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The general relativistic infinite plane
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Uniform fields are one of the simplest and most pedagogically useful examples in introductory
courses on electrostatics or Newtonian gravity. In general relativity there have been several proposals
as to what constitutes a uniform field. In this article we examine two metrics that can be considered
the general relativistic version of the infinite plane with finite mass per unit area. The first metric
is the 4D version of the 5D “brane” world models which are the starting point for many current
research papers. The second case is the cosmological domain wall metric. We examine to what
extent these different metrics match or deviate from our Newtonian intuition about the gravitational
field of an infinite plane. These solutions provide the beginning student in general relativity both
computational practice and conceptual insight into Einstein’s field equations. In addition they do
this by introducing the student to material that is at the forefront of current research.

I. INTRODUCTION

The homogeneous gravitational field (i.e. the ~g in ~F = m~g) is one of the most commonly used examples in
introductory mechanics courses. Students later find out that this is an approximation used when the observer is small
compared to the radius of the spherical gravitating body on which they reside – if d is the size of the observer and R
the radius of the spherical body then d ≪ R. In Newtonian gravity a truly uniform field would be produced by an
infinite plane with area mass density σ. Infinite planes of charge are also among the first examples students encounter
in introductory electrostatics. Using the close connection between Newtonian gravity and electrostatics one can find
the gravitational potential for such an infinite mass plane. The Newtonian gravitational potential, φ, for such a source
is given by

~g = −∇φ = −2πGσ[Θ(z) − Θ(−z)]ẑ → ∇2φ = 4πGσδ(z), (1)

where Θ(u) is the step function (Θ(u) = 0 for u < 0 and Θ(u) = 1 for u ≥ 0); δ(z) is the Dirac delta-function
which results from differentiating the step function. The last equation is obtained by taking the divergence of the
first equation. The solution, φ(z) to (1) is φ(z) = 2πGσ|z|.

We want to construct the general relativistic version of the infinite plane. We find that there are two metrics which
have some (but not all) of the characteristics of the Newtonian infinite plane. These two metrics are excellent examples
to introduce beginning students to both calculational and conceptual aspects of general relativity. In addition one of
the two examples has connections with current research in “brane” world models. This can help generate interest in
beginning students of general relativity, by showing them they are not (in all cases) far removed from frontier research.

There have been many previous claims for constructing the general relativistic field for an infinite plane (a nice
discussion and an extensive list of references on this subject can be found in [1]). However, none of these solutions
has the correct matter configuration for an infinite plane, namely ρ(z) ∝ δ(z) as in (1). In addition, one might
expect that the general relativistic infinite plane would in some sense give rise to a “uniform” gravitational field. We
will indeed find this to be the case since our first solution is a 4D version of the 2D “uniform” gravitational field
introduced by Desloge [2]. There are, however, some important differences between the general relativistic infinite
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plane and the Newtonian infinite plane which arise from the fact that the field equations of general relativity imply
the equations of motion. Thus one cannot put down an infinite plane and expect it to be static. We will find that in
order to stabilize the general relativistic infinite plane one needs to introduce pressures/tensions and, in one case, a
cosmological constant term.

In the end we find that the first solution is a 4D version of the 5D “brane world” models [3] [4] [5] which have
provided a new solution to the hierarchy problem (i.e., the question or puzzle as to why the gravitational interaction is
many orders of magnitude weaker than the three other known interactions) as well as other open questions in particle
physics and cosmology. Reference [6] gives an excellent introduction to the topic of 5D and higher dimensional
brane world models, their utility in solving the hierarchy problem, and other open questions in particle physics and
cosmology that can be addressed by these models. The second solution is the domain wall solution first given in [7]
and studied in some detail in [8] [9]. It is a simple solution which can again serve as an excellent calculational exercise
for beginning students. Domain walls are not phenomenologically viable, but they are often grouped together with
cosmic strings, which are being actively studied. As such the domain wall solution might provide a starting point for
discussing exotic cosmological solutions [10]. In the concluding section we will give some discussion of the physical
meaning of the brane world and domain wall metrics, and give some ideas for additional investigations one could
assign as projects for students.

II. GENERAL RELATIVISTIC INFINITE PLANE

Starting with the Newtonian infinite plane we want to motivate the general relativistic infinite plane. In the
weak field limit (GM/rc2 ≪ 1, where M is the mass of the gravitating object and r is some distance scale involved
in the problem) the relationship between the Newtonian potential and the g00 component of the metric is g00 =
−(1 + 2φ/c2) → −(1 + 2φ) (from now on we set c = 1). Thus, given that the Newtonian potential for the infinite
plane is φ(z) = 2πGσ|z| ≡ g|z| one might be tempted to try the metric g00 = −(1+2g|z|), gii = +1, where i =, x, y, z
and we have a gravitational acceleration g = 2πGσ. One can easily check that this does not work, since for this metric
only the Gxx and Gyy components of the Einstein tensor are non-zero. Since Gµν ∝ Tµν this implies only the Txx

and Tyy components of the energy-momentum tensor are non-zero, whereas we wanted only T00 ∝ ρ to be non-zero.
We will find that it is not possible to construct a static mass distribution without pressures/tensions or possibly a
cosmological constant.

One may notice that the trial metric – g00 = −(1 + 2g|z|), gii = +1 – can be seen as some limit of the Rindler
metric [11] which is Minkowski spacetime as seen by an observer undergoing constant, linear acceleration,

ds2 = − (1 + gz)2 dt2 + dx2 + dy2 + dz2 ≈ − (1 + 2gz)dt2 + dx2 + dy2 + dz2, (2)

where the last approximation is gz ≪ 1. If we ignore the lack of absolute value around z this is just the trial
metric. However, it can be shown [2] [12] that the Rindler metric is not a solution to the Einstein field equations for
any ponderable source of the gravitational field, i.e., it is a vacuum spacetime. This can be seen directly since the
Rindler metric (2) can be obtained from Minkowski spacetime via the transformation t′ = [(1/a) + z] sinh(at) and
z′ = [(1/a) + z] cosh(at).

Continuing our search of the general relativistic analog of the infinite plane we note that in [2] the g00 component
for the uniform gravitation field metric was given by g00 = e2gz (in [2] the coordinate was x and |g| = 1). Also noting
that e2gz ≈ 1 + 2gz for gz ≪ 1 we might try using e2g|z| for g00. This same association between the approximate
(1 + 2gz) and exact (e2gz) time component of the metric was given originally by Einstein [13]. What, if anything, do
we do for gii where i = x, y, z? If we make the simplest guess that only g00 should be non-trivial we arrive at

ds2 = −e2g|z|dt2 + dx2 + dy2 + dz2. (3)

This is a 4D version of the exotic Kaluza-Klein metric proposed by Visser [14] which is considered a precursor to the
current higher dimensional brane world models. Again, if one calculates the Einstein tensor Gµν , the only non-zero
terms are

Gxx = Gyy =

(
eg|z|

)′′

eg|z|
= gδ(z) + g2, (4)

where the primes indicate differentiation with respect to z. The δ(z) function appears because we are taking the
second derivative of |z|. Adding a cosmological constant term to the field equations would give non-zero values of T00

and Tzz, but not of the form δ(z) needed for the mass distribution for an infinite plane.
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To get rid of the Gxx, Gyy terms one should take gxx, gyy as non-trivial. The simplest guess – that one should

extend the “warp” factor e2g|z| to encompass dx2 + dy2 – turns out to be the correct one. The metric now becomes

ds2 = e2g|z|(−dt2 + dx2 + dy2) + dz2. (5)

The components of the Einstein tensor, Gµν , for (5) can be calculated by hand. This provides a good exercise for a
beginning general relativity student, which is non-trivial, yet simpler than the Schwarzschild metric. The non-zero
components are

Gxx = Gyy = −G00 =
(
(eg|z|)′

)2

+ 2eg|z|(eg|z|)′′ = 3g2e2g|z| + 2gδ(z)

Gzz = 3

(
(eg|z|)′

eg|z|

)2

= 3g2. (6)

Now we finally see the presence of the T00 ∝ δ(z) matter source implied by its presence in G00. However, there are
also pressures in the x, y directions since Gxx = Gyy 6= 0 → Txx = Tyy 6= 0, and the components G00, Gxx, Gyy have

an extra, non-δ function term – ±3g2e2g|z|. Finally, Gzz is non-zero and equal to 3g2. These extra, non-δ function
terms can be eliminated by the introduction of a cosmological constant term as follows

Gµν = 8πGTµν − 8πGλgµν where λ = − 3g2

8πG
(7)

As can easily be checked, this is exactly the 4D version of the 5D brane models in [3] [4] [5]. The energy-momentum
tensor for our system can be read off by comparing (6) and (7) with the result

T00 = − g

4πG
δ(z) , Txx = Tyy =

g

4πG
δ(z). (8)

All other components are zero. Note that this is not exactly the same as the Newtonian case of the infinite plane
where T00 ∝ δ(z) and all other components of Tµν zero. In the general relativistic case there are pressures in the
x and y directions (the non-zero Txx, Tyy) as well as a negative cosmological constant which is proportional to the
square of the acceleration, g2, and thus to the square of the area density, σ2.

There is another plane solution to the Einstein field equations which has T00 ∝ δ(z), and pressures in the per-
pendicular directions, but without a cosmological constant. It is the domain wall metric first given by Taub [7] and
investigated further in [8]. The domain wall metric is

ds2 = (1 − 2g|z|)−1/2 (−dt2 + dz2) + (1 − 2g|z|)(dx2 + dy2) , (9)

where as before g = 2πGσ. Calculating the components of Gµν for this metric again provides a simple calculational
exercise for beginning students. The only non-zero components are

G00 = − (1 − 2g|z|)′′
(1 − 2g|z|) = +2gδ(z)

Gxx = Gyy =
1

4
(1 − 2g|z|)1/2 (1 − 2g|z|)′′ = −1

2
gδ(z) . (10)

Using (10) in (7) but with λ = 0 the non-zero components of the energy-momentum tensor are

T00 =
g

4πG
δ(z) , Txx = Tyy = − g

16πG
δ(z). (11)

Since the domain wall solution given in (10) (11) has no cosmological constant one might prefer this as the general
relativistic version of the infinite plane. However, from (10) one can see that the domain wall solution has a singularity
at z = ± 1

2g whereas the brane solution (5) is everywhere non-singular. In the following section we examine in more

detail the motion of a test particle in the two metrics from (5) and (9) to see which metric most closely corresponds
to a Newtonian infinite mass plane in so far as giving a uniform acceleration.

All the above metrics had δ− function sources (or, more correctly, distributions). In linear theories such as electro-
magnetism or Newtonian gravitation these types of sources do not present a major problem. But the nonlinear nature
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of general relativity suggests that one should proceed with caution when dealing with concentrated sources. The
formalism for treating thin shell distribution such as those studied here can be found in [15]. However, the formalism
for treating line and point distributions is more involved. An attempt to incorparate point distributions in general
relativity can be found in [16]. A detailed study of the possible inclusion of point, line and string distributional sources
in general relativity can be found in [17]. Starting from the notion of regular metrics, which satisfy the physically
reasonable requirement that the curvature tensor - and, through Einstein’s equations, the energy-momentum tensor
as well - make sense as a distribution, Geroch and Traschen show that point particles and strings are not allowed
as sources. Thin shells of matter or radiation, on the other hand, do admit a general formulation as distributional
sources under this requirement of regularity.

III. PARTICLE TRAJECTORIES FOR INFINITE PLANE

In this section we study the geodesic motion of a test particle in each of the background metrics (5) and (9). For
our purposes the best form of the geodesic equations is given on page 330 of reference [18] as

gµν
d2xν

dτ2
+
∂gµν

∂xα

dxα

dτ

dxν

dτ
− 1

2

∂gαβ

∂xµ

dxα

dτ

dxβ

dτ
= 0. (12)

We first apply this to the “brane” metric of (5) restricting ourselves to z > 0 so we drop the absolute value around
z. The µ = 0 equation from (12) is

d2t

dτ2
+ 2g

dz

dτ

dt

dτ
= 0. (13)

This has the solution [19] (we assume x and y are fixed; the consistency of this assumption may be verified directly
from (12))

dt

dτ
= e−2gz (14)

From (12) the geodesic equation for the z-dimension is

d2z

dτ2
+

1

2

∂(e2gz)

∂z

(
dt

dτ

)2

− 1

2

∂gij

∂z

dxi

dτ

dxj

dτ
= 0, (15)

where i, j ranges over 1, 2. Substituting the result of (15), using
∂gij

∂z = 2ggij = 2ge2gzηij (where ηij = +1 if i = j = 1
or i = j = 2, and zero otherwise) we can write the above geodesic equation as

d2z

dτ2
= −ge−2gz + ge2gzηij

dxi

dτ

dxj

dτ
, (16)

The acceleration is not constant because of the e−2gz factor in the first term. This runs counter to a naive extension
of Newtonian intuition, as encapsulated in (1), that the acceleration should be constant. However, (16) is what is
usually meant by 4-acceleration in special relativity: it uses the proper time τ of the test particle undergoing geodesic
motion. The observer who measures this acceleration is fixed at some z 6= 0. In the context of special relativity the
acceleration defined in (16) is singled out by being covariant. In the context of general relativity this acceleration in
(16) is not covariant and therefore does not hold the same priviledged role that it does in special relativity. Thus, in
order to see the connection with the Newtonian case we follow [2] and look at the acceleration (referred to as “local”
acceleration in [2]) measured with a system of clocks that are fixed with respect to the infinite plane at z = 0 (due to
general relativistic time dilation this observer is not the same as the previous observer fixed at z 6= 0). Time intervals

dT measured with these clocks are related to proper time intervals via dτ =
√−g00dT =

√
e2gzdT [2]. With this

re-parameterization the geodesic equation (16) for the z-dimension becomes

e−gz d

dT

(
e−gz dz

dT

)
= −ge−2gz + gηij

dxi

dT

dxj

dT
. (17)
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This simplifies to

d2z

dT 2
= −g + g

(
v2

z + e2gz(v2
x + v2

y)
)

(18)

where vx ≡ dx
dT , vy ≡ dy

dT and vz ≡ dz
dT . Note that the acceleration in (18) is not covariant, even in the special

relativistic sense. The first term in (18) gives the constant acceleration toward the plane at z = 0 which one would
expect from the Newtonian case. However, unlike the Newtonian case, both the 4-acceleration (16) as well as the
acceleration (18) measured with clocks fixed relative to the plane have a dependence on the velocity, and do not
therefore reproduce the Newtonian result in general.

In (18) one can see that the velocities in the plane (i.e. vx, vy) scale exponentially as one moves off of the plane
z = 0. The same is true of momenta and some other physical quantities. It is exactly this property of the metric (5)
that makes it useful for addressing the hierarchy problem. In 5D it can be arranged so that the effective 4D Newton’s
constant, G4, is related to the underlying 5D Newton’s constant, G5, via an exponential scaling, G4 ∝ e−kzG5,
where k is some constant and z is now the 5th dimension. In this picture G5 can be on the order of other couplings
(electroweak, strong) and G4 is small because of the exponential suppression due to the metric. To actually arrange
this one needs two planes – one with +σ and one with −σ. The details of this can be found in [6].

We now study the motion of a test particle on the domain wall background of (9). The µ = 0 component of (12) is

d2t

dτ2
+

g√
1 − 2gz

dz

dτ

dt

dτ
= 0. (19)

This has the solution

dt

dτ
= (1 − 2gz)

1/2
. (20)

Next, from (12), and using (20) the geodesic equation for the z-dimension is

d2z

dτ2
= −1

2
g − 1

2
g (1 − 2gz)

−1

(
dz

dτ

)2

− g (1 − 2gz)
1/2

ηij
dxi

dτ

dxj

dτ
, (21)

The first term on the right hand side of (21) shows that the domain wall metric gives a uniform 4-acceleration of
g/2 toward the plane. The remaining terms on the right hand side show (as in the case of the “brane” metric) that
contrary to Newtonian intuition the 4-acceleration has velocity dependent terms. Switching to time intervals measured
with clocks fixed with respect to the plane at z = 0 via the transformation dτ =

√−g00dT = (1− 2gz)−1/4dT we find

d2z

dT 2
= −g

2
(1 − 2gz)

−1/2 − g (1 − 2gz)
1/2 (

v2
x + v2

y

)
, (22)

where vx ≡ dx
dT and vy ≡ dy

dT . Therefore the “local” acceleration is not constant, but diverges as one approaches

z = 1
2g .

To more quickly arrive at the acceleration for a given metric one may directly use the definition for the initial, local
gravitational acceleration given in [2]

g(z) ≡ − 1√−g00

(
d
√−g00
dz

)
. (23)

Applying (23) to the “brane” world (5) and domain wall metrics (9) yields

gBrane(z) = −g[Θ(z)− Θ(−z)] , gDomain−Wall(z) = − g

2(1 − 2g|z|) [Θ(z) − Θ(−z)] . (24)

Thus using (23) as our definition we find that it is the brane world metric which gives a uniform acceleration, while
the acceleration of the domain wall diverges at z = 1

2g . This frame dependence of the acceleration, which is not an

issue in the case of the Newtonian infinite plane, is of course unavoidable and expected in the general relativistic case.
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IV. DISCUSSION OF THE SOURCE TERMS AND ENERGY CONDITIONS

From the previous discussion one finds that the two metrics put forward as general relativisitic versions of the
Newtonian infinite plane have energy-momentum tensors ((8) and (11)) which include not only mass-energy density
terms (i.e. T00) but have pressure or tension terms (i.e. Tii). In contrast, the matter source of the Newtonian plane
is only from a mass-energy density term.

One can give a physical motivation for the appearance of pressures or tensions (i.e. negative pressures) in the
static, general relativistic solutions: a matter source with only a plane of mass-energy – T00 ∝ δ(z) – is not stable, but
will collapse under its gravitational self-attraction. To have a static configuration one must stabilize the mass-energy
density by pressures/tensions (and in the case of the “brane” world metric by a cosmological constant). Further,
these pressures/tensions play a significant role in the total gravitational field. In [9] it was shown that in order for
an observer to remain stationary next to a plane with planar mass-energy density σ and planar tensions τ , they
would have to accelerate away from the plane if (σ − 2τ) > 0 and toward the plane if (σ − 2τ) < 0. In either case the
magnitude of the acceleration would be proportional to |σ−2τ |. In other words, tensions are gravitationally repulsive,
while pressures (negative tensions) are gravitationally attractive; positive mass-energy densities are gravitationally
attractive, while negative mass-energy densities are gravitationally repulsive.

We can use this conclusion to further understand the results of the previous section for the accelerations of particles
that are near the plane. If one is near the plane z = 0, the acceleration for a test particle in the “brane” world
metric is ≃ g and toward the plane (see (16) (18)), while a test particle in the domain wall metric sees an acceleration
of ≃ g/2 and also toward the plane (see (21) (22)). For the “brane” world sources in (8) we have σ = − g

4πG and
τ = − g

4πG (since tensions act as negative pressures). Thus for the “brane” world sources (σ − 2τ) = g
4πG > 0. The

domain wall sources have σ = g
4πG and τ = g

16πG which yields (σ − 2τ) = g
8πG > 0. Thus both metrics give an

attractive acceleration toward z = 0, but when one is near the plane the “brane” world acceleration is twice that of
th domain wall acceleration. The reason for the acceleration toward the plane is different in the two cases: (i) for
the “brane” world source the attraction due to the pressures dominates the repulsion from the negative mass-energy
density; (ii) For the domain wall source the attraction from the positive mass-energy density dominates the repulsion
coming from the tension.

The unusual source terms for these plane solutions (especially the negative mass-energy density of the “brane”
world solution) provide a nice segue for the introduction of energy conditions. Three principal energy conditions are
the weak energy condition

TµνV
µV ν ≥ 0 → ρ ≥ 0 and ρ+ pi ≥ 0 , (25)

the strong energy condition

(
Tµν − T

2
gµν

)
V µV ν ≥ 0 → ρ+ pi ≥ 0 and ρ+

∑

i

pi ≥ 0 , (26)

and the dominant energy condition

TµνV
µV ν ≥ 0 and TµνV

ν not timelike → ρ ≥ 0 and − ρ ≥ pi ≥ ρ . (27)

In the above V µ is a timelike vector and in the strong energy condition T = −T00 +
∑

i Tii. The first statement
of each condition is given in terms of Tµν while the second statement is given in terms of densities and pressures –
T00 → ρ and Tii → pi. The dominant energy condition implies the weak condition but not the strong condition.

The energy-momentum tensor of the domain wall (11) satisfies all three energy conditions. The “brane” world
sources (8) violate the dominant and weak conditions yet satisfies the strong condition. Thus one might again prefer the
domain wall metric over the “brane” world metric, since it does not violate any of the energy conditions. Nevertheless
there are experimentally confirmed cases where all the above energy conditions are violated. The prototypical example
is the Casimir effect [20]. Further discussion about energy conditions and their actual or potential violation can be
found in [21] [22].

V. SUMMARY AND CONCLUSIONS

In this article we have presented two metrics – (5) and (9) – which can to some extent be considered as general
relativistic versions of the Newtonian infinite plane. Each has a planar mass-energy density – T00 ∝ δ(z) – and each
has (in some frame) an (initially) uniform acceleration toward the plane. For the “brane” world metric this is the
frame fixed to the plane (see (18)) while for the domain wall solution it is the proper frame (see (21)). There are many
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points in which these general relativistic planes differ from the Newtonian plane: (i) both require pressures/tensions
in order to have a static solution; (ii) the “brane” world solution in addition requires a cosmological constant; (iii)
the acceleration (in any frame) has velocity dependent terms (iv) the acceleration is frame dependent.

Although neither solution is new, both provide good examples for beginning general relativity students in terms of
calculations and to illustrate conceptual as well as physical points regarding general relativity. The metrics (5) and
(9) are simple enough to provide a doable exercise of calculating the Einstein tensor, Gµν . Both metrics provide a
relatively straightforward application of the geodesic equations (12). There are additional projects or exercises that
one could assign to students that would help to give a deeper understanding of the physical meaning of the solutions:
(i) In this paper we have computed accelerations toward the plane z = 0 only. One can have students probe the
physical meaning of both metrics further by having them calculate the solutions to the geodesic equations (12) in the

x or y directions for each metric under the initial conditions dx
dτ = 0 and dy

dτ = 0. They could then be asked to explain
the apparent discrepancy between these solutions and the picture emerging from a consideration of (the Newtonian
approximation to) tidal forces as given on page 41 of [18],

f i = −mRi
0k0 x

k. (28)

Since Rx
0x0 and Ry

0y0 are non-vanishing this clearly gives fx = fy 6= 0, implying the existence of forces that should
make two test particles with initial separations ∆x0 6= 0 and/or ∆y0 6= 0 approach each other as they fall toward the
plane. Such forces are, of course, completely absent in the case of the Newtonian plane. (ii) It is apparent that the
domain wall metric (9) has a horizon at z = 1

2g , but it is less obvious that the brane world metric (5) also possesses

a horizon at z = ±∞ where the metric becomes infinite. Even though the distance from z = ±∞ to z = 0 is infinite
the proper time required to cover this interval is finite. The easiest way to see this is to alter the metric (5) by letting
g → −g so that particles are repelled from the z = 0 plane and accelerate toward z = ∞. Solving the geodesic
equation (15) for the initial conditions vy = vx = 0 and z = 0 at t = 0 yields [6]

z(T ) =
1

2g
ln

(
1 + g2T 2

)
(29)

The proper time for this particle can be determined via

dτ2 = −e−2g|z(T )|dT 2 +

(
dz(T )

dT

)2

dT 2 (30)

Using (29) in (30) and integrating gives a proper time of τ = π
2g for the particle to move from z = 0 to z = ∞.

Thus for either an attracting brane (+g) or a repelling brane (−g) the particle will cover the infinite distance in finite
proper time. Thus even though the horizons are at infinity they are nevertheless important in considerations of this
metric. This also allows one to introduce a similiar feature for the Schwarzschild solution where it takes an infinite
time as seen by an outside stationary observer for a particle to fall through the horizon at r = 2M , but the proper
time, as seen by an obsever who falls with the particle, is finite. (iii) Instead of studying the motion of point particles
in these background metrics as was done in section III, one can instead investigate the wave equations of various
particles (spin 0, 1

2 , 1, 2). For example, one could look at the wave equation of a spin-0 particle for the brane world
metric. This is done by modifiying the Klein-Gordon equation for the spin-0 field, Φ, as

1√−g∂µ(
√−ggµν∂νΦ) +m2

0Φ = 0 , (31)

where g is the determinant of the metric, and m0 is the mass of the field Φ. The equation for a spin-2 tensor field is
the same as that for the spin-0 field. The 4D wave equations for spin- 1

2 and spin-1 fields are similiar. A guide or hint
for obtaining these wave equations in the brane world background is that they can be found by reducing from the
explicit 5D wave equations – for spin 0, 2, see the second article in [5], for spin 1

2 see [23], and for spin 1 see [24]. To
simplify the problem, one should first try massless fields (i.e. set m0 = 0 in wave equations like (31)). One should also
use separation of variables of the fields with the x and y directions being plane waves, e.g., in wave equations such
as (31), try Φ(t, x, y, z) ∝ ei(Et−pxx−pyy)ψ(z) where E is the energy of the particle and px, py are the x, y momenta.
In this way one obtains a differential equation for ψ(z) and one can investigate if a particular spin field is trapped or
confined near the plane at z = 0 i.e. does the function ψ(z) fall off as z → ∞. In the 5D case this gave rise to some
unusual and still puzzling results: spin 0 and 2 fields are trapped when one has a repelling brane (−g) [5]; spin 1

2 fields
are trapped by an attracting brane (+g) [23]; spin 1 fields are trapped by neither brane [24]. It would be interesting
to see if/how these results from 5D carry over into 4D and if it is possible to reconcile the trapping or non-trapping
behavior of the wave fields with the respective particle results from the geodesic equations when the metric given in
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(5) is attractive or repulsive (obtained from the former by making the replacement g → −g in (5)). (iv) In section III
we studied the geodesic equations for a massive particle. One could redo the analysis for a massless particle.

With the 4D brane solution (5) in hand one can also begin to discuss (either via class lecture or through assigned
exercises) how the 5D versions reproduces effective 4D gravity at low energies and how these solutions are used to
address the heirarchy problem. Although the domain wall solutions are not phenomenologically viable (if they existed
one would have seen evidence for them in, among other things, the fluctuations of the cosmic microwave background),
they nevertheless would provide an introduction to other exotic cosmological solutions, such as cosmic strings or
monopoles, which are still possibilities and continue to be experimentally sought.

Conceptually, these examples may be used to show that the acceleration will in general contain velocity terms,
which is distinct from the Newtonian case. In addition, one sees how different types of energy-momentum gravitate –
positive mass-density and pressures lead to gravitational attraction, while negative mass-density and tensions lead to
repulsion. Finally, one can introduce various energy conditions by examining the energy-momentum tensor for each
solution.
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