [BI2KE) (w))
+(1 = |p22+e |A+ B (K (2) + K ().
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Corollary

Theorem (Acharyya and Wu, 2017)

|uf® vI?

_ 2 2
[uCp — vCyllhs = /E |o| <(1 — |p[?)2te + (1— ‘¢‘2)2+a> dp

o 2V24a),, 12 1 1
+/E(1 lo|%) lu—v| <(1_ |(p|2)2+a + (1— |¢|2)2+a> du

Corollary

Consider the following operators
ouC,, ovCy, (1— |2 (u—v)C, and (1 — |02 2 (u—v)C,

from A2 or H? to L?(p). Then uC, — vCy is Hilbert-Schmidt if and only if
all of the four operators are Hilbert-Schmidt.

v
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Questions?

Thank You!
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