GAISEing into the NEW Guidelines

Robert Carver
Stonehill College

Megan Mocko
University of Florida

Jeffrey Witmer
Oberlin College

Beverly Wood
Embry-Riddle Aeronautical University, woodb14@erau.edu

Follow this and additional works at: https://commons.erau.edu/publication

Part of the Curriculum and Instruction Commons, Educational Assessment, Evaluation, and Research Commons, Higher Education Commons, Science and Mathematics Education Commons, and the Statistics and Probability Commons

Scholarly Commons Citation

This Presentation without Video is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
GAISEing into the NEW Guidelines

Robert Carver, Stonehill College
Michelle Everson (co-chair), The Ohio State University
John Gabrosek, Grand Valley State University
Ginger Holmes Rowell, Middle Tennessee State University
Nicholas Horton, Amherst College
Robin Lock, St. Lawrence University

Megan Mocko (co-chair), University of Florida
Allan Rossman, Cal Poly San Luis Obispo
Paul Velleman, Cornell University

Jeffrey Witmer, Oberlin College
Beverly Wood, Embry-Riddle Aeronautical University
GAISEing into the NEW Guidelines

http://www.amstat.org/education/gaise/

- Original Report
- March Webinar Recording
- Completed Report
<table>
<thead>
<tr>
<th>Main Report: 25 pages</th>
<th>Supporting Appendices: 38 pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Environments</td>
<td>Real Data</td>
</tr>
<tr>
<td>Examples of Assessment Items</td>
<td>Example of Using Technology</td>
</tr>
<tr>
<td>Examples of Using Technology</td>
<td>Examples of Assessment Items</td>
</tr>
<tr>
<td>Multivariable Thinking</td>
<td>Examples of Using Technology</td>
</tr>
<tr>
<td>Evolution of Intro Stats & Emergence</td>
<td>Examples of Using Technology</td>
</tr>
<tr>
<td>Supporting Appendices: 113 pages</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Six Recommendations for Teaching</th>
<th>Five groups of Goals for Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Report: 26 pages</td>
<td>Main Report: 25 pages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>139 pages</th>
</tr>
</thead>
</table>

| Original GAISE College Report | 61 pages |

But everything has changed!

Everything is the same....
Two new emphases

a. **Teach statistics as an investigative process of problem-solving and decision-making.**

 Statistics is a problem-solving and decision-making process, not a collection of formulas and methods.

b. **Give students experience with multivariable thinking.**

 The world is a tangle of complex problems with inter-related factors. Let’s show students how to explore relationships among many variables.
What is your comfort level with multivariable thinking?

a) Very comfortable – Ready to teach it today!

b) Somewhat comfortable – Considering adding it as a new topic soon.

c) Not comfortable – Not Ready to Teach it Yet
Your assignment!

- As we go through the next example, think about how this activity can be used in different learning environments.
 - Face to Face
 - Distance Learning (Online)
 - Flipped (Inverted)
 - Large Classes
 - Cooperative Learning

- If you think of something, go ahead and send it as a chat message.

• Touches on 5 of the 6 recommendations (no Assessment today!)
• Statistical thinking experience
• Key **concept** in the lesson: Confounding/ lurking variable
 • *Limits of observational studies*
 • *Multivariable thinking via stratification*
• **Real data** relevant to student experience – engagement
• Interactive discussion – active learning
• Technology to convey the concept
What impact might we expect salaries to have on SAT scores?
What’s next?

- So, we have now set the stage for our investigation.

- We are now going to go through how to do work this out using four different technology packages.
 - R
 - JMP
 - Minitab Express
 - Excel
R commands to make a first scatterplot with fitted line.

```r
> plot(Mean.Total~Est.Mean.Salary, data=Guber, pch=16, ylab="State average SAT score", xlab="Average teacher salary")
> mod1=lm(Mean.Total~Est.Mean.Salary, data=Guber)
> summary(mod1)
> abline(mod1)
```
WHAT THE HECK

AM I LOOKING AT ???
R commands for the breakdown by Level

> #Using mosaic and lattice
> library(mosaic)
> mPlot(Guber) #then choose Selection: 2
> #then choose x and y, then color by Level, then choose Model as linear, then add a Key to the top
> #Here is what Show Expression gives:
> xyplot(Mean.Total ~ Est.Mean.Salary, data=Guber,
groups=Level, main="", type=c("p","r"),
auto.key=list(space="top", columns=3))
An R screenshot, using the mosaic package and mPlot()
JMP Video

![JMP Interface](image)

<table>
<thead>
<tr>
<th>State</th>
<th>Expend per pupil</th>
<th>Avg PT Ratio</th>
<th>Est Mean Salary</th>
<th>%taking SAT</th>
<th>Level Taking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>4.405</td>
<td>17.2</td>
<td>31.144</td>
<td>8</td>
<td>low</td>
</tr>
<tr>
<td>Alaska</td>
<td>8.963</td>
<td>17.6</td>
<td>47.951</td>
<td>47</td>
<td>middle</td>
</tr>
<tr>
<td>Arizona</td>
<td>4.778</td>
<td>19.3</td>
<td>32.175</td>
<td>27</td>
<td>middle</td>
</tr>
<tr>
<td>Arkansas</td>
<td>4.459</td>
<td>17.1</td>
<td>28.934</td>
<td>6</td>
<td>low</td>
</tr>
<tr>
<td>California</td>
<td>4.992</td>
<td>24</td>
<td>41.078</td>
<td>45</td>
<td>middle</td>
</tr>
<tr>
<td>Colorado</td>
<td>5.443</td>
<td>18.4</td>
<td>34.571</td>
<td>29</td>
<td>middle</td>
</tr>
<tr>
<td>Connecticut</td>
<td>8.817</td>
<td>14.4</td>
<td>50.045</td>
<td>81</td>
<td>high</td>
</tr>
<tr>
<td>Delaware</td>
<td>7.03</td>
<td>16.6</td>
<td>39.076</td>
<td>68</td>
<td>high</td>
</tr>
<tr>
<td>Florida</td>
<td>5.718</td>
<td>19.1</td>
<td>32.588</td>
<td>48</td>
<td>middle</td>
</tr>
<tr>
<td>Georgia</td>
<td>5.193</td>
<td>16.3</td>
<td>32.291</td>
<td>65</td>
<td>high</td>
</tr>
<tr>
<td>Hawaii</td>
<td>6.078</td>
<td>17.9</td>
<td>38.518</td>
<td>57</td>
<td>high</td>
</tr>
<tr>
<td>Idaho</td>
<td>4.21</td>
<td>19.1</td>
<td>29.783</td>
<td>15</td>
<td>low</td>
</tr>
<tr>
<td>Illinois</td>
<td>6.136</td>
<td>17.3</td>
<td>39.431</td>
<td>13</td>
<td>low</td>
</tr>
<tr>
<td>Indiana</td>
<td>5.826</td>
<td>17.5</td>
<td>36.785</td>
<td>58</td>
<td>high</td>
</tr>
<tr>
<td>Iowa</td>
<td>5.483</td>
<td>15.8</td>
<td>31.511</td>
<td>5</td>
<td>low</td>
</tr>
<tr>
<td>Kansas</td>
<td>5.817</td>
<td>15.1</td>
<td>34.652</td>
<td>9</td>
<td>low</td>
</tr>
<tr>
<td>Kentucky</td>
<td>5.217</td>
<td>17</td>
<td>32.257</td>
<td>11</td>
<td>low</td>
</tr>
<tr>
<td>Louisiana</td>
<td>4.761</td>
<td>16.8</td>
<td>26.461</td>
<td>9</td>
<td>low</td>
</tr>
</tbody>
</table>
JMP: Graph Builder
Minitab Express - Video
Excel (data grouping)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Per Pupil $</td>
<td>Pupil/Teacher</td>
<td>Salary</td>
<td>% eligible</td>
<td>Group</td>
</tr>
<tr>
<td>2 Alabama</td>
<td>4.405</td>
<td>17.2</td>
<td>31.144</td>
<td>8</td>
<td>low</td>
</tr>
<tr>
<td>3 Alaska</td>
<td>8.963</td>
<td>17.6</td>
<td>47.951</td>
<td>47</td>
<td>medium</td>
</tr>
</tbody>
</table>

=IF(E2<22,"low",IF(E2>49,"high","medium"))
Excel (side-by-side display)
Excel (all-in-one display)
Let’s Discuss

• So, how can we use this same example in different learning environments?
 – Face to Face
 – Distance Learning (Online)
 – Flipped (Inverted)
 – Large Classes
 – Cooperative Learning

• Please enter your thoughts into the chat room.
Interested in Learning More about GAISE 2016

• Watch the ASA webinar from March

• To read the current draft
 – http://www.amstat.org/education/gaise/

• Any questions or comments, please feel free to contact the co-chairs, Michelle Everson (everson.50@osu.edu) or Megan Mocko (mmeece@ufl.edu)