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February 14, 2005

A Dyad Theory of Classical and Quantum

Physics

Preston Jones California State University Fresno

Abstract

The 4-space equations of hydrodynamics, electrodynamics, and quantum

mechanics are developed using the dyad calculus. Gravity is found to couple

hydrodynamics, electrodynamics, and quantum mechanics through the 4-

space metric and differential operator. Expanding the 4-space equations of

electrodynamics a time varying metric is shown to dissipate electromagnetic

energy.
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I. Introduction

The theory of general relativity was developed by Einstein1 using the

component tensor calculus consistent with 4-space Riemann geometry. In

this theory gravity is a geometric property of 4-space and the equations

of physics are written as form invariant relations correct for all reference

frame. While the component tensor calculus is the preferred method for the

determination of the structure of 4-space geometry, where a coordinate frame

is always assumed, this formalism does not produce the best representation

of the equations describing a physical system. Two familiar alternatives

to the component tensor calculus are the exterior calculus2 and differential

forms.3 The principle advantage of these two methods over the component

tensor calculus is the clear association between the physical constituents of

the system and the 4-space objects of the mathematical formalism. A third

method which preserve this association between the physical constituents

of the system and the 4-space objects of the mathematical formalism was

previously developed using dyads by Luehr and Rosenbaum.4 Unique among

the various alternatives the 4-space dyad calculus of Luehr and Rosenbaum is

formally very similar to 3-space vector calculus and offers the most natural

method for the development of form invariant equations from the familiar

equations of physics written in an inertial frame.

The representation of 4-space physical relations in terms of dyads also

produces an unambiguous demonstration of the connection between gravity,
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electrodynamics, and quantization. The phenomena of gravity is seen to

be completely a property of 4-space geometry. Gravity is found to act in

the equations of hydrodynamics, electrodynamics, and quantum mechanics

through the 4-space metric and differential operator. This 4-space geometry

is the geometry of Riemann and is indistinguishable from the 4-space geom-

etry of general relativity. In term of the dyad calculus the relation between

the metric and differential operator and a physical system is found in the

consistency of the 4-space equations of the system with the Riemann geom-

etry of 4-space and the differential operator and the metric of this 4-space.

Unlike general relativity the expression of gravity through the metric and

differential operator does not require the supposition of a gravitational field

equation in the formalism of the dyad calculus. While it might be possible

to write a gravitational field equation in terms of the dyad calculus the form

invariant equations of hydrodynamics, electrodynamics, and quantum theory

are independent of a separate equation for gravity.

Since the dyad calculus is less familiar than the tensor calculus this for-

malism will be presented here in a form suitable for the representation of

4-space physical relations. Having developed the dyad calculus the equations

of hydrodynamics, electrodynamics, and quantum mechanics are written in

terms of dyads. Since the 4-vectors in the dyads are independent of the

local 4-space geometry it is sufficient to demonstrate that these equations

are correct in an inertial frame to insure that the equations are also correct

in all reference frames. Having developed the form invariant equations of
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electrodynamics and establishing the connection with gravity the equations

of electrodynamics are expanded, assuming a metric that is time dependent,

demonstrating that a time varying metric will dissipate electromagnetic en-

ergy.

II. 4-vectors and Dyad Calculus

Using the dyad calculus the equations describing a physical system are al-

ways form invariant in that the equations are identical in all reference frames.

This form invariance insures that if the equations describing a system can

be found under the conditions of any specific reference frame the equations

will be the same for every other reference frame. In a Lorentz inertial frame

(LIF) the physical equation can generally be represented as 3-space vector

relations. By transforming these 3-space vector relation into the equivalent

4-space dyad relations the resulting equations are now correct in all systems

and in particular where the local curvature of space might be very unlike a

LIF.

The connection between the 3-space vector relations of the LIF and the

form invariant 4-space relations of dyad calculus is achieved by retaining the

base vectors, which leads to a natural connection between 3-space and 4-

space mathematical objects and operators. In the dyad calculus geometric

objects are independent of the reference frame Aαeα = Aα′

eα′ and covariant
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and contravariant expressions are symmetric,

A ≡ Aiei = Aie
i; i = 1, 2, 3, (1)

A ≡ Aαeα = Aαe
α;α = 0, 1, 2, 3. (2)

The 3-space objects are represented in bold or with Latin indices and the

4-space objects are represented in bold and underlined or indicated by Greek

indices. Repeated indices imply a summation over the range of the indices.

There is a close relation between operations of the dyad calculus and the

vector calculus. This is achieved by the construction of second rank objects

from 4-vectors using the definition of the direct product. This direct product

forms a new object the dyad that does not exist in vector calculus,

AB ≡ A⊗ B. (3)

This new object is the juxtaposition of two vectors and is sometimes referred

to as a second rank object. The order of the vectors is important to the

definition of the object and in the differential operations on the object.

The dyad calculus presented here closely follows Luehr and Rosenbaum.4

The objects of the dyad calculus are all 4-vectors and the direct products

of 4-vectors. This permits the formal preservation of the contributions from

finite derivatives of the base vectors eα,

∂

∂xα
eβ ≡ eγΓ

γ
βα, (4)

where the coefficients Γγ
βα are the Christoffel symbols. This definition helps
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to provides an association of the dyad calculus with the component tensor

calculus.

The definition of the inner product or dot product is very similar to the

vector calculus operation A·B ≡ AαBβgαβ = AαBβg
αβ. The most significant

difference is the negative signature of the metric in 4-space, which in a Lorentz

inertial frame (LIF) can be expressed as e0 · e0 = e0 · e0 = −e0 · e0 = −1.

The 0 indices represent the time part. In this context the inner products of

the remaining base vectors form the Kronecker delta, ei · ej = δ
j
i .

Differential operations are introduced by defining a 4-space differential

operator ∇ ≡ ∂
∂xδ eδ = ∂

∂xδ

eδ, where in a LIF for example x0 = −x0 = −ct

and ∇ = −1

c
e0

∂
∂t

+ ∇ = 1

c
e0 ∂

∂t
+ ∇. The divergence of a 4-vector is defined

as a natural extension of the vector calculus expansion ∇ ·A ≡ ∂
∂xδ

gδαA
α =

∂
∂xδ g

δαAα. The divergence of the direct product of two vectors is defined in

a similar fashion,

∇ · (AB) ≡ (A · ∇)B + B(∇ · A). (5)

Unlike the dot product the cross product of vector calculus does not have

such a close 4-space analogue. To develop a 4-space analogue to the cross

product two further definitions, the wedge product and the dual, are required.

The wedge product is the anti-symmetrization of the direct product of two

vectors,

A ∧ B ≡ A ⊗ B− B ⊗A. (6)
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The dual maps the 4-space object into the ”dual” of the object,

dual(AB) ≡ 1

2
eαβγδAαBβeγeδ =

1

2
eαβγδA

αBβeγeδ. (7)

The Levi-Civita tensor eαβγδ is defined in terms of the permutations symbol

Eαβγδ which is zero if any indices are repeated, one for even permutations

of 0,1,2,3 and negative one for odd permutations, and g ≡ det (eα · eβ) the

determinant of the metric components,

eαβγδ ≡ − 1√−gE
αβγδ =

√
−gEαβγδ = eαβγδ. (8)

III. Hydrodynamics

The invariant equations of motion for a perfect fluid are found by first

determining the correct equations for a LIF and applying the form invariance

of the dyad relations to include all reference frames. The resulting equations

written in terms of 4-space objects are therefore the same for all reference

frames. Here it will be assumed that the fluid element in a LIF has 4-

velocity u = γce0 + γucec and 3-velocity u, small compared to the speed of

light u ≺≺ c. The 4-momentum of the perfect fluid is written as

Ω = γ

(

P

c
+ σc

)

e0 + γσuaea (9)

where σ is the local density in the LIF and P is the pressure. Were the

particles of the fluid all stationary relative to one another the fluid will have
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zero temperature and zero pressure. The 4-momentum for this condition will

be defined as the zero temperature 4-momentum and written as

p = γσce0 + γσubeb. (10)

With the assumption of speeds small compared to light the derivative of

γ = 1
√

1−u2

c2

is ∂γ

∂xα = u
c2
γ3 ∂u

∂xα and u ≺≺ c → γ ≃ 1 which leads to ∂γ

∂xα = 0.

It is only necessary to show that the continuity and Euler equations for a

perfect fluid in a LIF written as the direct products of 4-vectors are

(∇ · u) Ω = ∇ (u · Ω) − ∇
(

u · p
)

, (11)

and the form invariance of the equations insures that this is correct in general.

Expanding the space part,

∂

∂t
σud +

∂

∂xa
uaσud = − ∂

∂xd
P. (12)

Expanding the time part and noting that ud ≺≺ c,

∂

∂t
σ +

∂

∂xd
udσ = 0. (13)

These are the same as the Euler and continuity equations for a perfect fluid

in a LIF.

Due to the form invariance of the dyads the 4-space equations for hydro-

dynamics are the same for all reference frames and coordinate systems and
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in particular for any 4-space metric. For a given metric these equations can

be expanded in component form,

∂

∂xδ
uδΩη =

∂

∂xδ
gδηuαΩα − ∂

∂xδ
gδηuαpα. (14)

The solution to the equations must be consistent for the 4-space metric and

the mass-energy distribution of the system. Gravity as a purely geometric

property of 4-space is then related to the mass-energy distribution of the

system by associating a geometric object the Einstein tensor,

1

8π
Gδη = uδΩη + gδη (uαpα − uαΩα) , (15)

with the mass-energy distribution,

∂

∂xδ
Gδη = 0. (16)

This equation for the Einstein tensor and 4-space geometry provides a rela-

tion between the mass-energy distribution and 4-space geometry,

Gµν ≡ Rµν −
1

2
gµνg

αβRαβ, (17)

where,

Gδη = gδµgηνGµν . (18)

The components of the Ricci tensor in this equation are
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Rµν = − ∂

∂xα
Γα

µν + Γα
µβΓβ

να +
∂

∂xν
Γα

µα − Γα
µνΓ

β
αβ (19)

and the Christoffel symbols in this equation are

Γσ
µν =

1

2
gσα

(

∂gµα

∂xν
+
∂gνα

∂xµ
− ∂gµν

∂xα

)

. (20)

By developing a solution to the 4-space equations the geometry is determined

by the mass-energy distribution and gravity is completely a consequence of

this geometry.

Having written the equations of hydrodynamic in the form of the dyad

calculus gravity is found to be a purely geometric phenomena and acts in the

equations of hydrodynamics through the metric and the differential operator.

As a property of 4-space geometry the action of gravity through the metric

and the differential operator must be the same for all physical relations. In

particular the relation of gravity to electrodynamics and quantization will be

the same action through the metric and differential operator and will provide

a connection between the equations of hydrodynamic, electrodynamics, and

quantization.

IV. Electrodynamics

The dyad calculus as it is developed here makes it possible to write a

form invariant expression of the Maxwell equations in terms of the direct

products of 4-vector electric E and magnetic B fields with the 4-velocity of
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the observer u. The Maxwell equation as developed here were written in a

similar form as direct products between the 4-velocity and 4-space fields by

Ellis.5 While Ellis used the component methods the 4-space objects are the

same.

The inhomogeneous equations of electrodynamics are written in terms of

the wedge product of the 4-velocity u and the 4-vector E field and the dual

of this wedge product with the 4-vector B field.

∇ · (u ∧E) + ∇ · dual(u ∧ B) = −4π

c
J. (21)

The homogeneous equations are written as the wedge product with the 4-

vector B field and the dual of the wedge product with the 4-vector E field.

∇ · (v ∧ B) = ∇ · dual(v ∧ E). (22)

In this form the physical content of the equations is independent of the

observer and the reference frame and depends only on the source terms J.

Since these equations are form invariant it will suffice to show that the

equations are correct for a LIF to demonstrate that the equations are correct

for all reference frames. For a LIF the 3-velocity is zero, u =0 and u = ce0 =

−ce0. Here c is the speed of light in a suitable system of units. With this

definition the source terms are J ≡ ρce0 + J = −ρce0 + J. The fields are

similarly expressed as a sum of a time and space part. Substitution of these

expressions into the general form of the Maxwell equations and collecting
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space and time terms reduces to the expected form of the equations for

an observer at rest in a LIF. The connection between 4-space and 3-space

is facilitated by recognizing the relation between the Levi-Civita tensors,

e0123 = −e123 assuming constant base vectors. In a LIF this relation leads to

an expression for the negative of the curl in terms of the dual,

∇ · dual(e0 ∧A) = −∇ × A. (23)

Expanding the inhomogeneous equations in a LIF,

1

c

∂E

∂t
− (∇ ·E) e0 −∇× B = −4π

c
(J + ρce0) . (24)

Expanding the homogeneous equations in a LIF,

(∇ · B) e0 −
1

c

∂B

∂t
= ∇× E. (25)

These equations are correct for a LIF and the form invariance of the dyads

insures that these equations are correct for all reference frames.

V. Quantum Mechanics

The action of gravity through the metric and differential operator pro-

vides a natural connection between gravity and quantization. The differential

operator in the equations of quantization is the same as that of hydrodynam-

ics and electrodynamics. Gravity is then connected to quantization in the
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same fashion as with hydrodynamics and electrodynamics. The equation for

quantization have been previously developed in a form completely consis-

tent with the dyad calculus.6 The continuity equation for quantum states is

written as

∇ · j = 0 (26)

The 4-current vector for bosons as in the Klein-Gordon equation can be

expanded as

j = j+ρe0 (27)

Where the 3-current in a system of units with ℏ = c = 1 is

j =
1

2im
(ψ∗∇ψ − ψ∇ψ∗) (28)

and the density

ρ =
i

2m

(

ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)

. (29)

The 4-current vector for fermions as in the Dirac equation can be expanded

in terms of the Dirac matrices α as

j = ψ†
αψ + ψ†ψe0, (30)

where ψ is now a spinor.
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VI. Gravity and Electromagnetic Radiation

Having established the relation between gravity and electrodynamics it

is possible to examine how these phenomena are related. In particular it is

possible to determine the affect of gravity on electricity and magnetism in the

action of gravity through the metric and differential operator in the equations

of electrodynamics. As a practical example of this connection the affect of a

time varying metric will be considered. Assuming weak but time dependent

gravity in some region of space, the metric is written as g00 = − (1 + h (t)) ,

where h ≺≺ 1, gii ≃ 1 and gij = 0 if i 6= j. Also assuming u = ce0 = −ce0,

and J = 0 the inhomogeneous equations for electrodynamics can be expanded

as

− cE · (∇×B)+E · ∂E
∂t

= −E2
∂h

∂t
(31)

and the homogeneous equations are similarly expanded as

cB · (∇×E)+B · ∂B
∂t

= −B2
∂h

∂t
. (32)

Adding the equations and dividing by 1

4π
,

c

4π
∇ · (E × B) = − 1

4π

(

B2 + E2
) ∂h

∂t
− 1

8π

∂

∂t

(

B2 + E2
)

(33)

Defining the internal energy as U = 1

8π
(E2 +B2) ,
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c

4π
∇ · (E × B) ≃ − ∂

∂t
(1 + 2h)U. (34)

Demonstrating that a time varying metric will dissipate electromagnetic ra-

diation.

VII. Conclusion

Using the dyad calculus the association of gravity with hydrodynamics,

electrodynamics, and quantization has been established through the metric

and 4-space differential operator. Gravity is found to be completely geometric

and formally represented in the dyad calculus by 4-space Riemann geometry.

Having established the connection between gravity and electrodynamics a

time varying metric is shown to dissipate electromagnetic energy.
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